svd-control/index.org

2392 lines
82 KiB
Org Mode
Raw Normal View History

2020-11-25 09:40:17 +01:00
#+TITLE: Diagonal control using the SVD and the Jacobian Matrix
2020-09-17 18:35:07 +02:00
:DRAWER:
#+STARTUP: overview
#+LANGUAGE: en
#+EMAIL: dehaeze.thomas@gmail.com
#+AUTHOR: Dehaeze Thomas
#+HTML_LINK_HOME: ../index.html
2020-11-12 10:18:50 +01:00
#+HTML_LINK_UP: ../index.html
2020-09-17 18:35:07 +02:00
2020-11-12 10:18:50 +01:00
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
#+HTML_HEAD: <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
2020-09-17 18:35:07 +02:00
2021-01-08 13:56:14 +01:00
#+LaTeX_CLASS: scrreprt
#+LaTeX_HEADER_EXTRA: \input{preamble.tex}
2020-09-17 18:35:07 +02:00
#+HTML_MATHJAX: align: center tagside: right font: TeX
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :comments org
#+PROPERTY: header-args:matlab+ :results none
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :output-dir figs
#+PROPERTY: header-args:matlab+ :tangle no
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:shell :eval no-export
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
2020-09-21 18:03:40 +02:00
#+PROPERTY: header-args:latex+ :results file raw replace
#+PROPERTY: header-args:latex+ :buffer no
2020-09-17 18:35:07 +02:00
#+PROPERTY: header-args:latex+ :eval no-export
2020-09-21 18:03:40 +02:00
#+PROPERTY: header-args:latex+ :exports results
2020-09-17 18:35:07 +02:00
#+PROPERTY: header-args:latex+ :mkdirp yes
#+PROPERTY: header-args:latex+ :output-dir figs
2020-09-21 18:03:40 +02:00
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
2020-09-17 18:35:07 +02:00
:END:
2021-01-08 13:58:04 +01:00
#+begin_export html
<hr>
<p>This report is also available as a <a href="./index.pdf">pdf</a>.</p>
<hr>
#+end_export
2020-11-25 09:40:17 +01:00
* Introduction :ignore:
In this document, the use of the Jacobian matrix and the Singular Value Decomposition to render a physical plant diagonal dominant is studied.
Then, a diagonal controller is used.
These two methods are tested on two plants:
- In Section [[sec:gravimeter]] on a 3-DoF gravimeter
- In Section [[sec:stewart_platform]] on a 6-DoF Stewart platform
2020-09-21 18:03:40 +02:00
* Gravimeter - Simscape Model
2020-09-30 17:16:30 +02:00
:PROPERTIES:
:header-args:matlab+: :tangle gravimeter/script.m
:END:
2020-11-25 09:40:17 +01:00
<<sec:gravimeter>>
2020-10-05 18:06:49 +02:00
** Introduction
2020-11-25 09:40:17 +01:00
In this part, diagonal control using both the SVD and the Jacobian matrices are applied on a gravimeter model:
- Section [[sec:gravimeter_model]]: the model is described and its parameters are defined.
- Section [[sec:gravimeter_identification]]: the plant dynamics from the actuators to the sensors is computed from a Simscape model.
- Section [[sec:gravimeter_jacobian_decoupling]]: the plant is decoupled using the Jacobian matrices.
- Section [[sec:gravimeter_svd_decoupling]]: the Singular Value Decomposition is performed on a real approximation of the plant transfer matrix and further use to decouple the system.
- Section [[sec:gravimeter_gershgorin_radii]]: the effectiveness of the decoupling is computed using the Gershorin radii
- Section [[sec:gravimeter_rga]]: the effectiveness of the decoupling is computed using the Relative Gain Array
- Section [[sec:gravimeter_decoupled_plant]]: the obtained decoupled plants are compared
- Section [[sec:gravimeter_diagonal_control]]: the diagonal controller is developed
- Section [[sec:gravimeter_closed_loop_results]]: the obtained closed-loop performances for the two methods are compared
2020-10-05 18:06:49 +02:00
** Matlab Init :noexport:ignore:
2020-09-17 18:35:07 +02:00
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
2021-01-11 09:09:48 +01:00
<<matlab-dir>>
2020-09-17 18:35:07 +02:00
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
2021-01-11 09:09:48 +01:00
<<matlab-init>>
2020-09-17 18:35:07 +02:00
#+end_src
2020-11-12 10:18:50 +01:00
#+begin_src matlab :tangle no
2021-01-11 09:09:48 +01:00
addpath('gravimeter');
2020-09-30 17:16:30 +02:00
#+end_src
2020-09-17 18:35:07 +02:00
#+begin_src matlab
2021-01-11 09:09:48 +01:00
freqs = logspace(-1, 2, 1000);
2020-11-25 09:40:17 +01:00
#+end_src
** Gravimeter Model - Parameters
<<sec:gravimeter_model>>
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
open('gravimeter.slx')
2020-09-17 18:35:07 +02:00
#+end_src
2020-11-25 09:40:17 +01:00
The model of the gravimeter is schematically shown in Figure [[fig:gravimeter_model]].
#+name: fig:gravimeter_model
#+caption: Model of the gravimeter
[[file:figs/gravimeter_model.png]]
2020-12-10 13:16:23 +01:00
#+name: fig:leg_model
#+caption: Model of the struts
[[file:figs/leg_model.png]]
2020-11-25 09:40:17 +01:00
The parameters used for the simulation are the following:
2020-09-30 17:16:30 +02:00
#+begin_src matlab
2021-01-11 09:09:48 +01:00
l = 1.0; % Length of the mass [m]
h = 1.7; % Height of the mass [m]
2020-09-30 17:16:30 +02:00
2021-01-11 09:09:48 +01:00
la = l/2; % Position of Act. [m]
ha = h/2; % Position of Act. [m]
2020-09-30 17:16:30 +02:00
2021-01-11 09:09:48 +01:00
m = 400; % Mass [kg]
I = 115; % Inertia [kg m^2]
2020-09-30 17:16:30 +02:00
2021-01-11 09:09:48 +01:00
k = 15e3; % Actuator Stiffness [N/m]
c = 2e1; % Actuator Damping [N/(m/s)]
2020-09-30 17:16:30 +02:00
2021-01-11 09:09:48 +01:00
deq = 0.2; % Length of the actuators [m]
2020-09-30 17:16:30 +02:00
2021-01-11 09:09:48 +01:00
g = 0; % Gravity [m/s2]
2020-09-30 17:16:30 +02:00
#+end_src
2020-11-25 09:40:17 +01:00
** System Identification
<<sec:gravimeter_identification>>
2020-09-17 18:35:07 +02:00
#+begin_src matlab
2021-01-11 09:09:48 +01:00
%% Name of the Simulink File
mdl = 'gravimeter';
2020-09-17 18:35:07 +02:00
2021-01-11 09:09:48 +01:00
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
2020-09-17 18:35:07 +02:00
2021-01-11 09:09:48 +01:00
G = linearize(mdl, io);
G.InputName = {'F1', 'F2', 'F3'};
G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
2020-09-17 18:35:07 +02:00
#+end_src
The inputs and outputs of the plant are shown in Figure [[fig:gravimeter_plant_schematic]].
More precisely there are three inputs (the three actuator forces):
\begin{equation}
\bm{\tau} = \begin{bmatrix}\tau_1 \\ \tau_2 \\ \tau_2 \end{bmatrix}
\end{equation}
And 4 outputs (the two 2-DoF accelerometers):
\begin{equation}
2020-12-10 13:26:01 +01:00
\bm{a} = \begin{bmatrix} a_{1x} \\ a_{1y} \\ a_{2x} \\ a_{2y} \end{bmatrix}
\end{equation}
#+begin_src latex :file gravimeter_plant_schematic.pdf :tangle no :exports results
2021-01-11 09:09:48 +01:00
\begin{tikzpicture}
\node[block] (G) {$\bm{G}$};
2021-01-11 09:09:48 +01:00
% Connections and labels
\draw[<-] (G.west) -- ++(-2.0, 0) node[above right]{$\bm{\tau} = \begin{bmatrix}\tau_1 \\ \tau_2 \\ \tau_2 \end{bmatrix}$};
\draw[->] (G.east) -- ++( 2.0, 0) node[above left]{$\bm{a} = \begin{bmatrix} a_{1x} \\ a_{1y} \\ a_{2x} \\ a_{2y} \end{bmatrix}$};
\end{tikzpicture}
#+end_src
#+name: fig:gravimeter_plant_schematic
#+caption: Schematic of the gravimeter plant
#+RESULTS:
[[file:figs/gravimeter_plant_schematic.png]]
We can check the poles of the plant:
#+begin_src matlab :results value replace :exports results
2021-01-11 09:09:48 +01:00
pole(G)
2020-09-30 17:16:30 +02:00
#+end_src
#+RESULTS:
| -0.12243+13.551i |
| -0.12243-13.551i |
| -0.05+8.6601i |
| -0.05-8.6601i |
| -0.0088785+3.6493i |
| -0.0088785-3.6493i |
As expected, the plant as 6 states (2 translations + 1 rotation)
2020-09-21 13:08:27 +02:00
#+begin_src matlab :results output replace
2021-01-11 09:09:48 +01:00
size(G)
2020-09-21 13:08:27 +02:00
#+end_src
#+RESULTS:
: State-space model with 4 outputs, 3 inputs, and 6 states.
The bode plot of all elements of the plant are shown in Figure [[fig:open_loop_tf]].
2020-09-21 13:08:27 +02:00
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
figure;
tiledlayout(4, 3, 'TileSpacing', 'None', 'Padding', 'None');
for out_i = 1:4
for in_i = 1:3
nexttile;
plot(freqs, abs(squeeze(freqresp(G(out_i,in_i), freqs, 'Hz'))), '-');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlim([1e-1, 2e1]); ylim([1e-4, 1e0]);
if in_i == 1
ylabel('Amplitude [m/N]')
else
set(gca, 'YTickLabel',[]);
end
if out_i == 4
xlabel('Frequency [Hz]')
else
set(gca, 'XTickLabel',[]);
end
end
end
2020-09-17 18:35:07 +02:00
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/open_loop_tf.pdf', 'width', 'full', 'height', 'full');
2020-09-17 18:35:07 +02:00
#+end_src
#+name: fig:open_loop_tf
2021-01-08 13:56:14 +01:00
#+attr_latex: :width \linewidth
2020-09-17 18:35:07 +02:00
#+caption: Open Loop Transfer Function from 3 Actuators to 4 Accelerometers
#+RESULTS:
[[file:figs/open_loop_tf.png]]
2020-11-25 09:40:17 +01:00
** Decoupling using the Jacobian
<<sec:gravimeter_jacobian_decoupling>>
Consider the control architecture shown in Figure [[fig:gravimeter_decouple_jacobian]].
The Jacobian matrix $J_{\tau}$ is used to transform forces applied by the three actuators into forces/torques applied on the gravimeter at its center of mass:
\begin{equation}
2020-12-10 13:26:01 +01:00
\begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} = J_{\tau}^{-T} \begin{bmatrix} F_x \\ F_y \\ M_z \end{bmatrix}
\end{equation}
The Jacobian matrix $J_{a}$ is used to compute the vertical acceleration, horizontal acceleration and rotational acceleration of the mass with respect to its center of mass:
\begin{equation}
2020-12-10 13:26:01 +01:00
\begin{bmatrix} a_x \\ a_y \\ a_{R_z} \end{bmatrix} = J_{a}^{-1} \begin{bmatrix} a_{x1} \\ a_{y1} \\ a_{x2} \\ a_{y2} \end{bmatrix}
\end{equation}
We thus define a new plant as defined in Figure [[fig:gravimeter_decouple_jacobian]].
\[ \bm{G}_x(s) = J_a^{-1} \bm{G}(s) J_{\tau}^{-T} \]
$\bm{G}_x(s)$ correspond to the $3 \times 3$transfer function matrix from forces and torques applied to the gravimeter at its center of mass to the absolute acceleration of the gravimeter's center of mass (Figure [[fig:gravimeter_decouple_jacobian]]).
#+begin_src latex :file gravimeter_decouple_jacobian.pdf :tangle no :exports results
2021-01-11 09:09:48 +01:00
\begin{tikzpicture}
\node[block] (G) {$\bm{G}$};
\node[block, left=0.6 of G] (Jt) {$J_{\tau}^{-T}$};
\node[block, right=0.6 of G] (Ja) {$J_{a}^{-1}$};
2021-01-11 09:09:48 +01:00
% Connections and labels
\draw[<-] (Jt.west) -- ++(-2.5, 0) node[above right]{$\bm{\mathcal{F}} = \begin{bmatrix}F_x \\ F_y \\ M_z \end{bmatrix}$};
\draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$};
\draw[->] (G.east) -- (Ja.west) node[above left]{$\bm{a}$};
\draw[->] (Ja.east) -- ++( 2.6, 0) node[above left]{$\bm{\mathcal{A}} = \begin{bmatrix}a_x \\ a_y \\ a_{R_z} \end{bmatrix}$};
2021-01-11 09:09:48 +01:00
\begin{scope}[on background layer]
\node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gx) {};
\node[below right] at (Gx.north west) {$\bm{G}_x$};
\end{scope}
\end{tikzpicture}
#+end_src
#+name: fig:gravimeter_decouple_jacobian
#+caption: Decoupled plant $\bm{G}_x$ using the Jacobian matrix $J$
#+RESULTS:
[[file:figs/gravimeter_decouple_jacobian.png]]
The Jacobian corresponding to the sensors and actuators are defined below:
#+begin_src matlab
2021-01-11 09:09:48 +01:00
Ja = [1 0 -h/2
0 1 l/2
1 0 h/2
0 1 0];
2021-01-11 09:09:48 +01:00
Jt = [1 0 -ha
0 1 la
0 1 -la];
#+end_src
And the plant $\bm{G}_x$ is computed:
#+begin_src matlab
2021-01-11 09:09:48 +01:00
Gx = pinv(Ja)*G*pinv(Jt');
Gx.InputName = {'Fx', 'Fy', 'Mz'};
Gx.OutputName = {'Dx', 'Dy', 'Rz'};
#+end_src
#+begin_src matlab :results output replace :exports results
2021-01-11 09:09:48 +01:00
size(Gx)
#+end_src
#+RESULTS:
: size(Gx)
: State-space model with 3 outputs, 3 inputs, and 6 states.
The diagonal and off-diagonal elements of $G_x$ are shown in Figure [[fig:gravimeter_jacobian_plant]].
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
figure;
% Magnitude
hold on;
for i_in = 1:3
for i_out = [1:i_in-1, i_in+1:3]
plot(freqs, abs(squeeze(freqresp(Gx(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(Gx(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G_x(i,j)\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for i_in_out = 1:3
plot(freqs, abs(squeeze(freqresp(Gx(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
legend('location', 'southeast');
ylim([1e-8, 1e0]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/gravimeter_jacobian_plant.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:gravimeter_jacobian_plant
#+caption: Diagonal and off-diagonal elements of $G_x$
#+RESULTS:
[[file:figs/gravimeter_jacobian_plant.png]]
2020-11-25 09:40:17 +01:00
** Decoupling using the SVD
<<sec:gravimeter_svd_decoupling>>
In order to decouple the plant using the SVD, first a real approximation of the plant transfer function matrix as the crossover frequency is required.
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
#+begin_src matlab
2021-01-11 09:09:48 +01:00
wc = 2*pi*10; % Decoupling frequency [rad/s]
2021-01-11 09:09:48 +01:00
H1 = evalfr(G, j*wc);
#+end_src
The real approximation is computed as follows:
#+begin_src matlab
2021-01-11 09:09:48 +01:00
D = pinv(real(H1'*H1));
H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
#+end_src
#+begin_src matlab :exports results :results value table replace :tangle no
2021-01-11 09:09:48 +01:00
data2orgtable(H1, {}, {}, ' %.2g ');
#+end_src
#+caption: Real approximate of $G$ at the decoupling frequency $\omega_c$
#+RESULTS:
| 0.0092 | -0.0039 | 0.0039 |
| -0.0039 | 0.0048 | 0.00028 |
| -0.004 | 0.0038 | -0.0038 |
| 8.4e-09 | 0.0025 | 0.0025 |
Now, the Singular Value Decomposition of $H_1$ is performed:
\[ H_1 = U \Sigma V^H \]
#+begin_src matlab
2021-01-11 09:09:48 +01:00
[U,S,V] = svd(H1);
#+end_src
2020-12-10 13:16:23 +01:00
#+begin_src matlab :exports results :results value table replace :tangle no
2021-01-11 09:09:48 +01:00
data2orgtable(U, {}, {}, ' %.2f ');
2020-12-10 13:16:23 +01:00
#+end_src
#+caption: $U$ matrix
#+RESULTS:
| -0.78 | 0.26 | -0.53 | -0.2 |
| 0.4 | 0.61 | -0.04 | -0.68 |
| 0.48 | -0.14 | -0.85 | 0.2 |
| 0.03 | 0.73 | 0.06 | 0.68 |
#+begin_src matlab :exports results :results value table replace :tangle no
2021-01-11 09:09:48 +01:00
data2orgtable(V, {}, {}, ' %.2f ');
2020-12-10 13:16:23 +01:00
#+end_src
#+caption: $V$ matrix
#+RESULTS:
| -0.79 | 0.11 | -0.6 |
| 0.51 | 0.67 | -0.54 |
| -0.35 | 0.73 | 0.59 |
The obtained matrices $U$ and $V$ are used to decouple the system as shown in Figure [[fig:gravimeter_decouple_svd]].
#+begin_src latex :file gravimeter_decouple_svd.pdf :tangle no :exports results
2021-01-11 09:09:48 +01:00
\begin{tikzpicture}
\node[block] (G) {$\bm{G}$};
2021-01-11 09:09:48 +01:00
\node[block, left=0.6 of G.west] (V) {$V^{-T}$};
\node[block, right=0.6 of G.east] (U) {$U^{-1}$};
2021-01-11 09:09:48 +01:00
% Connections and labels
\draw[<-] (V.west) -- ++(-1.0, 0) node[above right]{$u$};
\draw[->] (V.east) -- (G.west) node[above left]{$\tau$};
\draw[->] (G.east) -- (U.west) node[above left]{$a$};
\draw[->] (U.east) -- ++( 1.0, 0) node[above left]{$y$};
2021-01-11 09:09:48 +01:00
\begin{scope}[on background layer]
\node[fit={(V.south west) (G.north-|U.east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gsvd) {};
\node[below right] at (Gsvd.north west) {$\bm{G}_{SVD}$};
\end{scope}
\end{tikzpicture}
#+end_src
#+name: fig:gravimeter_decouple_svd
#+caption: Decoupled plant $\bm{G}_{SVD}$ using the Singular Value Decomposition
#+RESULTS:
[[file:figs/gravimeter_decouple_svd.png]]
The decoupled plant is then:
\[ \bm{G}_{SVD}(s) = U^{-1} \bm{G}(s) V^{-H} \]
#+begin_src matlab
2021-01-11 09:09:48 +01:00
Gsvd = inv(U)*G*inv(V');
#+end_src
#+begin_src matlab :results output replace :exports results
2021-01-11 09:09:48 +01:00
size(Gsvd)
#+end_src
#+RESULTS:
: size(Gsvd)
: State-space model with 4 outputs, 3 inputs, and 6 states.
The 4th output (corresponding to the null singular value) is discarded, and we only keep the $3 \times 3$ plant:
#+begin_src matlab
2021-01-11 09:09:48 +01:00
Gsvd = Gsvd(1:3, 1:3);
#+end_src
The diagonal and off-diagonal elements of the "SVD" plant are shown in Figure [[fig:gravimeter_svd_plant]].
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
figure;
% Magnitude
hold on;
for i_in = 1:3
for i_out = [1:i_in-1, i_in+1:3]
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G_x(i,j)\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for i_in_out = 1:3
plot(freqs, abs(squeeze(freqresp(Gsvd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
legend('location', 'southwest', 'FontSize', 8);
ylim([1e-8, 1e0]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/gravimeter_svd_plant.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:gravimeter_svd_plant
#+caption: Diagonal and off-diagonal elements of $G_{svd}$
#+RESULTS:
[[file:figs/gravimeter_svd_plant.png]]
** Verification of the decoupling using the "Gershgorin Radii"
2020-11-25 09:40:17 +01:00
<<sec:gravimeter_gershgorin_radii>>
The "Gershgorin Radii" is computed for the coupled plant $G(s)$, for the "Jacobian plant" $G_x(s)$ and the "SVD Decoupled Plant" $G_{SVD}(s)$:
The "Gershgorin Radii" of a matrix $S$ is defined by:
\[ \zeta_i(j\omega) = \frac{\sum\limits_{j\neq i}|S_{ij}(j\omega)|}{|S_{ii}(j\omega)|} \]
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
% Gershgorin Radii for the coupled plant:
Gr_coupled = zeros(length(freqs), size(G,2));
H = abs(squeeze(freqresp(G, freqs, 'Hz')));
for out_i = 1:size(G,2)
Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
% Gershgorin Radii for the decoupled plant using SVD:
Gr_decoupled = zeros(length(freqs), size(Gsvd,2));
H = abs(squeeze(freqresp(Gsvd, freqs, 'Hz')));
for out_i = 1:size(Gsvd,2)
Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
% Gershgorin Radii for the decoupled plant using the Jacobian:
Gr_jacobian = zeros(length(freqs), size(Gx,2));
H = abs(squeeze(freqresp(Gx, freqs, 'Hz')));
for out_i = 1:size(Gx,2)
Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
#+end_src
#+begin_src matlab :exports results
2021-01-11 09:09:48 +01:00
figure;
hold on;
plot(freqs, Gr_coupled(:,1), 'DisplayName', 'Coupled');
plot(freqs, Gr_decoupled(:,1), 'DisplayName', 'SVD');
plot(freqs, Gr_jacobian(:,1), 'DisplayName', 'Jacobian');
for in_i = 2:3
set(gca,'ColorOrderIndex',1)
plot(freqs, Gr_coupled(:,in_i), 'HandleVisibility', 'off');
set(gca,'ColorOrderIndex',2)
plot(freqs, Gr_decoupled(:,in_i), 'HandleVisibility', 'off');
set(gca,'ColorOrderIndex',3)
plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off');
end
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off;
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
legend('location', 'southwest');
ylim([1e-4, 1e2]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/gravimeter_gershgorin_radii.pdf', 'eps', true, 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:gravimeter_gershgorin_radii
#+caption: Gershgorin Radii of the Coupled and Decoupled plants
#+RESULTS:
[[file:figs/gravimeter_gershgorin_radii.png]]
2020-11-25 09:40:17 +01:00
** Verification of the decoupling using the "Relative Gain Array"
<<sec:gravimeter_rga>>
The relative gain array (RGA) is defined as:
\begin{equation}
\Lambda\big(G(s)\big) = G(s) \times \big( G(s)^{-1} \big)^T
\end{equation}
where $\times$ denotes an element by element multiplication and $G(s)$ is an $n \times n$ square transfer matrix.
The obtained RGA elements are shown in Figure [[fig:gravimeter_rga]].
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
% Relative Gain Array for the decoupled plant using SVD:
RGA_svd = zeros(length(freqs), size(Gsvd,1), size(Gsvd,2));
Gsvd_inv = inv(Gsvd);
for f_i = 1:length(freqs)
2020-11-25 09:40:17 +01:00
RGA_svd(f_i, :, :) = abs(evalfr(Gsvd, j*2*pi*freqs(f_i)).*evalfr(Gsvd_inv, j*2*pi*freqs(f_i))');
2021-01-11 09:09:48 +01:00
end
2020-11-25 09:40:17 +01:00
2021-01-11 09:09:48 +01:00
% Relative Gain Array for the decoupled plant using the Jacobian:
RGA_x = zeros(length(freqs), size(Gx,1), size(Gx,2));
Gx_inv = inv(Gx);
for f_i = 1:length(freqs)
2020-11-25 09:40:17 +01:00
RGA_x(f_i, :, :) = abs(evalfr(Gx, j*2*pi*freqs(f_i)).*evalfr(Gx_inv, j*2*pi*freqs(f_i))');
2021-01-11 09:09:48 +01:00
end
2020-11-25 09:40:17 +01:00
#+end_src
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
figure;
tiledlayout(1, 2, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
hold on;
for i_in = 1:3
for i_out = [1:i_in-1, i_in+1:3]
plot(freqs, RGA_svd(:, i_out, i_in), '--', 'color', [0 0 0 0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, RGA_svd(:, 1, 2), '--', 'color', [0 0 0 0.2], ...
'DisplayName', '$RGA_{SVD}(i,j),\ i \neq j$');
plot(freqs, RGA_svd(:, 1, 1), 'k-', ...
'DisplayName', '$RGA_{SVD}(i,i)$');
for ch_i = 1:3
2020-11-25 09:40:17 +01:00
plot(freqs, RGA_svd(:, ch_i, ch_i), 'k-', ...
'HandleVisibility', 'off');
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); xlabel('Frequency [Hz]');
legend('location', 'southwest');
ax2 = nexttile;
hold on;
for i_in = 1:3
for i_out = [1:i_in-1, i_in+1:3]
plot(freqs, RGA_x(:, i_out, i_in), '--', 'color', [0 0 0 0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, RGA_x(:, 1, 2), '--', 'color', [0 0 0 0.2], ...
'DisplayName', '$RGA_{X}(i,j),\ i \neq j$');
plot(freqs, RGA_x(:, 1, 1), 'k-', ...
'DisplayName', '$RGA_{X}(i,i)$');
for ch_i = 1:3
2020-11-25 09:40:17 +01:00
plot(freqs, RGA_x(:, ch_i, ch_i), 'k-', ...
'HandleVisibility', 'off');
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]);
legend('location', 'southwest');
2020-11-25 09:40:17 +01:00
2021-01-11 09:09:48 +01:00
linkaxes([ax1,ax2],'y');
ylim([1e-5, 1e1]);
2020-11-25 09:40:17 +01:00
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/gravimeter_rga.pdf', 'width', 'wide', 'height', 'tall');
2020-11-25 09:40:17 +01:00
#+end_src
#+name: fig:gravimeter_rga
#+caption: Obtained norm of RGA elements for the SVD decoupled plant and the Jacobian decoupled plant
#+RESULTS:
[[file:figs/gravimeter_rga.png]]
2020-12-10 13:16:23 +01:00
The RGA-number is also a measure of diagonal dominance:
\begin{equation}
\text{RGA-number} = \| \Lambda(G) - I \|_\text{sum}
\end{equation}
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
% Relative Gain Array for the decoupled plant using SVD:
RGA_svd = zeros(size(Gsvd,1), size(Gsvd,2), length(freqs));
Gsvd_inv = inv(Gsvd);
for f_i = 1:length(freqs)
2020-12-10 13:16:23 +01:00
RGA_svd(:, :, f_i) = abs(evalfr(Gsvd, j*2*pi*freqs(f_i)).*evalfr(Gsvd_inv, j*2*pi*freqs(f_i))');
2021-01-11 09:09:48 +01:00
end
2020-12-10 13:16:23 +01:00
2021-01-11 09:09:48 +01:00
% Relative Gain Array for the decoupled plant using the Jacobian:
RGA_x = zeros(size(Gx,1), size(Gx,2), length(freqs));
Gx_inv = inv(Gx);
for f_i = 1:length(freqs)
2020-12-10 13:16:23 +01:00
RGA_x(:, :, f_i) = abs(evalfr(Gx, j*2*pi*freqs(f_i)).*evalfr(Gx_inv, j*2*pi*freqs(f_i))');
2021-01-11 09:09:48 +01:00
end
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
RGA_num_svd = squeeze(sum(sum(RGA_svd - eye(3))));
RGA_num_x = squeeze(sum(sum(RGA_x - eye(3))));
2020-12-10 13:16:23 +01:00
2021-01-11 09:09:48 +01:00
figure;
hold on;
plot(freqs, RGA_num_svd)
plot(freqs, RGA_num_x)
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('RGA-Number');
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/gravimeter_rga_num.pdf', 'width', 'wide', 'height', 'normal');
2020-12-10 13:16:23 +01:00
#+end_src
#+name: fig:gravimeter_rga_num
#+caption: RGA-Number for the Gravimeter
#+RESULTS:
[[file:figs/gravimeter_rga_num.png]]
** Obtained Decoupled Plants
<<sec:gravimeter_decoupled_plant>>
The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown in Figure [[fig:gravimeter_decoupled_plant_svd]].
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
for i_in = 1:3
for i_out = [1:i_in-1, i_in+1:3]
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(Gsvd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
'DisplayName', '$G_{SVD}(i,j),\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for ch_i = 1:3
plot(freqs, abs(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))), ...
'DisplayName', sprintf('$G_{SVD}(%i,%i)$', ch_i, ch_i));
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
legend('location', 'southwest');
ylim([1e-8, 1e0])
% Phase
ax2 = nexttile;
hold on;
for ch_i = 1:3
plot(freqs, 180/pi*angle(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))));
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180:90:360]);
2021-01-11 09:09:48 +01:00
linkaxes([ax1,ax2],'x');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/gravimeter_decoupled_plant_svd.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:gravimeter_decoupled_plant_svd
#+caption: Decoupled Plant using SVD
#+RESULTS:
[[file:figs/gravimeter_decoupled_plant_svd.png]]
Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant $G_x(s)$ using the Jacobian are shown in Figure [[fig:gravimeter_decoupled_plant_jacobian]].
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
for i_in = 1:3
for i_out = [1:i_in-1, i_in+1:3]
plot(freqs, abs(squeeze(freqresp(Gx(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(Gx(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
'DisplayName', '$G_x(i,j),\ i \neq j$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))), 'DisplayName', '$G_x(1,1) = A_x/F_x$');
plot(freqs, abs(squeeze(freqresp(Gx(2, 2), freqs, 'Hz'))), 'DisplayName', '$G_x(2,2) = A_y/F_y$');
plot(freqs, abs(squeeze(freqresp(Gx(3, 3), freqs, 'Hz'))), 'DisplayName', '$G_x(3,3) = R_z/M_z$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
legend('location', 'southwest');
ylim([1e-8, 1e0])
% Phase
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(2, 2), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(3, 3), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([0:45:360]);
linkaxes([ax1,ax2],'x');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/gravimeter_decoupled_plant_jacobian.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:gravimeter_decoupled_plant_jacobian
#+caption: Gravimeter Platform Plant from forces (resp. torques) applied by the legs to the acceleration (resp. angular acceleration) of the platform as well as all the coupling terms between the two (non-diagonal terms of the transfer function matrix)
#+RESULTS:
[[file:figs/gravimeter_decoupled_plant_jacobian.png]]
** Diagonal Controller
<<sec:gravimeter_diagonal_control>>
The control diagram for the centralized control is shown in Figure [[fig:centralized_control_gravimeter]].
The controller $K_c$ is "working" in an cartesian frame.
The Jacobian is used to convert forces in the cartesian frame to forces applied by the actuators.
#+begin_src latex :file centralized_control_gravimeter.pdf :tangle no :exports results
2021-01-11 09:09:48 +01:00
\begin{tikzpicture}
\node[block] (G) {$\bm{G}$};
\node[block, left=0.6 of G] (Jt) {$J_{\tau}^{-T}$};
\node[block, right=0.6 of G] (Ja) {$J_{a}^{-1}$};
\node[block, left=1.2 of Jt] (K) {$K_c$};
% Connections and labels
\draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$};
\draw[->] (G.east) -- (Ja.west) node[above left]{$\bm{a}$};
\draw[->] (Ja.east) -- ++(1.4, 0);
\draw[->] ($(Ja.east) + (0.8, 0)$) node[branch]{} node[above]{$\bm{\mathcal{A}}$} -- ++(0, -1.2) -| ($(K.west) + (-0.6, 0)$) -- (K.west);
\draw[->] (K.east) -- (Jt.west) node[above left]{$\bm{\mathcal{F}}$};
\begin{scope}[on background layer]
\node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gx) {};
\node[below right] at (Gx.north west) {$\bm{G}_x$};
\end{scope}
\end{tikzpicture}
#+end_src
#+name: fig:centralized_control_gravimeter
#+caption: Control Diagram for the Centralized control
#+RESULTS:
[[file:figs/centralized_control_gravimeter.png]]
The SVD control architecture is shown in Figure [[fig:svd_control_gravimeter]].
The matrices $U$ and $V$ are used to decoupled the plant $G$.
#+begin_src latex :file svd_control_gravimeter.pdf :tangle no :exports results
2021-01-11 09:09:48 +01:00
\begin{tikzpicture}
\node[block] (G) {$\bm{G}$};
2021-01-11 09:09:48 +01:00
\node[block, left=0.6 of G.west] (V) {$V^{-T}$};
\node[block, right=0.6 of G.east] (U) {$U^{-1}$};
\node[block, left=1.2 of V] (K) {$K_c$};
2021-01-11 09:09:48 +01:00
% Connections and labels
\draw[->] (V.east) -- (G.west) node[above left]{$\tau$};
\draw[->] (G.east) -- (U.west) node[above left]{$a$};
\draw[->] (U.east) -- ++( 1.4, 0);
\draw[->] ($(U.east) + (0.8, 0)$) node[branch]{} node[above]{$y$} -- ++(0, -1.2) -| ($(K.west) + (-0.6, 0)$) -- (K.west);
\draw[->] (K.east) -- (V.west) node[above left]{$u$};
2021-01-11 09:09:48 +01:00
\begin{scope}[on background layer]
\node[fit={(V.south west) (G.north-|U.east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gsvd) {};
\node[below right] at (Gsvd.north west) {$\bm{G}_{SVD}$};
\end{scope}
\end{tikzpicture}
#+end_src
#+name: fig:svd_control_gravimeter
#+caption: Control Diagram for the SVD control
#+RESULTS:
[[file:figs/svd_control_gravimeter.png]]
We choose the controller to be a low pass filter:
\[ K_c(s) = \frac{G_0}{1 + \frac{s}{\omega_0}} \]
$G_0$ is tuned such that the crossover frequency corresponding to the diagonal terms of the loop gain is equal to $\omega_c$
#+begin_src matlab
2021-01-11 09:09:48 +01:00
wc = 2*pi*10; % Crossover Frequency [rad/s]
w0 = 2*pi*0.1; % Controller Pole [rad/s]
#+end_src
#+begin_src matlab
2021-01-11 09:09:48 +01:00
K_cen = diag(1./diag(abs(evalfr(Gx, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
L_cen = K_cen*Gx;
G_cen = feedback(G, pinv(Jt')*K_cen*pinv(Ja));
#+end_src
#+begin_src matlab
2021-01-11 09:09:48 +01:00
K_svd = diag(1./diag(abs(evalfr(Gsvd, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
L_svd = K_svd*Gsvd;
U_inv = inv(U);
G_svd = feedback(G, inv(V')*K_svd*U_inv(1:3, :));
#+end_src
The obtained diagonal elements of the loop gains are shown in Figure [[fig:gravimeter_comp_loop_gain_diagonal]].
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
plot(freqs, abs(squeeze(freqresp(L_svd(1, 1), freqs, 'Hz'))), 'DisplayName', '$L_{SVD}(i,i)$');
for i_in_out = 2:3
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
2021-01-11 09:09:48 +01:00
end
2021-01-11 09:09:48 +01:00
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(L_cen(1, 1), freqs, 'Hz'))), ...
'DisplayName', '$L_{J}(i,i)$');
for i_in_out = 2:3
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
legend('location', 'northwest');
ylim([5e-2, 2e3])
% Phase
ax2 = nexttile;
hold on;
for i_in_out = 1:3
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*angle(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))));
2021-01-11 09:09:48 +01:00
end
set(gca,'ColorOrderIndex',2)
for i_in_out = 1:3
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*angle(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))));
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180:90:360]);
2021-01-11 09:09:48 +01:00
linkaxes([ax1,ax2],'x');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/gravimeter_comp_loop_gain_diagonal.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:gravimeter_comp_loop_gain_diagonal
#+caption: Comparison of the diagonal elements of the loop gains for the SVD control architecture and the Jacobian one
#+RESULTS:
[[file:figs/gravimeter_comp_loop_gain_diagonal.png]]
** Closed-Loop system Performances
<<sec:gravimeter_closed_loop_results>>
Let's first verify the stability of the closed-loop systems:
#+begin_src matlab :results output replace text
2021-01-11 09:09:48 +01:00
isstable(G_cen)
#+end_src
#+RESULTS:
: ans =
: logical
: 1
#+begin_src matlab :results output replace text
2021-01-11 09:09:48 +01:00
isstable(G_svd)
#+end_src
#+RESULTS:
: ans =
: logical
: 1
The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:gravimeter_platform_simscape_cl_transmissibility]].
#+begin_src matlab :exports results
2021-01-11 09:09:48 +01:00
freqs = logspace(-2, 2, 1000);
figure;
tiledlayout(1, 3, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
plot(freqs, abs(squeeze(freqresp(G_cen(1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
plot(freqs, abs(squeeze(freqresp(G_svd(1,1)/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility'); xlabel('Frequency [Hz]');
title('$D_x/D_{w,x}$');
legend('location', 'southwest');
ax2 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 2,2)/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen(2,2)/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd(2,2)/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
title('$D_y/D_{w,y}$');
ax3 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 3,3)/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen(3,3)/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd(3,3)/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
title('$R_z/R_{w,z}$');
linkaxes([ax1,ax2,ax3],'xy');
xlim([freqs(1), freqs(end)]);
xlim([1e-2, 5e1]); ylim([1e-7, 1e-2]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/gravimeter_platform_simscape_cl_transmissibility.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:gravimeter_platform_simscape_cl_transmissibility
#+caption: Obtained Transmissibility
#+RESULTS:
[[file:figs/gravimeter_platform_simscape_cl_transmissibility.png]]
2020-12-10 13:16:23 +01:00
#+begin_src matlab :exports results
2021-01-11 09:09:48 +01:00
freqs = logspace(-2, 2, 1000);
figure;
hold on;
for out_i = 1:3
for in_i = out_i+1:3
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G( out_i,in_i), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(G_cen(out_i,in_i), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',3)
plot(freqs, abs(squeeze(freqresp(G_svd(out_i,in_i), freqs, 'Hz'))), '--');
end
end
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility'); xlabel('Frequency [Hz]');
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/gravimeter_cl_transmissibility_coupling.pdf', 'width', 'wide', 'height', 'normal');
2020-12-10 13:16:23 +01:00
#+end_src
#+name: fig:gravimeter_cl_transmissibility_coupling
#+caption: Obtain coupling terms of the transmissibility matrix
#+RESULTS:
[[file:figs/gravimeter_cl_transmissibility_coupling.png]]
** Robustness to a change of actuator position
Let say we change the position of the actuators:
#+begin_src matlab
2021-01-11 09:09:48 +01:00
la = l/2*0.7; % Position of Act. [m]
ha = h/2*0.7; % Position of Act. [m]
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
%% Name of the Simulink File
mdl = 'gravimeter';
2020-12-10 13:16:23 +01:00
2021-01-11 09:09:48 +01:00
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
2020-12-10 13:16:23 +01:00
2021-01-11 09:09:48 +01:00
G = linearize(mdl, io);
G.InputName = {'F1', 'F2', 'F3'};
G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
G_cen_b = feedback(G, pinv(Jt')*K_cen*pinv(Ja));
G_svd_b = feedback(G, inv(V')*K_svd*U_inv(1:3, :));
2020-12-10 13:16:23 +01:00
#+end_src
The new plant is computed, and the centralized and SVD control architectures are applied using the previsouly computed Jacobian matrices and $U$ and $V$ matrices.
The closed-loop system are still stable, and their
#+begin_src matlab :exports results
2021-01-11 09:09:48 +01:00
freqs = logspace(-2, 2, 1000);
figure;
tiledlayout(1, 3, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G_cen(1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Initial');
plot(freqs, abs(squeeze(freqresp(G_cen_b(1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Jacobian');
plot(freqs, abs(squeeze(freqresp(G_svd_b(1,1)/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility'); xlabel('Frequency [Hz]');
title('$D_x/D_{w,x}$');
legend('location', 'southwest');
ax2 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G_cen(2,2)/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen_b(2,2)/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd_b(2,2)/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
title('$D_y/D_{w,y}$');
ax3 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G_cen(3,3)/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen_b(3,3)/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd_b(3,3)/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
title('$R_z/R_{w,z}$');
linkaxes([ax1,ax2,ax3],'xy');
xlim([freqs(1), freqs(end)]);
xlim([1e-2, 5e1]); ylim([1e-7, 3e-4]);
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/gravimeter_transmissibility_offset_act.pdf', 'width', 'wide', 'height', 'normal');
2020-12-10 13:16:23 +01:00
#+end_src
#+name: fig:gravimeter_transmissibility_offset_act
#+caption: Transmissibility for the initial CL system and when the position of actuators are changed
#+RESULTS:
[[file:figs/gravimeter_transmissibility_offset_act.png]]
** Combined / comparison of K and M decoupling
*** Introduction :ignore:
If we want to decouple the system at low frequency (determined by the stiffness matrix), we have to compute the Jacobians at a point where the stiffness matrix is diagonal.
A displacement (resp. rotation) of the mass at this particular point should induce a *pure* force (resp. torque) on the same point due to stiffnesses in the system.
This can be verified by geometrical computations.
If we want to decouple the system at high frequency (determined by the mass matrix), we have tot compute the Jacobians at the Center of Mass of the suspended solid.
Similarly to the stiffness analysis, when considering only the inertia effects (neglecting the stiffnesses), a force (resp. torque) applied at this point (the center of mass) should induce a *pure* acceleration (resp. angular acceleration).
Ideally, we would like to have a decoupled mass matrix and stiffness matrix at the same time.
To do so, the actuators (springs) should be positioned such that the stiffness matrix is diagonal when evaluated at the CoM of the solid.
*** Decoupling of the mass matrix
#+name: fig:gravimeter_model_M
#+caption: Choice of {O} such that the Mass Matrix is Diagonal
[[file:figs/gravimeter_model_M.png]]
#+begin_src matlab
2021-01-11 09:09:48 +01:00
la = l/2; % Position of Act. [m]
ha = h/2; % Position of Act. [m]
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab
2021-01-11 09:09:48 +01:00
%% Name of the Simulink File
mdl = 'gravimeter';
2020-12-10 13:16:23 +01:00
2021-01-11 09:09:48 +01:00
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
2020-12-10 13:16:23 +01:00
2021-01-11 09:09:48 +01:00
G = linearize(mdl, io);
G.InputName = {'F1', 'F2', 'F3'};
G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
2020-12-10 13:16:23 +01:00
#+end_src
Decoupling at the CoM (Mass decoupled)
#+begin_src matlab
2021-01-11 09:09:48 +01:00
JMa = [1 0 -h/2
0 1 l/2
1 0 h/2
0 1 0];
2020-12-10 13:16:23 +01:00
2021-01-11 09:09:48 +01:00
JMt = [1 0 -ha
0 1 la
0 1 -la];
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab
2021-01-11 09:09:48 +01:00
GM = pinv(JMa)*G*pinv(JMt');
GM.InputName = {'Fx', 'Fy', 'Mz'};
GM.OutputName = {'Dx', 'Dy', 'Rz'};
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
figure;
% Magnitude
hold on;
for i_in = 1:3
for i_out = [1:i_in-1, i_in+1:3]
plot(freqs, abs(squeeze(freqresp(GM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(GM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G_x(i,j)\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for i_in_out = 1:3
2020-12-10 13:16:23 +01:00
plot(freqs, abs(squeeze(freqresp(GM(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
legend('location', 'southeast');
ylim([1e-8, 1e0]);
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/jac_decoupling_M.pdf', 'width', 'wide', 'height', 'normal');
2020-12-10 13:16:23 +01:00
#+end_src
#+name: fig:jac_decoupling_M
2020-12-10 13:26:01 +01:00
#+caption: Diagonal and off-diagonal elements of the decoupled plant
2020-12-10 13:16:23 +01:00
#+RESULTS:
[[file:figs/jac_decoupling_M.png]]
*** Decoupling of the stiffness matrix
#+name: fig:gravimeter_model_K
#+caption: Choice of {O} such that the Stiffness Matrix is Diagonal
[[file:figs/gravimeter_model_K.png]]
Decoupling at the point where K is diagonal (x = 0, y = -h/2 from the schematic {O} frame):
#+begin_src matlab
2021-01-11 09:09:48 +01:00
JKa = [1 0 0
0 1 -l/2
1 0 -h
0 1 0];
2020-12-10 13:16:23 +01:00
2021-01-11 09:09:48 +01:00
JKt = [1 0 0
0 1 -la
0 1 la];
2020-12-10 13:16:23 +01:00
#+end_src
And the plant $\bm{G}_x$ is computed:
#+begin_src matlab
2021-01-11 09:09:48 +01:00
GK = pinv(JKa)*G*pinv(JKt');
GK.InputName = {'Fx', 'Fy', 'Mz'};
GK.OutputName = {'Dx', 'Dy', 'Rz'};
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
figure;
% Magnitude
hold on;
for i_in = 1:3
for i_out = [1:i_in-1, i_in+1:3]
plot(freqs, abs(squeeze(freqresp(GK(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(GK(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G_x(i,j)\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for i_in_out = 1:3
2020-12-10 13:16:23 +01:00
plot(freqs, abs(squeeze(freqresp(GK(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
legend('location', 'southeast');
ylim([1e-8, 1e0]);
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/jac_decoupling_K.pdf', 'width', 'wide', 'height', 'normal');
2020-12-10 13:16:23 +01:00
#+end_src
#+name: fig:jac_decoupling_K
2020-12-10 13:26:01 +01:00
#+caption: Diagonal and off-diagonal elements of the decoupled plant
2020-12-10 13:16:23 +01:00
#+RESULTS:
[[file:figs/jac_decoupling_K.png]]
*** Combined decoupling of the mass and stiffness matrices
#+name: fig:gravimeter_model_KM
#+caption: Ideal location of the actuators such that both the mass and stiffness matrices are diagonal
[[file:figs/gravimeter_model_KM.png]]
To do so, the actuator position should be modified
#+begin_src matlab
2021-01-11 09:09:48 +01:00
la = l/2; % Position of Act. [m]
ha = 0; % Position of Act. [m]
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab
2021-01-11 09:09:48 +01:00
%% Name of the Simulink File
mdl = 'gravimeter';
2020-12-10 13:16:23 +01:00
2021-01-11 09:09:48 +01:00
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
2020-12-10 13:16:23 +01:00
2021-01-11 09:09:48 +01:00
G = linearize(mdl, io);
G.InputName = {'F1', 'F2', 'F3'};
G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab
2021-01-11 09:09:48 +01:00
JMa = [1 0 -h/2
0 1 l/2
1 0 h/2
0 1 0];
2020-12-10 13:16:23 +01:00
2021-01-11 09:09:48 +01:00
JMt = [1 0 -ha
0 1 la
0 1 -la];
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab
2021-01-11 09:09:48 +01:00
GKM = pinv(JMa)*G*pinv(JMt');
GKM.InputName = {'Fx', 'Fy', 'Mz'};
GKM.OutputName = {'Dx', 'Dy', 'Rz'};
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
figure;
% Magnitude
hold on;
for i_in = 1:3
for i_out = [1:i_in-1, i_in+1:3]
plot(freqs, abs(squeeze(freqresp(GKM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(GKM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G_x(i,j)\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for i_in_out = 1:3
2020-12-10 13:16:23 +01:00
plot(freqs, abs(squeeze(freqresp(GKM(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
legend('location', 'southeast');
ylim([1e-8, 1e0]);
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/jac_decoupling_KM.pdf', 'width', 'wide', 'height', 'normal');
2020-12-10 13:16:23 +01:00
#+end_src
#+name: fig:jac_decoupling_KM
2020-12-10 13:26:01 +01:00
#+caption: Diagonal and off-diagonal elements of the decoupled plant
2020-12-10 13:16:23 +01:00
#+RESULTS:
[[file:figs/jac_decoupling_KM.png]]
*** Conclusion
Ideally, the mechanical system should be designed in order to have a decoupled stiffness matrix at the CoM of the solid.
If not the case, the system can either be decoupled as low frequency if the Jacobian are evaluated at a point where the stiffness matrix is decoupled.
Or it can be decoupled at high frequency if the Jacobians are evaluated at the CoM.
2020-12-10 13:51:57 +01:00
** SVD decoupling performances
As the SVD is applied on a *real approximation* of the plant dynamics at a frequency $\omega_0$, it is foreseen that the effectiveness of the decoupling depends on the validity of the real approximation.
2020-12-10 13:16:23 +01:00
2020-12-10 13:51:57 +01:00
Let's do the SVD decoupling on a plant that is mostly real (low damping) and one with a large imaginary part (larger damping).
2020-12-10 13:16:23 +01:00
2020-12-10 13:51:57 +01:00
Start with small damping, the obtained diagonal and off-diagonal terms are shown in Figure [[fig:gravimeter_svd_low_damping]].
2020-12-10 13:16:23 +01:00
#+begin_src matlab
2021-01-11 09:09:48 +01:00
c = 2e1; % Actuator Damping [N/(m/s)]
2020-12-10 13:16:23 +01:00
#+end_src
2020-12-10 13:51:57 +01:00
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
%% Name of the Simulink File
mdl = 'gravimeter';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
G = linearize(mdl, io);
G.InputName = {'F1', 'F2', 'F3'};
G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
wc = 2*pi*10; % Decoupling frequency [rad/s]
H1 = evalfr(G, j*wc);
D = pinv(real(H1'*H1));
H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
[U,S,V] = svd(H1);
Gsvd = inv(U)*G*inv(V');
2020-12-10 13:16:23 +01:00
#+end_src
2020-12-10 13:51:57 +01:00
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
figure;
% Magnitude
hold on;
for i_in = 1:3
for i_out = [1:i_in-1, i_in+1:3]
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G_{svd}(i,j)\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for i_in_out = 1:3
2020-12-10 13:51:57 +01:00
plot(freqs, abs(squeeze(freqresp(Gsvd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{svd}(%d,%d)$', i_in_out, i_in_out));
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
legend('location', 'northwest');
ylim([1e-8, 1e0]);
2020-12-10 13:51:57 +01:00
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/gravimeter_svd_low_damping.pdf', 'width', 'wide', 'height', 'normal');
2020-12-10 13:51:57 +01:00
#+end_src
#+name: fig:gravimeter_svd_low_damping
#+caption: Diagonal and off-diagonal term when decoupling with SVD on the gravimeter with small damping
#+RESULTS:
[[file:figs/gravimeter_svd_low_damping.png]]
Now take a larger damping, the obtained diagonal and off-diagonal terms are shown in Figure [[fig:gravimeter_svd_high_damping]].
2020-12-10 13:16:23 +01:00
#+begin_src matlab
2021-01-11 09:09:48 +01:00
c = 5e2; % Actuator Damping [N/(m/s)]
2020-12-10 13:16:23 +01:00
#+end_src
2020-12-10 13:51:57 +01:00
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
%% Name of the Simulink File
mdl = 'gravimeter';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
G = linearize(mdl, io);
G.InputName = {'F1', 'F2', 'F3'};
G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
wc = 2*pi*10; % Decoupling frequency [rad/s]
H1 = evalfr(G, j*wc);
D = pinv(real(H1'*H1));
H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
[U,S,V] = svd(H1);
Gsvdd = inv(U)*G*inv(V');
2020-12-10 13:16:23 +01:00
#+end_src
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
figure;
% Magnitude
hold on;
for i_in = 1:3
for i_out = [1:i_in-1, i_in+1:3]
plot(freqs, abs(squeeze(freqresp(Gsvdd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(Gsvdd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G_{svd}(i,j)\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for i_in_out = 1:3
2020-12-10 13:51:57 +01:00
plot(freqs, abs(squeeze(freqresp(Gsvdd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{svd}(%d,%d)$', i_in_out, i_in_out));
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
legend('location', 'northwest');
ylim([1e-8, 1e0]);
2020-12-10 13:16:23 +01:00
#+end_src
2020-12-10 13:51:57 +01:00
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/gravimeter_svd_high_damping.pdf', 'width', 'wide', 'height', 'normal');
2020-12-10 13:16:23 +01:00
#+end_src
2020-12-10 13:51:57 +01:00
#+name: fig:gravimeter_svd_high_damping
#+caption: Diagonal and off-diagonal term when decoupling with SVD on the gravimeter with high damping
#+RESULTS:
[[file:figs/gravimeter_svd_high_damping.png]]
2020-12-10 13:16:23 +01:00
2020-09-21 18:03:40 +02:00
* Stewart Platform - Simscape Model
:PROPERTIES:
2020-11-25 09:40:17 +01:00
:header-args:matlab+: :tangle stewart_platform/script.m
:END:
2020-11-25 09:40:17 +01:00
<<sec:stewart_platform>>
** Introduction :ignore:
In this analysis, we wish to applied SVD control to the Stewart Platform shown in Figure [[fig:SP_assembly]].
Some notes about the system:
- 6 voice coils actuators are used to control the motion of the top platform.
- the motion of the top platform is measured with a 6-axis inertial unit (3 acceleration + 3 angular accelerations)
- the control objective is to isolate the top platform from vibrations coming from the bottom platform
#+name: fig:SP_assembly
#+caption: Stewart Platform CAD View
[[file:figs/SP_assembly.png]]
2020-11-25 09:40:17 +01:00
The analysis of the SVD/Jacobian control applied to the Stewart platform is performed in the following sections:
- Section [[sec:stewart_simscape]]: The parameters of the Simscape model of the Stewart platform are defined
- Section [[sec:stewart_identification]]: The plant is identified from the Simscape model and the system coupling is shown
- Section [[sec:stewart_jacobian_decoupling]]: The plant is first decoupled using the Jacobian
2020-11-25 09:40:17 +01:00
- Section [[sec:stewart_svd_decoupling]]: The decoupling is performed thanks to the SVD. To do so a real approximation of the plant is computed.
- Section [[sec:stewart_gershorin_radii]]: The effectiveness of the decoupling with the Jacobian and SVD are compared using the Gershorin Radii
- Section [[sec:stewart_rga]]:
- Section [[sec:stewart_decoupled_plant]]: The dynamics of the decoupled plants are shown
- Section [[sec:stewart_diagonal_control]]: A diagonal controller is defined to control the decoupled plant
- Section [[sec:stewart_closed_loop_results]]: Finally, the closed loop system properties are studied
2020-11-09 14:37:04 +01:00
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
2021-01-11 09:09:48 +01:00
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
2021-01-11 09:09:48 +01:00
<<matlab-init>>
#+end_src
2020-10-13 14:51:15 +02:00
#+begin_src matlab :tangle no
2021-01-11 09:09:48 +01:00
addpath('stewart_platform');
addpath('stewart_platform/STEP');
2020-10-13 14:51:15 +02:00
#+end_src
#+begin_src matlab :eval no
2021-01-11 09:09:48 +01:00
addpath('STEP');
#+end_src
2020-11-23 18:01:13 +01:00
#+begin_src matlab
2021-01-11 09:09:48 +01:00
freqs = logspace(-1, 2, 1000);
2020-11-23 18:01:13 +01:00
#+end_src
** Jacobian :noexport:
2020-09-21 13:08:27 +02:00
First, the position of the "joints" (points of force application) are estimated and the Jacobian computed.
2020-11-06 15:06:25 +01:00
#+begin_src matlab :tangle no
2021-01-11 09:09:48 +01:00
open('drone_platform_jacobian.slx');
#+end_src
2020-11-06 15:06:25 +01:00
#+begin_src matlab :tangle no
2021-01-11 09:09:48 +01:00
sim('drone_platform_jacobian');
#+end_src
2020-11-06 15:06:25 +01:00
#+begin_src matlab :tangle no
2021-01-11 09:09:48 +01:00
Aa = [a1.Data(1,:);
a2.Data(1,:);
a3.Data(1,:);
a4.Data(1,:);
a5.Data(1,:);
a6.Data(1,:)]';
2021-01-11 09:09:48 +01:00
Ab = [b1.Data(1,:);
b2.Data(1,:);
b3.Data(1,:);
b4.Data(1,:);
b5.Data(1,:);
b6.Data(1,:)]';
2021-01-11 09:09:48 +01:00
As = (Ab - Aa)./vecnorm(Ab - Aa);
2021-01-11 09:09:48 +01:00
l = vecnorm(Ab - Aa)';
2021-01-11 09:09:48 +01:00
J = [As' , cross(Ab, As)'];
2021-01-11 09:09:48 +01:00
save('stewart_platform/jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
#+end_src
** Simscape Model - Parameters
<<sec:stewart_simscape>>
#+begin_src matlab
2021-01-11 09:09:48 +01:00
open('drone_platform.slx');
#+end_src
Definition of spring parameters:
#+begin_src matlab
2021-01-11 09:09:48 +01:00
kx = 0.5*1e3/3; % [N/m]
ky = 0.5*1e3/3;
kz = 1e3/3;
2021-01-11 09:09:48 +01:00
cx = 0.025; % [Nm/rad]
cy = 0.025;
cz = 0.025;
#+end_src
2020-11-23 18:01:13 +01:00
We suppose the sensor is perfectly positioned.
#+begin_src matlab
2021-01-11 09:09:48 +01:00
sens_pos_error = zeros(3,1);
2020-11-23 18:01:13 +01:00
#+end_src
Gravity:
2020-10-22 16:07:10 +02:00
#+begin_src matlab
2021-01-11 09:09:48 +01:00
g = 0;
2020-10-22 16:07:10 +02:00
#+end_src
We load the Jacobian (previously computed from the geometry):
#+begin_src matlab
2021-01-11 09:09:48 +01:00
load('jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
#+end_src
2020-11-06 15:01:55 +01:00
We initialize other parameters:
#+begin_src matlab
2021-01-11 09:09:48 +01:00
U = eye(6);
V = eye(6);
Kc = tf(zeros(6));
2020-11-06 15:01:55 +01:00
#+end_src
2020-11-06 17:02:58 +01:00
#+name: fig:stewart_simscape
2021-01-08 13:56:14 +01:00
#+attr_latex: :width \linewidth
2020-11-06 17:02:58 +01:00
#+caption: General view of the Simscape Model
[[file:figs/stewart_simscape.png]]
#+name: fig:stewart_platform_details
2021-01-08 13:56:14 +01:00
#+attr_latex: :width \linewidth
2020-11-06 17:02:58 +01:00
#+caption: Simscape model of the Stewart platform
[[file:figs/stewart_platform_details.png]]
2020-09-21 18:03:40 +02:00
** Identification of the plant
<<sec:stewart_identification>>
The plant shown in Figure [[fig:stewart_platform_plant]] is identified from the Simscape model.
The inputs are:
- $D_w$ translation and rotation of the bottom platform (with respect to the center of mass of the top platform)
- $\tau$ the 6 forces applied by the voice coils
The outputs are the 6 accelerations measured by the inertial unit.
#+begin_src latex :file stewart_platform_plant.pdf :tangle no :exports results
2021-01-11 09:09:48 +01:00
\begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G_u\end{bmatrix}$};
\node[above] at (G.north) {$\bm{G}$};
2021-01-11 09:09:48 +01:00
% Inputs of the controllers
\coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
\coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
% Connections and labels
2021-01-11 09:09:48 +01:00
\draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$};
\draw[<-] (inputu) -- ++(-0.8, 0) node[above right]{$\tau$};
\draw[->] (G.east) -- ++(0.8, 0) node[above left]{$a$};
\end{tikzpicture}
#+end_src
#+name: fig:stewart_platform_plant
2020-11-09 14:37:04 +01:00
#+caption: Considered plant $\bm{G} = \begin{bmatrix}G_d\\G_u\end{bmatrix}$. $D_w$ is the translation/rotation of the support, $\tau$ the actuator forces, $a$ the acceleration/angular acceleration of the top platform
#+RESULTS:
[[file:figs/stewart_platform_plant.png]]
#+begin_src matlab
2021-01-11 09:09:48 +01:00
%% Name of the Simulink File
mdl = 'drone_platform';
2021-01-11 09:09:48 +01:00
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1; % Ground Motion
io(io_i) = linio([mdl, '/V-T'], 1, 'openinput'); io_i = io_i + 1; % Actuator Forces
io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Top platform acceleration
2021-01-11 09:09:48 +01:00
G = linearize(mdl, io);
G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'};
2020-11-09 14:37:04 +01:00
2021-01-11 09:09:48 +01:00
% Plant
Gu = G(:, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'});
% Disturbance dynamics
Gd = G(:, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'});
2020-09-21 13:08:27 +02:00
#+end_src
2020-09-21 18:03:40 +02:00
There are 24 states (6dof for the bottom platform + 6dof for the top platform).
2020-09-21 13:14:25 +02:00
#+begin_src matlab :results output replace
2021-01-11 09:09:48 +01:00
size(G)
2020-09-21 13:14:25 +02:00
#+end_src
#+RESULTS:
2020-09-21 18:03:40 +02:00
: State-space model with 6 outputs, 12 inputs, and 24 states.
The elements of the transfer matrix $\bm{G}$ corresponding to the transfer function from actuator forces $\tau$ to the measured acceleration $a$ are shown in Figure [[fig:stewart_platform_coupled_plant]].
2020-09-21 13:14:25 +02:00
One can easily see that the system is strongly coupled.
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
figure;
% Magnitude
hold on;
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, abs(squeeze(freqresp(Gu(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(Gu(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G_u(i,j)\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for i_in_out = 1:6
2020-11-09 14:37:04 +01:00
plot(freqs, abs(squeeze(freqresp(Gu(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_u(%d,%d)$', i_in_out, i_in_out));
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
ylim([1e-2, 1e5]);
legend('location', 'northwest');
#+end_src
2020-09-21 13:08:27 +02:00
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/stewart_platform_coupled_plant.pdf', 'eps', true, 'width', 'wide', 'height', 'normal');
2020-09-21 13:08:27 +02:00
#+end_src
#+name: fig:stewart_platform_coupled_plant
2020-11-09 14:37:04 +01:00
#+caption: Magnitude of all 36 elements of the transfer function matrix $G_u$
2020-09-21 13:08:27 +02:00
#+RESULTS:
[[file:figs/stewart_platform_coupled_plant.png]]
2020-09-21 13:08:27 +02:00
2020-11-25 09:40:17 +01:00
** Decoupling using the Jacobian
<<sec:stewart_jacobian_decoupling>>
Consider the control architecture shown in Figure [[fig:plant_decouple_jacobian]].
The Jacobian matrix is used to transform forces/torques applied on the top platform to the equivalent forces applied by each actuator.
2020-11-23 18:01:13 +01:00
The Jacobian matrix is computed from the geometry of the platform (position and orientation of the actuators).
#+begin_src matlab :exports results :results value table replace :tangle no
2021-01-11 09:09:48 +01:00
data2orgtable(J, {}, {}, ' %.3f ');
2020-11-23 18:01:13 +01:00
#+end_src
#+caption: Computed Jacobian Matrix
#+RESULTS:
| 0.811 | 0.0 | 0.584 | -0.018 | -0.008 | 0.025 |
| -0.406 | -0.703 | 0.584 | -0.016 | -0.012 | -0.025 |
| -0.406 | 0.703 | 0.584 | 0.016 | -0.012 | 0.025 |
| 0.811 | 0.0 | 0.584 | 0.018 | -0.008 | -0.025 |
| -0.406 | -0.703 | 0.584 | 0.002 | 0.019 | 0.025 |
| -0.406 | 0.703 | 0.584 | -0.002 | 0.019 | -0.025 |
#+begin_src latex :file plant_decouple_jacobian.pdf :tangle no :exports results
2021-01-11 09:09:48 +01:00
\begin{tikzpicture}
\node[block] (G) {$G_u$};
\node[block, left=0.6 of G] (J) {$J^{-T}$};
2021-01-11 09:09:48 +01:00
% Connections and labels
\draw[<-] (J.west) -- ++(-1.0, 0) node[above right]{$\mathcal{F}$};
\draw[->] (J.east) -- (G.west) node[above left]{$\tau$};
\draw[->] (G.east) -- ++( 1.0, 0) node[above left]{$a$};
2021-01-11 09:09:48 +01:00
\begin{scope}[on background layer]
\node[fit={(J.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gx) {};
\node[below right] at (Gx.north west) {$\bm{G}_x$};
\end{scope}
\end{tikzpicture}
2020-09-21 13:08:27 +02:00
#+end_src
#+name: fig:plant_decouple_jacobian
#+caption: Decoupled plant $\bm{G}_x$ using the Jacobian matrix $J$
2020-09-21 13:08:27 +02:00
#+RESULTS:
[[file:figs/plant_decouple_jacobian.png]]
We define a new plant:
\[ G_x(s) = G(s) J^{-T} \]
$G_x(s)$ correspond to the transfer function from forces and torques applied to the top platform to the absolute acceleration of the top platform.
#+begin_src matlab
2021-01-11 09:09:48 +01:00
Gx = Gu*inv(J');
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
#+end_src
2020-09-21 13:08:27 +02:00
2020-11-25 09:40:17 +01:00
** Decoupling using the SVD
<<sec:stewart_svd_decoupling>>
In order to decouple the plant using the SVD, first a real approximation of the plant transfer function matrix as the crossover frequency is required.
2020-11-09 14:37:04 +01:00
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_u(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
2020-09-21 18:03:40 +02:00
#+begin_src matlab
2021-01-11 09:09:48 +01:00
wc = 2*pi*30; % Decoupling frequency [rad/s]
2020-09-21 18:03:40 +02:00
2021-01-11 09:09:48 +01:00
H1 = evalfr(Gu, j*wc);
2020-09-21 18:03:40 +02:00
#+end_src
The real approximation is computed as follows:
#+begin_src matlab
2021-01-11 09:09:48 +01:00
D = pinv(real(H1'*H1));
H1 = inv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
2020-09-21 18:03:40 +02:00
#+end_src
#+begin_src matlab :exports results :results value table replace :tangle no
2021-01-11 09:09:48 +01:00
data2orgtable(H1, {}, {}, ' %.1f ');
#+end_src
#+caption: Real approximate of $G$ at the decoupling frequency $\omega_c$
#+RESULTS:
| 4.4 | -2.1 | -2.1 | 4.4 | -2.4 | -2.4 |
| -0.2 | -3.9 | 3.9 | 0.2 | -3.8 | 3.8 |
| 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 |
| -367.1 | -323.8 | 323.8 | 367.1 | 43.3 | -43.3 |
| -162.0 | -237.0 | -237.0 | -162.0 | 398.9 | 398.9 |
| 220.6 | -220.6 | 220.6 | -220.6 | 220.6 | -220.6 |
2020-11-09 14:37:04 +01:00
Note that the plant $G_u$ at $\omega_c$ is already an almost real matrix.
This can be seen on the Bode plots where the phase is close to 1.
2020-11-09 14:37:04 +01:00
This can be verified below where only the real value of $G_u(\omega_c)$ is shown
#+begin_src matlab :exports results :results value table replace :tangle no
2021-01-11 09:09:48 +01:00
data2orgtable(real(evalfr(Gu, j*wc)), {}, {}, ' %.1f ');
#+end_src
2020-11-23 18:01:13 +01:00
#+caption: Real part of $G$ at the decoupling frequency $\omega_c$
#+RESULTS:
| 4.4 | -2.1 | -2.1 | 4.4 | -2.4 | -2.4 |
| -0.2 | -3.9 | 3.9 | 0.2 | -3.8 | 3.8 |
| 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 |
| -367.1 | -323.8 | 323.8 | 367.1 | 43.3 | -43.3 |
| -162.0 | -237.0 | -237.0 | -162.0 | 398.9 | 398.9 |
| 220.6 | -220.6 | 220.6 | -220.6 | 220.6 | -220.6 |
2020-11-25 09:40:17 +01:00
Now, the Singular Value Decomposition of $H_1$ is performed:
2020-09-21 18:03:40 +02:00
\[ H_1 = U \Sigma V^H \]
#+begin_src matlab
2021-01-11 09:09:48 +01:00
[U,~,V] = svd(H1);
2020-09-21 18:03:40 +02:00
#+end_src
2020-11-23 18:01:13 +01:00
#+begin_src matlab :exports results :results value table replace :tangle no
2021-01-11 09:09:48 +01:00
data2orgtable(U, {}, {}, ' %.1g ');
2020-11-23 18:01:13 +01:00
#+end_src
#+caption: Obtained matrix $U$
#+RESULTS:
| -0.005 | 7e-06 | 6e-11 | -3e-06 | -1 | 0.1 |
| -7e-06 | -0.005 | -9e-09 | -5e-09 | -0.1 | -1 |
| 4e-08 | -2e-10 | -6e-11 | -1 | 3e-06 | -3e-07 |
| -0.002 | -1 | -5e-06 | 2e-10 | 0.0006 | 0.005 |
| 1 | -0.002 | -1e-08 | 2e-08 | -0.005 | 0.0006 |
| -4e-09 | 5e-06 | -1 | 6e-11 | -2e-09 | -1e-08 |
#+begin_src matlab :exports results :results value table replace :tangle no
2021-01-11 09:09:48 +01:00
data2orgtable(V, {}, {}, ' %.1g ');
2020-11-23 18:01:13 +01:00
#+end_src
#+caption: Obtained matrix $V$
#+RESULTS:
| -0.2 | 0.5 | -0.4 | -0.4 | -0.6 | -0.2 |
| -0.3 | 0.5 | 0.4 | -0.4 | 0.5 | 0.3 |
| -0.3 | -0.5 | -0.4 | -0.4 | 0.4 | -0.4 |
| -0.2 | -0.5 | 0.4 | -0.4 | -0.5 | 0.3 |
| 0.6 | -0.06 | -0.4 | -0.4 | 0.1 | 0.6 |
| 0.6 | 0.06 | 0.4 | -0.4 | -0.006 | -0.6 |
The obtained matrices $U$ and $V$ are used to decouple the system as shown in Figure [[fig:plant_decouple_svd]].
#+begin_src latex :file plant_decouple_svd.pdf :tangle no :exports results
2021-01-11 09:09:48 +01:00
\begin{tikzpicture}
\node[block] (G) {$G_u$};
2021-01-11 09:09:48 +01:00
\node[block, left=0.6 of G.west] (V) {$V^{-T}$};
\node[block, right=0.6 of G.east] (U) {$U^{-1}$};
2021-01-11 09:09:48 +01:00
% Connections and labels
\draw[<-] (V.west) -- ++(-1.0, 0) node[above right]{$u$};
\draw[->] (V.east) -- (G.west) node[above left]{$\tau$};
\draw[->] (G.east) -- (U.west) node[above left]{$a$};
\draw[->] (U.east) -- ++( 1.0, 0) node[above left]{$y$};
2021-01-11 09:09:48 +01:00
\begin{scope}[on background layer]
\node[fit={(V.south west) (G.north-|U.east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gsvd) {};
\node[below right] at (Gsvd.north west) {$\bm{G}_{SVD}$};
\end{scope}
\end{tikzpicture}
#+end_src
#+name: fig:plant_decouple_svd
#+caption: Decoupled plant $\bm{G}_{SVD}$ using the Singular Value Decomposition
#+RESULTS:
[[file:figs/plant_decouple_svd.png]]
The decoupled plant is then:
2020-11-09 14:37:04 +01:00
\[ G_{SVD}(s) = U^{-1} G_u(s) V^{-H} \]
#+begin_src matlab
2021-01-11 09:09:48 +01:00
Gsvd = inv(U)*Gu*inv(V');
2020-11-09 14:37:04 +01:00
#+end_src
** Verification of the decoupling using the "Gershgorin Radii"
2020-11-25 09:40:17 +01:00
<<sec:stewart_gershorin_radii>>
The "Gershgorin Radii" is computed for the coupled plant $G(s)$, for the "Jacobian plant" $G_x(s)$ and the "SVD Decoupled Plant" $G_{SVD}(s)$:
2020-09-21 18:03:40 +02:00
2020-11-09 14:37:04 +01:00
The "Gershgorin Radii" of a matrix $S$ is defined by:
\[ \zeta_i(j\omega) = \frac{\sum\limits_{j\neq i}|S_{ij}(j\omega)|}{|S_{ii}(j\omega)|} \]
This is computed over the following frequencies.
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
% Gershgorin Radii for the coupled plant:
Gr_coupled = zeros(length(freqs), size(Gu,2));
H = abs(squeeze(freqresp(Gu, freqs, 'Hz')));
for out_i = 1:size(Gu,2)
Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
% Gershgorin Radii for the decoupled plant using SVD:
Gr_decoupled = zeros(length(freqs), size(Gsvd,2));
H = abs(squeeze(freqresp(Gsvd, freqs, 'Hz')));
for out_i = 1:size(Gsvd,2)
Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
% Gershgorin Radii for the decoupled plant using the Jacobian:
Gr_jacobian = zeros(length(freqs), size(Gx,2));
H = abs(squeeze(freqresp(Gx, freqs, 'Hz')));
for out_i = 1:size(Gx,2)
Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
2020-09-21 18:03:40 +02:00
#+end_src
#+begin_src matlab :exports results
2021-01-11 09:09:48 +01:00
figure;
hold on;
plot(freqs, Gr_coupled(:,1), 'DisplayName', 'Coupled');
plot(freqs, Gr_decoupled(:,1), 'DisplayName', 'SVD');
plot(freqs, Gr_jacobian(:,1), 'DisplayName', 'Jacobian');
for in_i = 2:6
set(gca,'ColorOrderIndex',1)
plot(freqs, Gr_coupled(:,in_i), 'HandleVisibility', 'off');
set(gca,'ColorOrderIndex',2)
plot(freqs, Gr_decoupled(:,in_i), 'HandleVisibility', 'off');
set(gca,'ColorOrderIndex',3)
plot(freqs, Gr_jacobian(:,in_i), 'HandleVisibility', 'off');
end
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off;
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
legend('location', 'northwest');
ylim([1e-3, 1e3]);
2020-09-21 18:03:40 +02:00
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/simscape_model_gershgorin_radii.pdf', 'eps', true, 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:simscape_model_gershgorin_radii
#+caption: Gershgorin Radii of the Coupled and Decoupled plants
#+RESULTS:
[[file:figs/simscape_model_gershgorin_radii.png]]
2020-11-23 18:01:13 +01:00
** Verification of the decoupling using the "Relative Gain Array"
2020-11-25 09:40:17 +01:00
<<sec:stewart_rga>>
2020-11-23 18:01:13 +01:00
The relative gain array (RGA) is defined as:
\begin{equation}
\Lambda\big(G(s)\big) = G(s) \times \big( G(s)^{-1} \big)^T
\end{equation}
where $\times$ denotes an element by element multiplication and $G(s)$ is an $n \times n$ square transfer matrix.
The obtained RGA elements are shown in Figure [[fig:simscape_model_rga]].
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
% Relative Gain Array for the coupled plant:
RGA_coupled = zeros(length(freqs), size(Gu,1), size(Gu,2));
Gu_inv = inv(Gu);
for f_i = 1:length(freqs)
2020-11-23 18:01:13 +01:00
RGA_coupled(f_i, :, :) = abs(evalfr(Gu, j*2*pi*freqs(f_i)).*evalfr(Gu_inv, j*2*pi*freqs(f_i))');
2021-01-11 09:09:48 +01:00
end
2020-11-23 18:01:13 +01:00
2021-01-11 09:09:48 +01:00
% Relative Gain Array for the decoupled plant using SVD:
RGA_svd = zeros(length(freqs), size(Gsvd,1), size(Gsvd,2));
Gsvd_inv = inv(Gsvd);
for f_i = 1:length(freqs)
2020-11-23 18:01:13 +01:00
RGA_svd(f_i, :, :) = abs(evalfr(Gsvd, j*2*pi*freqs(f_i)).*evalfr(Gsvd_inv, j*2*pi*freqs(f_i))');
2021-01-11 09:09:48 +01:00
end
2020-11-23 18:01:13 +01:00
2021-01-11 09:09:48 +01:00
% Relative Gain Array for the decoupled plant using the Jacobian:
RGA_x = zeros(length(freqs), size(Gx,1), size(Gx,2));
Gx_inv = inv(Gx);
for f_i = 1:length(freqs)
2020-11-23 18:01:13 +01:00
RGA_x(f_i, :, :) = abs(evalfr(Gx, j*2*pi*freqs(f_i)).*evalfr(Gx_inv, j*2*pi*freqs(f_i))');
2021-01-11 09:09:48 +01:00
end
2020-11-23 18:01:13 +01:00
#+end_src
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
figure;
tiledlayout(1, 2, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
hold on;
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, RGA_svd(:, i_out, i_in), '--', 'color', [0 0 0 0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, RGA_svd(:, 1, 2), '--', 'color', [0 0 0 0.2], ...
'DisplayName', '$RGA_{SVD}(i,j),\ i \neq j$');
plot(freqs, RGA_svd(:, 1, 1), 'k-', ...
'DisplayName', '$RGA_{SVD}(i,i)$');
for ch_i = 1:6
2020-11-23 18:01:13 +01:00
plot(freqs, RGA_svd(:, ch_i, ch_i), 'k-', ...
'HandleVisibility', 'off');
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); xlabel('Frequency [Hz]');
legend('location', 'southwest');
ax2 = nexttile;
hold on;
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, RGA_x(:, i_out, i_in), '--', 'color', [0 0 0 0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, RGA_x(:, 1, 2), '--', 'color', [0 0 0 0.2], ...
'DisplayName', '$RGA_{X}(i,j),\ i \neq j$');
plot(freqs, RGA_x(:, 1, 1), 'k-', ...
'DisplayName', '$RGA_{X}(i,i)$');
for ch_i = 1:6
2020-11-23 18:01:13 +01:00
plot(freqs, RGA_x(:, ch_i, ch_i), 'k-', ...
'HandleVisibility', 'off');
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); set(gca, 'YTickLabel',[]);
legend('location', 'southwest');
2020-11-23 18:01:13 +01:00
2021-01-11 09:09:48 +01:00
linkaxes([ax1,ax2],'y');
ylim([1e-5, 1e1]);
2020-11-23 18:01:13 +01:00
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/simscape_model_rga.pdf', 'width', 'wide', 'height', 'tall');
2020-11-23 18:01:13 +01:00
#+end_src
#+name: fig:simscape_model_rga
#+caption: Obtained norm of RGA elements for the SVD decoupled plant and the Jacobian decoupled plant
#+RESULTS:
[[file:figs/simscape_model_rga.png]]
** Obtained Decoupled Plants
<<sec:stewart_decoupled_plant>>
The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown in Figure [[fig:simscape_model_decoupled_plant_svd]].
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(Gsvd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
'DisplayName', '$G_{SVD}(i,j),\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for ch_i = 1:6
2020-11-09 14:37:04 +01:00
plot(freqs, abs(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))), ...
'DisplayName', sprintf('$G_{SVD}(%i,%i)$', ch_i, ch_i));
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
legend('location', 'northwest');
ylim([1e-1, 1e5])
% Phase
ax2 = nexttile;
hold on;
for ch_i = 1:6
2020-11-09 14:37:04 +01:00
plot(freqs, 180/pi*angle(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))));
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180:90:360]);
2021-01-11 09:09:48 +01:00
linkaxes([ax1,ax2],'x');
2020-09-21 18:03:40 +02:00
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/simscape_model_decoupled_plant_svd.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:simscape_model_decoupled_plant_svd
#+caption: Decoupled Plant using SVD
#+RESULTS:
[[file:figs/simscape_model_decoupled_plant_svd.png]]
2020-09-21 18:03:40 +02:00
Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant $G_x(s)$ using the Jacobian are shown in Figure [[fig:simscape_model_decoupled_plant_jacobian]].
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, abs(squeeze(freqresp(Gx(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(Gx(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
'DisplayName', '$G_x(i,j),\ i \neq j$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))), 'DisplayName', '$G_x(1,1) = A_x/F_x$');
plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))), 'DisplayName', '$G_x(2,2) = A_y/F_y$');
plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))), 'DisplayName', '$G_x(3,3) = A_z/F_z$');
plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))), 'DisplayName', '$G_x(4,4) = A_{R_x}/M_x$');
plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))), 'DisplayName', '$G_x(5,5) = A_{R_y}/M_y$');
plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))), 'DisplayName', '$G_x(6,6) = A_{R_z}/M_z$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
legend('location', 'northwest');
ylim([1e-2, 2e6])
% Phase
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([0, 180]);
yticks([0:45:360]);
linkaxes([ax1,ax2],'x');
2020-09-21 18:03:40 +02:00
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/simscape_model_decoupled_plant_jacobian.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:simscape_model_decoupled_plant_jacobian
#+caption: Stewart Platform Plant from forces (resp. torques) applied by the legs to the acceleration (resp. angular acceleration) of the platform as well as all the coupling terms between the two (non-diagonal terms of the transfer function matrix)
#+RESULTS:
[[file:figs/simscape_model_decoupled_plant_jacobian.png]]
2020-09-21 18:03:40 +02:00
** Diagonal Controller
<<sec:stewart_diagonal_control>>
The control diagram for the centralized control is shown in Figure [[fig:centralized_control]].
2020-09-21 18:03:40 +02:00
The controller $K_c$ is "working" in an cartesian frame.
The Jacobian is used to convert forces in the cartesian frame to forces applied by the actuators.
#+begin_src latex :file centralized_control.pdf :tangle no :exports results
2021-01-11 09:09:48 +01:00
\begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G_u\end{bmatrix}$};
\node[above] at (G.north) {$\bm{G}$};
\node[block, below right=0.6 and -0.5 of G] (K) {$K_c$};
\node[block, below left= 0.6 and -0.5 of G] (J) {$J^{-T}$};
2020-09-21 18:03:40 +02:00
2021-01-11 09:09:48 +01:00
% Inputs of the controllers
\coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
\coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
2020-09-21 18:03:40 +02:00
2021-01-11 09:09:48 +01:00
% Connections and labels
\draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$};
\draw[->] (G.east) -- ++(2.0, 0) node[above left]{$a$};
\draw[->] ($(G.east)+(1.4, 0)$)node[branch]{} |- (K.east);
\draw[->] (K.west) -- (J.east) node[above right]{$\mathcal{F}$};
\draw[->] (J.west) -- ++(-0.6, 0) |- (inputu) node[above left]{$\tau$};
\end{tikzpicture}
2020-09-21 18:03:40 +02:00
#+end_src
#+name: fig:centralized_control
#+caption: Control Diagram for the Centralized control
2020-09-21 18:03:40 +02:00
#+RESULTS:
[[file:figs/centralized_control.png]]
The SVD control architecture is shown in Figure [[fig:svd_control]].
2020-09-21 18:03:40 +02:00
The matrices $U$ and $V$ are used to decoupled the plant $G$.
#+begin_src latex :file svd_control.pdf :tangle no :exports results
2021-01-11 09:09:48 +01:00
\begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G_u\end{bmatrix}$};
\node[above] at (G.north) {$\bm{G}$};
\node[block, below right=0.6 and 0 of G] (U) {$U^{-1}$};
\node[block, below=0.6 of G] (K) {$K_{\text{SVD}}$};
\node[block, below left= 0.6 and 0 of G] (V) {$V^{-T}$};
% Inputs of the controllers
\coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
\coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
% Connections and labels
\draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$};
\draw[->] (G.east) -- ++(2.5, 0) node[above left]{$a$};
\draw[->] ($(G.east)+(2.0, 0)$) node[branch]{} |- (U.east);
\draw[->] (U.west) -- (K.east);
\draw[->] (K.west) -- (V.east);
\draw[->] (V.west) -- ++(-0.6, 0) |- (inputu) node[above left]{$\tau$};
\end{tikzpicture}
2020-09-21 18:03:40 +02:00
#+end_src
#+name: fig:svd_control
#+caption: Control Diagram for the SVD control
2020-09-21 18:03:40 +02:00
#+RESULTS:
[[file:figs/svd_control.png]]
We choose the controller to be a low pass filter:
\[ K_c(s) = \frac{G_0}{1 + \frac{s}{\omega_0}} \]
$G_0$ is tuned such that the crossover frequency corresponding to the diagonal terms of the loop gain is equal to $\omega_c$
2020-09-21 18:03:40 +02:00
#+begin_src matlab
2021-01-11 09:09:48 +01:00
wc = 2*pi*80; % Crossover Frequency [rad/s]
w0 = 2*pi*0.1; % Controller Pole [rad/s]
2020-09-21 18:03:40 +02:00
#+end_src
#+begin_src matlab
2021-01-11 09:09:48 +01:00
K_cen = diag(1./diag(abs(evalfr(Gx, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
L_cen = K_cen*Gx;
G_cen = feedback(G, pinv(J')*K_cen, [7:12], [1:6]);
#+end_src
2020-11-06 17:02:58 +01:00
#+begin_src matlab
2021-01-11 09:09:48 +01:00
K_svd = diag(1./diag(abs(evalfr(Gsvd, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
L_svd = K_svd*Gsvd;
G_svd = feedback(G, inv(V')*K_svd*inv(U), [7:12], [1:6]);
2020-11-06 17:02:58 +01:00
#+end_src
The obtained diagonal elements of the loop gains are shown in Figure [[fig:stewart_comp_loop_gain_diagonal]].
#+begin_src matlab :exports none
2021-01-11 09:09:48 +01:00
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
plot(freqs, abs(squeeze(freqresp(L_svd(1, 1), freqs, 'Hz'))), 'DisplayName', '$L_{SVD}(i,i)$');
for i_in_out = 2:6
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
2021-01-11 09:09:48 +01:00
end
2021-01-11 09:09:48 +01:00
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(L_cen(1, 1), freqs, 'Hz'))), ...
'DisplayName', '$L_{J}(i,i)$');
for i_in_out = 2:6
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
legend('location', 'northwest');
ylim([5e-2, 2e3])
% Phase
ax2 = nexttile;
hold on;
for i_in_out = 1:6
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*angle(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))));
2021-01-11 09:09:48 +01:00
end
set(gca,'ColorOrderIndex',2)
for i_in_out = 1:6
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*angle(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))));
2021-01-11 09:09:48 +01:00
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180:90:360]);
2021-01-11 09:09:48 +01:00
linkaxes([ax1,ax2],'x');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/stewart_comp_loop_gain_diagonal.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:stewart_comp_loop_gain_diagonal
#+caption: Comparison of the diagonal elements of the loop gains for the SVD control architecture and the Jacobian one
#+RESULTS:
[[file:figs/stewart_comp_loop_gain_diagonal.png]]
** Closed-Loop system Performances
<<sec:stewart_closed_loop_results>>
Let's first verify the stability of the closed-loop systems:
#+begin_src matlab :results output replace text
2021-01-11 09:09:48 +01:00
isstable(G_cen)
#+end_src
#+RESULTS:
: ans =
: logical
: 1
#+begin_src matlab :results output replace text
2021-01-11 09:09:48 +01:00
isstable(G_svd)
#+end_src
#+RESULTS:
: ans =
: logical
: 1
2020-09-21 18:03:40 +02:00
The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:stewart_platform_simscape_cl_transmissibility]].
#+begin_src matlab :exports results
2021-01-11 09:09:48 +01:00
figure;
tiledlayout(2, 2, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G( 'Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$D_x/D_{w,x}$, $D_y/D_{w, y}$'); set(gca, 'XTickLabel',[]);
legend('location', 'southwest');
ax2 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Az', 'Dwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Az', 'Dwz')/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$D_z/D_{w,z}$'); set(gca, 'XTickLabel',[]);
ax3 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Arx', 'Rwx')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz'))), '--');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G( 'Ary', 'Rwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$R_x/R_{w,x}$, $R_y/R_{w,y}$'); xlabel('Frequency [Hz]');
ax4 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Arz', 'Rwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Arz', 'Rwz')/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$R_z/R_{w,z}$'); xlabel('Frequency [Hz]');
linkaxes([ax1,ax2,ax3,ax4],'xy');
xlim([freqs(1), freqs(end)]);
ylim([1e-3, 1e2]);
2020-09-21 18:03:40 +02:00
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
2021-01-11 09:09:48 +01:00
exportFig('figs/stewart_platform_simscape_cl_transmissibility.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
2020-09-21 18:03:40 +02:00
#+end_src
#+name: fig:stewart_platform_simscape_cl_transmissibility
#+caption: Obtained Transmissibility
#+RESULTS:
[[file:figs/stewart_platform_simscape_cl_transmissibility.png]]