Add notes about sensors/actuators

This commit is contained in:
Thomas Dehaeze 2020-06-16 18:33:50 +02:00
parent e5e6f1aa7a
commit a2a8b3103d
11 changed files with 293 additions and 143 deletions

View File

@ -39,22 +39,22 @@ The actuators for FJHs can be divided into two categories:
1. soft (voice coil), which employs a spring flexure mount
2. hard (piezoceramic or magnetostrictive), which employs a compressive load spring.
<a id="org7016c5c"></a>
<a id="orgb4329bb"></a>
{{< figure src="/ox-hugo/mcinroy99_general_hexapod.png" caption="Figure 1: A general Stewart Platform" >}}
Since both actuator types employ force production in parallel with a spring, they can both be modeled as shown in Figure [2](#orga202dc3).
Since both actuator types employ force production in parallel with a spring, they can both be modeled as shown in Figure [2](#org4a04030).
In order to provide low frequency passive vibration isolation, the hard actuators are sometimes placed in series with additional passive springs.
<a id="orga202dc3"></a>
<a id="org4a04030"></a>
{{< figure src="/ox-hugo/mcinroy99_strut_model.png" caption="Figure 2: The dynamics of the i'th strut. A parallel spring, damper and actuator drives the moving mass of the strut and a payload" >}}
<a id="table--tab:mcinroy99-strut-model"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:mcinroy99-strut-model">Table 1</a></span>:
Definition of quantities on Figure <a href="#orga202dc3">2</a>
Definition of quantities on Figure <a href="#org4a04030">2</a>
</div>
| **Symbol** | **Meaning** |
@ -75,7 +75,7 @@ It is here supposed that \\(f\_{p\_i}\\) is predominantly in the strut direction
This is a good approximation unless the spherical joints and extremely stiff or massive, of high inertia struts are used.
This allows to reduce considerably the complexity of the model.
From Figure [2](#orga202dc3) (b), forces along the strut direction are summed to yield (projected along the strut direction, hence the \\(\hat{u}\_i^T\\) term):
From Figure [2](#org4a04030) (b), forces along the strut direction are summed to yield (projected along the strut direction, hence the \\(\hat{u}\_i^T\\) term):
\begin{equation}
m\_i \hat{u}\_i^T \ddot{p}\_i = f\_{m\_i} - f\_{p\_i} - m\_i \hat{u}\_i^Tg - k\_i(l\_i - l\_{r\_i}) - b\_i \dot{l}\_i

View File

@ -8,17 +8,7 @@ Tags
: [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}})
Reference
: <sup id="651e626e040250ee71a0847aec41b60c"><a class="reference-link" href="#monkhorst04_dynam_error_budget" title="@phdthesis{monkhorst04_dynam_error_budget,
author = {Wouter Monkhorst},
school = {Delft University},
title = {Dynamic Error Budgeting, a design approach},
year = 2004,
}">@phdthesis{monkhorst04_dynam_error_budget,
author = {Wouter Monkhorst},
school = {Delft University},
title = {Dynamic Error Budgeting, a design approach},
year = 2004,
}</a></sup>
: <sup id="651e626e040250ee71a0847aec41b60c"><a class="reference-link" href="#monkhorst04_dynam_error_budget" title="Wouter Monkhorst, Dynamic Error Budgeting, a design approach (2004).">(Wouter Monkhorst, 2004)</a></sup>
Author(s)
: Monkhorst, W.
@ -105,9 +95,9 @@ Find a controller \\(C\_{\mathcal{H}\_2}\\) which minimizes the \\(\mathcal{H}\_
In order to synthesize an \\(\mathcal{H}\_2\\) controller that will minimize the output error, the total system including disturbances needs to be modeled as a system with zero mean white noise inputs.
This is done by using weighting filter \\(V\_w\\), of which the output signal has a PSD \\(S\_w(f)\\) when the input is zero mean white noise (Figure [1](#org7f8d04e)).
This is done by using weighting filter \\(V\_w\\), of which the output signal has a PSD \\(S\_w(f)\\) when the input is zero mean white noise (Figure [1](#org76ddb2c)).
<a id="org7f8d04e"></a>
<a id="org76ddb2c"></a>
{{< figure src="/ox-hugo/monkhorst04_weighting_filter.png" caption="Figure 1: The use of a weighting filter \\(V\_w(f)\,[SI]\\) to give the weighted signal \\(\bar{w}(t)\\) a certain PSD \\(S\_w(f)\\)." >}}
@ -118,23 +108,23 @@ The PSD \\(S\_w(f)\\) of the weighted signal is:
Given \\(S\_w(f)\\), \\(V\_w(f)\\) can be obtained using a technique called _spectral factorization_.
However, this can be avoided if the modelling of the disturbances is directly done in terms of weighting filters.
Output weighting filters can also be used to scale different outputs relative to each other (Figure [2](#org4f416df)).
Output weighting filters can also be used to scale different outputs relative to each other (Figure [2](#org425ff37)).
<a id="org4f416df"></a>
<a id="org425ff37"></a>
{{< figure src="/ox-hugo/monkhorst04_general_weighted_plant.png" caption="Figure 2: The open loop system \\(\bar{G}\\) in series with the diagonal input weightin filter \\(V\_w\\) and diagonal output scaling iflter \\(W\_z\\) defining the generalized plant \\(G\\)" >}}
#### Output scaling and the Pareto curve {#output-scaling-and-the-pareto-curve}
In this research, the outputs of the closed loop system (Figure [3](#orgc347ae6)) are:
In this research, the outputs of the closed loop system (Figure [3](#orgba842f3)) are:
- the performance (error) signal \\(e\\)
- the controller output \\(u\\)
In this way, the designer can analyze how much control effort is used to achieve the performance level at the performance output.
<a id="orgc347ae6"></a>
<a id="orgba842f3"></a>
{{< figure src="/ox-hugo/monkhorst04_closed_loop_H2.png" caption="Figure 3: The closed loop system with weighting filters included. The system has \\(n\\) disturbance inputs and two outputs: the error \\(e\\) and the control signal \\(u\\). The \\(\mathcal{H}\_2\\) minimized the \\(\mathcal{H}\_2\\) norm of this system." >}}

View File

@ -7,6 +7,11 @@ draft = false
Tags
:
Links to specific actuators:
- [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
## How to choose the correct actuator for my application? {#how-to-choose-the-correct-actuator-for-my-application}
@ -15,57 +20,9 @@ For vibration isolation:
- In <sup id="aad53368e29e8a519e2f63857044fa46"><a class="reference-link" href="#ito16_compar_class_high_precis_actuat" title="Shingo Ito \&amp; Georg Schitter, Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation, {IEEE/ASME Transactions on Mechatronics}, v(2), 1169-1178 (2016).">(Shingo Ito \& Georg Schitter, 2016)</a></sup>, the effect of the actuator stiffness on the attainable vibration isolation is studied ([Notes]({{< relref "ito16_compar_class_high_precis_actuat" >}}))
## Piezoelectric {#piezoelectric}
| Suppliers | Links |
|--------------|------------------------------------------------------------------------------------|
| Cedrat | [link](http://www.cedrat-technologies.com/) |
| PI | [link](https://www.physikinstrumente.com/en/) |
| Piezo System | [link](https://www.piezosystem.com/products/piezo%5Factuators/stacktypeactuators/) |
| Noliac | [link](http://www.noliac.com/) |
| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) |
A model of a multi-layer monolithic piezoelectric stack actuator is described in <sup id="c823f68dd2a72b9667a61b3c046b4731"><a class="reference-link" href="#fleming10_nanop_system_with_force_feedb" title="Fleming, Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control, {IEEE/ASME Transactions on Mechatronics}, v(3), 433-447 (2010).">(Fleming, 2010)</a></sup> ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
### Piezoelectric Stack Actuators {#piezoelectric-stack-actuators}
Typical strain is \\(0.1\%\\).
### Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
The Amplified Piezo Actuators principle is presented in <sup id="5decd2b31c4a9842b80c58b56f96590a"><a class="reference-link" href="#claeyssen07_amplif_piezoel_actuat" title="Frank Claeyssen, Le Letty, Barillot, \&amp; Sosnicki, Amplified Piezoelectric Actuators: Static \&amp; Dynamic Applications, {Ferroelectrics}, v(1), 3-14 (2007).">(Frank Claeyssen {\it et al.}, 2007)</a></sup>:
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
> The flatter is the actuator, the higher is the amplification.
A model of an amplified piezoelectric actuator is described in <sup id="849750850d9986ed326e74bd3c448d03"><a class="reference-link" href="#lucinskis16_dynam_charac" title="@misc{lucinskis16_dynam_charac,
author = {R. Lucinskis and C. Mangeot},
title = {Dynamic Characterization of an amplified piezoelectric
actuator},
year = 2016,
}">(Lucinskis \& Mangeot, 2016)</a></sup>.
## Voice Coil {#voice-coil}
| Suppliers | Links |
|----------------------|----------------------------------------------|
| Geeplus | [link](https://www.geeplus.com/) |
| Maccon | [link](https://www.maccon.de/en.html) |
| TDS PP | [link](https://www.tds-pp.com/en/) |
| H2tech | [link](https://www.h2wtech.com/) |
| PBA Systems | [link](http://www.pbasystems.com.sg/) |
| Celera Motion | [link](https://www.celeramotion.com/) |
| Beikimco | [link](http://www.beikimco.com/) |
| Electromate | [link](https://www.electromate.com/) |
| Magnetic Innovations | [link](https://www.magneticinnovations.com/) |
## Shaker {#shaker}
| Suppliers | Links |
| Manufacturers | Links |
|--------------------|---------------------------------------------------------------|
| BKSV | [link](https://www.bksv.com/en/products/shakers-and-exciters) |
| Vibration Research | [link](https://vibrationresearch.com/shakers/) |
@ -83,15 +40,12 @@ A model of an amplified piezoelectric actuator is described in <sup id="84975085
# Bibliography
<a class="bibtex-entry" id="ito16_compar_class_high_precis_actuat">Ito, S., & Schitter, G., *Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation*, IEEE/ASME Transactions on Mechatronics, *21(2)*, 11691178 (2016). http://dx.doi.org/10.1109/tmech.2015.2478658</a> [](#aad53368e29e8a519e2f63857044fa46)
<a class="bibtex-entry" id="fleming10_nanop_system_with_force_feedb">Fleming, A., *Nanopositioning system with force feedback for high-performance tracking and vibration control*, IEEE/ASME Transactions on Mechatronics, *15(3)*, 433447 (2010). http://dx.doi.org/10.1109/tmech.2009.2028422</a> [](#c823f68dd2a72b9667a61b3c046b4731)
<a class="bibtex-entry" id="claeyssen07_amplif_piezoel_actuat">Claeyssen, F., Letty, R. L., Barillot, F., & Sosnicki, O., *Amplified piezoelectric actuators: static \& dynamic applications*, Ferroelectrics, *351(1)*, 314 (2007). http://dx.doi.org/10.1080/00150190701351865</a> [](#5decd2b31c4a9842b80c58b56f96590a)
<a class="bibtex-entry" id="lucinskis16_dynam_charac">Lucinskis, R., & Mangeot, C. (2016). *Dynamic characterization of an amplified piezoelectric actuator*. Retrieved from [](). .</a> [](#849750850d9986ed326e74bd3c448d03)
<a class="bibtex-entry" id="yedamale03_brush_dc_bldc_motor_fundam">Yedamale, P., *Brushless dc (bldc) motor fundamentals*, Microchip Technology Inc, *20()*, 315 (2003). </a> [](#d2e68d39d09d7e8e71ff08a6ebd45400)
## Backlinks {#backlinks}
- [Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation]({{< relref "ito16_compar_class_high_precis_actuat" >}})
- [Collocated Control]({{< relref "collocated_control" >}})
- [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})

View File

@ -0,0 +1,41 @@
+++
title = "Collocated Control"
author = ["Thomas Dehaeze"]
draft = false
+++
Tags
: [Actuators]({{< relref "actuators" >}}), [Force Sensors]({{< relref "force_sensors" >}}), [Position Sensors]({{< relref "position_sensors" >}}), [Inertial Sensors]({{< relref "inertial_sensors" >}})
## Collocated/Dual actuator and sensor {#collocated-dual-actuator-and-sensor}
According to <sup id="454500a3af67ef66a7a754d1f2e1bd4a"><a class="reference-link" href="#preumont18_vibrat_contr_activ_struc_fourt_edition" title="Andre Preumont, Vibration Control of Active Structures - Fourth Edition, Springer International Publishing (2018).">(Andre Preumont, 2018)</a></sup>:
> A **collocated** control system is a control system where the actuator and the sensor are attached to the same degree of freedom.
>
> It is not sufficient to be attached to the same location, but they must also be **dual**, that is a force actuator must be associated with a translation sensor (measuring displacement, velocity, or acceleration), in such a way that the product of the actuator signal and the sensor signal represents the energy (power) exchange between the structure and the control system.
## Nearly Collocated Actuator Sensor Pair {#nearly-collocated-actuator-sensor-pair}
From Figure [1](#org00adcca), it is clear that at some frequency / for some mode, the actuator and the sensor will not be collocated anymore (here starting with mode 3).
<a id="org00adcca"></a>
{{< figure src="/ox-hugo/preumont18_nearly_collocated_schematic.png" caption="Figure 1: Mode shapes for a uniform beam. \\(u\\) and \\(y\\) are not collocated actuator and sensor" >}}
## Piezoelectric Stack as a sensor/actuator pair {#piezoelectric-stack-as-a-sensor-actuator-pair}
One can use on part of a piezoelectric stack as an actuator and the other part as a sensor.
At some frequency, the sensor/actuator pair will not be collocated anymore.
If we want to be collocated up to the highest possible frequency, the sensor part should be made small.
Of course, this will reduce the sensibility.
- [ ] What happens is small pieces of actuators are mixed with small pieces of sensors?
# Bibliography
<a class="bibtex-entry" id="preumont18_vibrat_contr_activ_struc_fourt_edition">Preumont, A., *Vibration control of active structures - fourth edition* (2018), : Springer International Publishing.</a> [](#454500a3af67ef66a7a754d1f2e1bd4a)

View File

@ -8,22 +8,23 @@ Tags
:
## Suppliers {#suppliers}
| | |
|-----|---------------------------------------------------------------|
| PCB | [link](https://www.pcb.com/products/productfinder.aspx?tx=17) |
## Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor}
An analysis the dynamics and noise of a piezoelectric force sensor is done in <sup id="c823f68dd2a72b9667a61b3c046b4731"><a href="#fleming10_nanop_system_with_force_feedb" title="Fleming, Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control, {IEEE/ASME Transactions on Mechatronics}, v(3), 433-447 (2010).">(Fleming, 2010)</a></sup> ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
An analysis the dynamics and noise of a piezoelectric force sensor is done in <sup id="c823f68dd2a72b9667a61b3c046b4731"><a class="reference-link" href="#fleming10_nanop_system_with_force_feedb" title="Fleming, Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control, {IEEE/ASME Transactions on Mechatronics}, v(3), 433-447 (2010).">(Fleming, 2010)</a></sup> ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
## Manufacturers {#manufacturers}
| Manufacturers | Links |
|---------------|---------------------------------------------------------------|
| PCB | [link](https://www.pcb.com/products/productfinder.aspx?tx=17) |
# Bibliography
<a id="fleming10_nanop_system_with_force_feedb"></a>Fleming, A., *Nanopositioning system with force feedback for high-performance tracking and vibration control*, IEEE/ASME Transactions on Mechatronics, *15(3)*, 433447 (2010). http://dx.doi.org/10.1109/tmech.2009.2028422 [](#c823f68dd2a72b9667a61b3c046b4731)
<a class="bibtex-entry" id="fleming10_nanop_system_with_force_feedb">Fleming, A., *Nanopositioning system with force feedback for high-performance tracking and vibration control*, IEEE/ASME Transactions on Mechatronics, *15(3)*, 433447 (2010). http://dx.doi.org/10.1109/tmech.2009.2028422</a> [](#c823f68dd2a72b9667a61b3c046b4731)
## Backlinks {#backlinks}
- [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}})
- [Collocated Control]({{< relref "collocated_control" >}})
- [Position Sensors]({{< relref "position_sensors" >}})

View File

@ -8,14 +8,20 @@ Tags
: [Position Sensors]({{< relref "position_sensors" >}})
## Reviews {#reviews}
## Review of Absolute (inertial) Position Sensors {#review-of-absolute--inertial--position-sensors}
- <sup id="dd5109075933cf543c7eba0979c0ba50"><a href="#collette12_review" title="Collette, Janssens, Fernandez-Carmona, , Artoos, Guinchard, Hauviller \&amp; Preumont, Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement, {Bulletin of the Seismological Society of America}, v(4), 1289-1300 (2012).">(Collette {\it et al.}, 2012)</a></sup>
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement <sup id="dd5109075933cf543c7eba0979c0ba50"><a class="reference-link" href="#collette12_review" title="Collette, Janssens, Fernandez-Carmona, , Artoos, Guinchard, Hauviller \&amp; Preumont, Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement, {Bulletin of the Seismological Society of America}, v(4), 1289-1300 (2012).">(Collette {\it et al.}, 2012)</a></sup>
- Collette, C. et al., Comparison of new absolute displacement sensors <sup id="0b0b67de6dddc4d28031ab2d3b28cd3d"><a class="reference-link" href="#collette12_compar" title="Collette, Janssens, Mokrani, Fueyo-Roza, L, Artoos, Esposito, Fernandez-Carmona, , Guinchard \&amp; Leuxe, Comparison of new absolute displacement sensors, in in: {International Conference on Noise and Vibration Engineering
(ISMA)}, edited by (2012)">(Collette {\it et al.}, 2012)</a></sup>
<a id="org472a92d"></a>
{{< figure src="/ox-hugo/collette12_absolute_disp_sensors.png" caption="Figure 1: Dynamic range of several types of inertial sensors; Price versus resolution for several types of inertial sensors" >}}
## Accelerometers {#accelerometers}
| | |
| Manufacturers | Links |
|--------------------|---------------------------------------------------------------|
| Micromega Dynamics | [link](https://micromega-dynamics.com/products/) |
| MMF | [link](https://www.mmf.de/seismic%5Faccelerometers.htm) |
@ -25,28 +31,31 @@ Wireless Accelerometers
- <https://micromega-dynamics.com/products/recovib/miniature-vibration-recorder/>
<a id="org868d283"></a>
<a id="org005935d"></a>
{{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="Figure 1: Characteristics of commercially available accelerometers <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \&amp; Hauviller, Review of sensors for low frequency seismic vibration measurement, cern, (2011).\">(Collette {\it et al.}, 2011)</a></sup>" >}}
{{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="Figure 2: Characteristics of commercially available accelerometers <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a class=\"reference-link\" href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \&amp; Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">(Collette {\it et al.}, 2011)</a></sup>" >}}
## Geophones {#geophones}
| | |
|----------|----------------------------------------------------------------|
| Sercel | [link](http://www.sercel.com/products/Pages/seismometers.aspx) |
| Wilcoxon | [link](https://wilcoxon.com/) |
| Manufacturers | Links |
|---------------|----------------------------------------------------------------|
| Sercel | [link](http://www.sercel.com/products/Pages/seismometers.aspx) |
| Wilcoxon | [link](https://wilcoxon.com/) |
<a id="orgbf3a5fe"></a>
<a id="orgd64c709"></a>
{{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="Figure 2: Characteristics of commercially available geophones <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \&amp; Hauviller, Review of sensors for low frequency seismic vibration measurement, cern, (2011).\">(Collette {\it et al.}, 2011)</a></sup>" >}}
{{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="Figure 3: Characteristics of commercially available geophones <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a class=\"reference-link\" href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \&amp; Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">(Collette {\it et al.}, 2011)</a></sup>" >}}
# Bibliography
<a id="collette12_review"></a>Collette, C., Janssens, S., Fernandez-Carmona, P., Artoos, K., Guinchard, M., Hauviller, C., & Preumont, A., *Review: inertial sensors for low-frequency seismic vibration measurement*, Bulletin of the Seismological Society of America, *102(4)*, 12891300 (2012). http://dx.doi.org/10.1785/0120110223 [](#dd5109075933cf543c7eba0979c0ba50)
<a class="bibtex-entry" id="collette12_review">Collette, C., Janssens, S., Fernandez-Carmona, P., Artoos, K., Guinchard, M., Hauviller, C., & Preumont, A., *Review: inertial sensors for low-frequency seismic vibration measurement*, Bulletin of the Seismological Society of America, *102(4)*, 12891300 (2012). http://dx.doi.org/10.1785/0120110223</a> [](#dd5109075933cf543c7eba0979c0ba50)
<a id="collette11_review"></a>Collette, C., Artoos, K., Guinchard, M., Janssens, S., Carmona Fernandez, P., & Hauviller, C., *Review of sensors for low frequency seismic vibration measurement* (2011). [](#642a18d86de4e062c6afb0f5f20501c4)
<a class="bibtex-entry" id="collette12_compar">Collette, C., Janssens, S., Mokrani, B., Fueyo-Roza, L., Artoos, K., Esposito, M., Fernandez-Carmona, P., …, *Comparison of new absolute displacement sensors*, In , International Conference on Noise and Vibration Engineering (ISMA) (pp. ) (2012). : .</a> [](#0b0b67de6dddc4d28031ab2d3b28cd3d)
<a class="bibtex-entry" id="collette11_review">Collette, C., Artoos, K., Guinchard, M., Janssens, S., Carmona Fernandez, P., & Hauviller, C., *Review of sensors for low frequency seismic vibration measurement* (2011).</a> [](#642a18d86de4e062c6afb0f5f20501c4)
## Backlinks {#backlinks}
- [Collocated Control]({{< relref "collocated_control" >}})
- [Position Sensors]({{< relref "position_sensors" >}})

View File

@ -0,0 +1,120 @@
+++
title = "Piezoelectric Actuators"
author = ["Thomas Dehaeze"]
draft = false
+++
Tags
: [Actuators]({{< relref "actuators" >}})
## Piezoelectric Stack Actuators {#piezoelectric-stack-actuators}
### Manufacturers {#manufacturers}
| Manufacturers | Links |
|---------------------|------------------------------------------------------------------------------------|
| Cedrat | [link](http://www.cedrat-technologies.com/) |
| PI | [link](https://www.physikinstrumente.com/en/) |
| Piezo System | [link](https://www.piezosystem.com/products/piezo%5Factuators/stacktypeactuators/) |
| Noliac | [link](http://www.noliac.com/) |
| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) |
| PiezoDrive | [link](https://www.piezodrive.com/actuators/) |
| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/10.html) |
| CoreMorrow | [link](http://www.coremorrow.com/en/pro-9-1.html) |
### Model {#model}
A model of a multi-layer monolithic piezoelectric stack actuator is described in <sup id="c823f68dd2a72b9667a61b3c046b4731"><a class="reference-link" href="#fleming10_nanop_system_with_force_feedb" title="Fleming, Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control, {IEEE/ASME Transactions on Mechatronics}, v(3), 433-447 (2010).">(Fleming, 2010)</a></sup> ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
### Specifications {#specifications}
Typical specifications of piezoelectric stack actuators are usually in terms of:
- Displacement/ Travel range \\([\mu m]\\)
- Blocked force \\([N]\\)
- Stiffness \\([N/\mu m]\\)
- Resolution \\([nm]\\)
- Length \\([mm]\\)
#### Displacement and Length {#displacement-and-length}
The maximum displacement specified is the displacement of the actuator when the maximum voltage is applied and when no load is added.
Typical strain of Piezoelectric Stack Actuators is \\(0.1\%\\), the free displacement \\(d\\) is then related to the length of piezoelectric stack:
\\[ d \approx \frac{L}{1000} \\]
#### Blocked Force {#blocked-force}
The blocked force is measured by first applying the maximum voltage to the piezoelectric stack without any load.
Thus, the piezoelectric stack experiences its maximum displacement.
A force is then applied to return the actuator to its original length.
This force is measured and recorded as the blocking force.
The blocking force is also the maximum force that can produce the piezoelectric stack in contact with an infinitely stiff environment.
#### Stiffness {#stiffness}
#### Resolution {#resolution}
The resolution is limited by the noise in the voltage amplified.
Typical [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}) of voltage amplified is \\(100dB = 10^{5}\\).
Thus, for a piezoelectric stack with a displacement \\(L\\), the resolution will be
\begin{equation}
r = \frac{L}{10^5}
\end{equation}
For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolution will be \\(\approx 1\,[nm]\\).
### Piezoelectric Stack experiencing a mass load {#piezoelectric-stack-experiencing-a-mass-load}
### Piezoelectric Stack in contact with a spring load {#piezoelectric-stack-in-contact-with-a-spring-load}
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
The Amplified Piezo Actuators principle is presented in <sup id="5decd2b31c4a9842b80c58b56f96590a"><a class="reference-link" href="#claeyssen07_amplif_piezoel_actuat" title="Frank Claeyssen, Le Letty, Barillot, \&amp; Sosnicki, Amplified Piezoelectric Actuators: Static \&amp; Dynamic Applications, {Ferroelectrics}, v(1), 3-14 (2007).">(Frank Claeyssen {\it et al.}, 2007)</a></sup>:
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
> The flatter is the actuator, the higher is the amplification.
A model of an amplified piezoelectric actuator is described in <sup id="849750850d9986ed326e74bd3c448d03"><a class="reference-link" href="#lucinskis16_dynam_charac" title="@misc{lucinskis16_dynam_charac,
author = {R. Lucinskis and C. Mangeot},
title = {Dynamic Characterization of an amplified piezoelectric
actuator},
year = 2016,
}">(Lucinskis \& Mangeot, 2016)</a></sup>.
| Manufacturers | Links |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cedrat | [link](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) |
| PiezoDrive | [link](https://www.piezodrive.com/actuators/ap-series-amplified-piezoelectric-actuators/) |
| Dynamic-Structures | [link](https://www.dynamic-structures.com/category/piezo-actuators-stages) |
| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) |
| Noliac | [link](http://www.noliac.com/products/actuators/amplified-actuators/) |
| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F5.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F3.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5Fmtkk.html) |
| CoreMorrow | [link](http://www.coremorrow.com/en/pro-13-1.html) |
# Bibliography
<a class="bibtex-entry" id="fleming10_nanop_system_with_force_feedb">Fleming, A., *Nanopositioning system with force feedback for high-performance tracking and vibration control*, IEEE/ASME Transactions on Mechatronics, *15(3)*, 433447 (2010). http://dx.doi.org/10.1109/tmech.2009.2028422</a> [](#c823f68dd2a72b9667a61b3c046b4731)
<a class="bibtex-entry" id="claeyssen07_amplif_piezoel_actuat">Claeyssen, F., Letty, R. L., Barillot, F., & Sosnicki, O., *Amplified piezoelectric actuators: static \& dynamic applications*, Ferroelectrics, *351(1)*, 314 (2007). http://dx.doi.org/10.1080/00150190701351865</a> [](#5decd2b31c4a9842b80c58b56f96590a)
<a class="bibtex-entry" id="lucinskis16_dynam_charac">Lucinskis, R., & Mangeot, C. (2016). *Dynamic characterization of an amplified piezoelectric actuator*. Retrieved from [](). .</a> [](#849750850d9986ed326e74bd3c448d03)
## Backlinks {#backlinks}
- [Actuators]({{< relref "actuators" >}})

View File

@ -8,20 +8,9 @@ Tags
: [Inertial Sensors]({{< relref "inertial_sensors" >}}), [Force Sensors]({{< relref "force_sensors" >}}), [Sensor Fusion]({{< relref "sensor_fusion" >}})
## Absolute Position Sensors {#absolute-position-sensors}
## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors}
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement <sup id="dd5109075933cf543c7eba0979c0ba50"><a href="#collette12_review" title="Collette, Janssens, Fernandez-Carmona, , Artoos, Guinchard, Hauviller \&amp; Preumont, Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement, {Bulletin of the Seismological Society of America}, v(4), 1289-1300 (2012).">(Collette {\it et al.}, 2012)</a></sup>
- Collette, C. et al., Comparison of new absolute displacement sensors <sup id="0b0b67de6dddc4d28031ab2d3b28cd3d"><a href="#collette12_compar" title="Collette, Janssens, Mokrani, Fueyo-Roza, L, Artoos, Esposito, Fernandez-Carmona, , Guinchard \&amp; Leuxe, Comparison of new absolute displacement sensors, in in: {International Conference on Noise and Vibration Engineering
(ISMA)}, edited by (2012)">(Collette {\it et al.}, 2012)</a></sup>
<a id="org436fa72"></a>
{{< figure src="/ox-hugo/collette12_absolute_disp_sensors.png" caption="Figure 1: Dynamic range of several types of inertial sensors; Price versus resolution for several types of inertial sensors" >}}
## Relative Position Sensors {#relative-position-sensors}
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance <sup id="3fb5b61524290e36d639a4fac65703d0"><a href="#fleming13_review_nanom_resol_posit_sensor" title="Andrew Fleming, A Review of Nanometer Resolution Position Sensors: Operation and Performance, {Sensors and Actuators A: Physical}, v(nil), 106-126 (2013).">(Andrew Fleming, 2013)</a></sup> ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance <sup id="3fb5b61524290e36d639a4fac65703d0"><a class="reference-link" href="#fleming13_review_nanom_resol_posit_sensor" title="Andrew Fleming, A Review of Nanometer Resolution Position Sensors: Operation and Performance, {Sensors and Actuators A: Physical}, v(nil), 106-126 (2013).">(Andrew Fleming, 2013)</a></sup> ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
<a id="table--tab:characteristics-relative-sensor"></a>
<div class="table-caption">
@ -56,17 +45,17 @@ Tags
| Encoder | Meters | | 6 nm | >100kHz | 5 ppm FSR |
### Strain Gauge {#strain-gauge}
## Strain Gauge {#strain-gauge}
### Capacitive Sensor {#capacitive-sensor}
## Capacitive Sensor {#capacitive-sensor}
Description:
- <http://www.lionprecision.com/tech-library/technotes/cap-0020-sensor-theory.html>
- <https://www.lionprecision.com/comparing-capacitive-and-eddy-current-sensors>
| | |
| Manufacturers | Links |
|----------------|-------------------------------------------------------------------------------------------------|
| Micro Sense | [link](http://www.microsense.net/products-position-sensors.htm) |
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/capacitive-sensor/) |
@ -75,33 +64,33 @@ Description:
| Lion-Precision | [link](https://www.lionprecision.com/products/capacitive-sensors) |
### Inductive Sensor (Eddy Current) {#inductive-sensor--eddy-current}
## Inductive Sensor (Eddy Current) {#inductive-sensor--eddy-current}
| | |
| Manufacturers | Links |
|----------------|------------------------------------------------------------------------------------------|
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/eddy-current-sensor/) |
| Lion Precision | [link](https://www.lionprecision.com/products/eddy-current-sensors) |
### Inductive Sensor (LVDT) {#inductive-sensor--lvdt}
## Inductive Sensor (LVDT) {#inductive-sensor--lvdt}
| | |
| Manufacturers | Links |
|---------------|--------------------------------------------------------------------------------------------|
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/inductive-sensor-lvdt/) |
| Keyence | [link](https://www.keyence.eu/products/measure/contact-distance-lvdt/gt2/index.jsp) |
### Interferometers {#interferometers}
## Interferometers {#interferometers}
| | |
|----------|----------------------------------------------------------------------------------------------------------|
| Attocube | [link](http://www.attocube.com/) |
| Zygo | [link](https://www.zygo.com/?/met/markets/stageposition/zmi/) |
| Smaract | [link](https://www.smaract.com/interferometry) |
| Qutools | [link](https://www.qutools.com/qudis/) |
| Renishaw | [link](https://www.renishaw.com/en/fibre-optic-laser-encoder-products--6594) |
| Sios | [link](https://sios-de.com/products/length-measurement/laser-interferometer/) |
| Keysight | [link](https://www.keysight.com/en/pc-1000000393%3Aepsg%3Apgr/laser-heads?nid=-536900395.0&cc=FR&lc=fre) |
| Manufacturers | Links |
|---------------|----------------------------------------------------------------------------------------------------------|
| Attocube | [link](http://www.attocube.com/) |
| Zygo | [link](https://www.zygo.com/?/met/markets/stageposition/zmi/) |
| Smaract | [link](https://www.smaract.com/interferometry) |
| Qutools | [link](https://www.qutools.com/qudis/) |
| Renishaw | [link](https://www.renishaw.com/en/fibre-optic-laser-encoder-products--6594) |
| Sios | [link](https://sios-de.com/products/length-measurement/laser-interferometer/) |
| Keysight | [link](https://www.keysight.com/en/pc-1000000393%3Aepsg%3Apgr/laser-heads?nid=-536900395.0&cc=FR&lc=fre) |
<div class="table-caption">
<span class="table-number">Table 3</span>:
@ -114,34 +103,31 @@ Description:
| Renishaw | 0.2 | 1 | 6 | 1 |
| Picoscale | 0.2 | 2 | 2 | 1 |
<sup id="7658b1219a4458a62ae8c6f51b767542"><a href="#jang17_compen_refrac_index_air_laser" title="Yoon-Soo Jang \&amp; Seung-Woo Kim, Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: a Review, {International Journal of Precision Engineering and
<sup id="7658b1219a4458a62ae8c6f51b767542"><a class="reference-link" href="#jang17_compen_refrac_index_air_laser" title="Yoon-Soo Jang \&amp; Seung-Woo Kim, Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: a Review, {International Journal of Precision Engineering and
Manufacturing}, v(12), 1881-1890 (2017).">(Yoon-Soo Jang \& Seung-Woo Kim, 2017)</a></sup>
<a id="orgb68b41e"></a>
<a id="org0399c13"></a>
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 2: Expected precision of interferometer as a function of measured distance" >}}
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
### Fiber Optic Displacement Sensor {#fiber-optic-displacement-sensor}
## Fiber Optic Displacement Sensor {#fiber-optic-displacement-sensor}
| | |
|----------|----------------------------------------------------|
| Unipulse | [link](https://www.unipulse.com/product/atw200-2/) |
| Manufacturers | Links |
|---------------|----------------------------------------------------|
| Unipulse | [link](https://www.unipulse.com/product/atw200-2/) |
# Bibliography
<a id="collette12_review"></a>Collette, C., Janssens, S., Fernandez-Carmona, P., Artoos, K., Guinchard, M., Hauviller, C., & Preumont, A., *Review: inertial sensors for low-frequency seismic vibration measurement*, Bulletin of the Seismological Society of America, *102(4)*, 12891300 (2012). http://dx.doi.org/10.1785/0120110223 [](#dd5109075933cf543c7eba0979c0ba50)
<a class="bibtex-entry" id="fleming13_review_nanom_resol_posit_sensor">Fleming, A. J., *A review of nanometer resolution position sensors: operation and performance*, Sensors and Actuators A: Physical, *190(nil)*, 106126 (2013). http://dx.doi.org/10.1016/j.sna.2012.10.016</a> [](#3fb5b61524290e36d639a4fac65703d0)
<a id="collette12_compar"></a>Collette, C., Janssens, S., Mokrani, B., Fueyo-Roza, L., Artoos, K., Esposito, M., Fernandez-Carmona, P., …, *Comparison of new absolute displacement sensors*, In , International Conference on Noise and Vibration Engineering (ISMA) (pp. ) (2012). : . [](#0b0b67de6dddc4d28031ab2d3b28cd3d)
<a class="bibtex-entry" id="collette11_review">Collette, C., Artoos, K., Guinchard, M., Janssens, S., Carmona Fernandez, P., & Hauviller, C., *Review of sensors for low frequency seismic vibration measurement* (2011).</a> [](#642a18d86de4e062c6afb0f5f20501c4)
<a id="fleming13_review_nanom_resol_posit_sensor"></a>Fleming, A. J., *A review of nanometer resolution position sensors: operation and performance*, Sensors and Actuators A: Physical, *190(nil)*, 106126 (2013). http://dx.doi.org/10.1016/j.sna.2012.10.016 [](#3fb5b61524290e36d639a4fac65703d0)
<a id="collette11_review"></a>Collette, C., Artoos, K., Guinchard, M., Janssens, S., Carmona Fernandez, P., & Hauviller, C., *Review of sensors for low frequency seismic vibration measurement* (2011). [](#642a18d86de4e062c6afb0f5f20501c4)
<a id="jang17_compen_refrac_index_air_laser"></a>Jang, Y., & Kim, S., *Compensation of the refractive index of air in laser interferometer for distance measurement: a review*, International Journal of Precision Engineering and Manufacturing, *18(12)*, 18811890 (2017). http://dx.doi.org/10.1007/s12541-017-0217-y [](#7658b1219a4458a62ae8c6f51b767542)
<a class="bibtex-entry" id="jang17_compen_refrac_index_air_laser">Jang, Y., & Kim, S., *Compensation of the refractive index of air in laser interferometer for distance measurement: a review*, International Journal of Precision Engineering and Manufacturing, *18(12)*, 18811890 (2017). http://dx.doi.org/10.1007/s12541-017-0217-y</a> [](#7658b1219a4458a62ae8c6f51b767542)
## Backlinks {#backlinks}
- [A review of nanometer resolution position sensors: operation and performance]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}})
- [Measurement technologies for precision positioning]({{< relref "gao15_measur_techn_precis_posit" >}})
- [Collocated Control]({{< relref "collocated_control" >}})
- [Inertial Sensors]({{< relref "inertial_sensors" >}})

View File

@ -0,0 +1,16 @@
+++
title = "Sensors"
author = ["Thomas Dehaeze"]
draft = false
+++
Tags
:
Notes about sensors:
- [Force Sensors]({{< relref "force_sensors" >}})
- [Position Sensors]({{< relref "position_sensors" >}})
- [Inertial Sensors]({{< relref "inertial_sensors" >}})
<./biblio/references.bib>

View File

@ -0,0 +1,33 @@
+++
title = "Voice Coil Actuators"
author = ["Thomas Dehaeze"]
draft = false
+++
Tags
: [Actuators]({{< relref "actuators" >}})
## Manufacturers {#manufacturers}
| Manufacturers | Links |
|----------------------|----------------------------------------------|
| Geeplus | [link](https://www.geeplus.com/) |
| Maccon | [link](https://www.maccon.de/en.html) |
| TDS PP | [link](https://www.tds-pp.com/en/) |
| H2tech | [link](https://www.h2wtech.com/) |
| PBA Systems | [link](http://www.pbasystems.com.sg/) |
| Celera Motion | [link](https://www.celeramotion.com/) |
| Beikimco | [link](http://www.beikimco.com/) |
| Electromate | [link](https://www.electromate.com/) |
| Magnetic Innovations | [link](https://www.magneticinnovations.com/) |
## Typical Specifications {#typical-specifications}
<./biblio/references.bib>
## Backlinks {#backlinks}
- [Actuators]({{< relref "actuators" >}})

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB