121 lines
8.0 KiB
Markdown
121 lines
8.0 KiB
Markdown
+++
|
||
title = "Piezoelectric Actuators"
|
||
author = ["Thomas Dehaeze"]
|
||
draft = false
|
||
+++
|
||
|
||
Tags
|
||
: [Actuators]({{< relref "actuators" >}})
|
||
|
||
|
||
## Piezoelectric Stack Actuators {#piezoelectric-stack-actuators}
|
||
|
||
|
||
### Manufacturers {#manufacturers}
|
||
|
||
| Manufacturers | Links |
|
||
|---------------------|------------------------------------------------------------------------------------|
|
||
| Cedrat | [link](http://www.cedrat-technologies.com/) |
|
||
| PI | [link](https://www.physikinstrumente.com/en/) |
|
||
| Piezo System | [link](https://www.piezosystem.com/products/piezo%5Factuators/stacktypeactuators/) |
|
||
| Noliac | [link](http://www.noliac.com/) |
|
||
| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) |
|
||
| PiezoDrive | [link](https://www.piezodrive.com/actuators/) |
|
||
| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/10.html) |
|
||
| CoreMorrow | [link](http://www.coremorrow.com/en/pro-9-1.html) |
|
||
|
||
|
||
### Model {#model}
|
||
|
||
A model of a multi-layer monolithic piezoelectric stack actuator is described in <sup id="c823f68dd2a72b9667a61b3c046b4731"><a class="reference-link" href="#fleming10_nanop_system_with_force_feedb" title="Fleming, Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control, {IEEE/ASME Transactions on Mechatronics}, v(3), 433-447 (2010).">(Fleming, 2010)</a></sup> ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||
|
||
|
||
### Specifications {#specifications}
|
||
|
||
Typical specifications of piezoelectric stack actuators are usually in terms of:
|
||
|
||
- Displacement/ Travel range \\([\mu m]\\)
|
||
- Blocked force \\([N]\\)
|
||
- Stiffness \\([N/\mu m]\\)
|
||
- Resolution \\([nm]\\)
|
||
- Length \\([mm]\\)
|
||
|
||
|
||
#### Displacement and Length {#displacement-and-length}
|
||
|
||
The maximum displacement specified is the displacement of the actuator when the maximum voltage is applied and when no load is added.
|
||
|
||
Typical strain of Piezoelectric Stack Actuators is \\(0.1\%\\), the free displacement \\(d\\) is then related to the length of piezoelectric stack:
|
||
\\[ d \approx \frac{L}{1000} \\]
|
||
|
||
|
||
#### Blocked Force {#blocked-force}
|
||
|
||
The blocked force is measured by first applying the maximum voltage to the piezoelectric stack without any load.
|
||
Thus, the piezoelectric stack experiences its maximum displacement.
|
||
|
||
A force is then applied to return the actuator to its original length.
|
||
This force is measured and recorded as the blocking force.
|
||
|
||
The blocking force is also the maximum force that can produce the piezoelectric stack in contact with an infinitely stiff environment.
|
||
|
||
|
||
#### Stiffness {#stiffness}
|
||
|
||
|
||
#### Resolution {#resolution}
|
||
|
||
The resolution is limited by the noise in the voltage amplified.
|
||
|
||
Typical [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}) of voltage amplified is \\(100dB = 10^{5}\\).
|
||
Thus, for a piezoelectric stack with a displacement \\(L\\), the resolution will be
|
||
|
||
\begin{equation}
|
||
r = \frac{L}{10^5}
|
||
\end{equation}
|
||
|
||
For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolution will be \\(\approx 1\,[nm]\\).
|
||
|
||
|
||
### Piezoelectric Stack experiencing a mass load {#piezoelectric-stack-experiencing-a-mass-load}
|
||
|
||
|
||
### Piezoelectric Stack in contact with a spring load {#piezoelectric-stack-in-contact-with-a-spring-load}
|
||
|
||
|
||
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
|
||
|
||
The Amplified Piezo Actuators principle is presented in <sup id="5decd2b31c4a9842b80c58b56f96590a"><a class="reference-link" href="#claeyssen07_amplif_piezoel_actuat" title="Frank Claeyssen, Le Letty, Barillot, \& Sosnicki, Amplified Piezoelectric Actuators: Static \& Dynamic Applications, {Ferroelectrics}, v(1), 3-14 (2007).">(Frank Claeyssen {\it et al.}, 2007)</a></sup>:
|
||
|
||
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
|
||
> The flatter is the actuator, the higher is the amplification.
|
||
|
||
A model of an amplified piezoelectric actuator is described in <sup id="849750850d9986ed326e74bd3c448d03"><a class="reference-link" href="#lucinskis16_dynam_charac" title="@misc{lucinskis16_dynam_charac,
|
||
author = {R. Lucinskis and C. Mangeot},
|
||
title = {Dynamic Characterization of an amplified piezoelectric
|
||
actuator},
|
||
year = 2016,
|
||
}">(Lucinskis \& Mangeot, 2016)</a></sup>.
|
||
|
||
| Manufacturers | Links |
|
||
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||
| Cedrat | [link](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) |
|
||
| PiezoDrive | [link](https://www.piezodrive.com/actuators/ap-series-amplified-piezoelectric-actuators/) |
|
||
| Dynamic-Structures | [link](https://www.dynamic-structures.com/category/piezo-actuators-stages) |
|
||
| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) |
|
||
| Noliac | [link](http://www.noliac.com/products/actuators/amplified-actuators/) |
|
||
| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F5.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F3.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5Fmtkk.html) |
|
||
| CoreMorrow | [link](http://www.coremorrow.com/en/pro-13-1.html) |
|
||
|
||
# Bibliography
|
||
<a class="bibtex-entry" id="fleming10_nanop_system_with_force_feedb">Fleming, A., *Nanopositioning system with force feedback for high-performance tracking and vibration control*, IEEE/ASME Transactions on Mechatronics, *15(3)*, 433–447 (2010). http://dx.doi.org/10.1109/tmech.2009.2028422</a> [↩](#c823f68dd2a72b9667a61b3c046b4731)
|
||
|
||
<a class="bibtex-entry" id="claeyssen07_amplif_piezoel_actuat">Claeyssen, F., Letty, R. L., Barillot, F., & Sosnicki, O., *Amplified piezoelectric actuators: static \& dynamic applications*, Ferroelectrics, *351(1)*, 3–14 (2007). http://dx.doi.org/10.1080/00150190701351865</a> [↩](#5decd2b31c4a9842b80c58b56f96590a)
|
||
|
||
<a class="bibtex-entry" id="lucinskis16_dynam_charac">Lucinskis, R., & Mangeot, C. (2016). *Dynamic characterization of an amplified piezoelectric actuator*. Retrieved from [](). .</a> [↩](#849750850d9986ed326e74bd3c448d03)
|
||
|
||
|
||
## Backlinks {#backlinks}
|
||
|
||
- [Actuators]({{< relref "actuators" >}})
|