Reworked all the section about the Gravimeter

This commit is contained in:
2020-11-25 09:17:11 +01:00
parent 87a0d98e01
commit e69e5a5d2b
32 changed files with 83245 additions and 1118 deletions

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 144 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.2 KiB

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.6 KiB

After

Width:  |  Height:  |  Size: 9.5 KiB

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 149 KiB

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 170 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 124 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 113 KiB

After

Width:  |  Height:  |  Size: 111 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.4 KiB

After

Width:  |  Height:  |  Size: 4.4 KiB

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 209 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 116 KiB

After

Width:  |  Height:  |  Size: 127 KiB

View File

@@ -3,7 +3,7 @@
1 0 obj
<<
/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D)
/CreationDate (D:20201116142043+01'00')
/CreationDate (D:20201124192000+01'00')
>>
endobj
2 0 obj
@@ -4113,352 +4113,422 @@ endobj
686 0 obj
<< /Length 687 0 R /Filter /FlateDecode >>
stream
xœÄ½ÍŽ,»’¥7?O±_ ²œÿ$ PKÝuլѣꄺƒF
ôúZŸ™1v„gêæ‰ˆJW5¤»<EFBFBD>¯ô 9i4.3iÿó<C3BF>ôëÐÿû;þ§Œòëüõ<C3BC>ã#åfOÿK<C3BF>ÿçùcÍZ[[ÞÅö£ýú»ú1Z)éÈþ·é×_þ8~ýÃkýÊùøõ×?jõý«ý+5ýcÅÿþËÿüÇÿùÔ¯ÿý?ü£ø7Õ£PKùã¿¥_å¿ þ¿ô_ÿù<C3BF>üëÿþ#}”zä1ý?ç¿ü‘ª~eÎzô2B¨‡G&Ë?>/I~^>ÚÈëèuwÏãW%)ÏK²5ÛgÊ£nIî½*I}Z|´<>F™y¦<79>äáÑ«’´ç%Iã£ôTRž[O½*I^<>Z­%¥–·$÷<>^•d</Iéê€ÓJ7Iî½*É|^MÙTÔófZ½*Éz^’Õ?æªiµÖ·$÷<>^•$ORrùècŽt¬=<3D>½,ÊóV¶ÔüÑgî2h{|½,Êóf¶´ñQsIsä=@<0F>^åy;[úú¨}¤’Û¶)<0F>^åyC[Æúèí<C3A8>Y7Qî½,Êó¶ÌùQ¥¡Ç,[’»'/ ò¼¡-š·¹%ih½IrÿèeQž·´µÞ3¦—Þ†U¿
ÿn5<EFBFBD>Z=Ôì͘¾aBÓz²Qõ¯º¦<C2BA>¹$oXÐûG/3²ãIAêQ>²ÔÌ5|xô² ÏÛOÿ£Bõ?mù<6D><<yM”çí§)àjâú±$«çÚqÿä5Qž·Ÿ&Ê\ÑZµÜ×åþÉk¢<o?]1Ž1Æ<¤!ÊÝ“×DyÞ~º(z%­ÑŽ5·(wO^åy j¢Œ®u^Kë1B»¯ òšý”Ïð1RïÒŒµ%¹{òš(ÏSU%}«c´´E¹{òš(ÏsU¥OýTáÿ~ÍË|žŸúRV>J¾7jO^åŠÛŸ×ƒQ»òš(/Ú×î<>Úý“×DyѾýlcµºUõþÉk¢¼h_óü˜ýÁ¨Ý?yM”íknµÈ†Í²uåþÉk¢¼h_sÇÐ{Ñÿ·E¹{òš(/ZØ´>fmG_sOæû'¯‰ò¢…=òÇ!j”ÖÜÆíþÉk¢¼faWù8¸Òýƒ×âh¯ÙÚ©u÷<75>)Ý?xM<78>×,íLý<>'Ý?xM<78>×ììý<>%Ý?xM<78>׬ìOœ÷æäþÁk¼fcECrº7&÷^ä5 +*ÒÖ½)¹ðš ¯Ù׎Ç"Ø?_kü5ÚŽ<C39A>).”úzqÿà5A^³§5}Œntÿà5A^³¦¥}xÐѳ rÿൽ€×¬i9>ªXÐ,+üšû¯ òb\€ˆûUžL„î¼&ÈkÖT´cÁ€z
¹ðš /rÖõ±Ñ݃×y±=“SWn®ïí¿_cÛÒ?ªw<ßh}¥ÙþB³I»©—ýóµ¦Ç+Mïv_iôxl'ý½…ýs-Ù½ù}öøGê/<2F>ØŸlê»ï7ÿ]`÷‡_w:?êÒÿ‰t^ÔÛÖòã“+d8ÎÏ¡ô+dxTðù—û“m}—Vòãí“Lòãí“BòÓí—8òãí“.òãí“$òãí“òãí“òãí»Âýpûߤ¡ütûßåžüxûß$œüxûßd™üxûߤüxûßä“üxû3‰äÇ[ÿ&sä§Ûÿžàþpûé*?ÝÚ=Ÿî"9<>äçüàsÆð%2œ2ƒÏ¹Â—ÈpÊ >g _!Ã9øœ|‰ §<àsfð%2œ2€Ï9Á—ÈpÊý=g_"Ã)ë÷œ|‰ ßøÛ—ÈpÊ9>g!_!Ã9Ùøœ~|‰ §,ãsÞñ%2œÒÏ Ç—ÈpÊ+>g_"Ã)¡øœb|‰ <0C>©Ä§ÜâK$8¥Ÿ“Н<C5A0>á»hÜ%2Ôû¸ö<>Íüû½$dOrKûùmˆØÒñÖ^ÝÕyÕGc<17>Wûén¼ßóæ~¸ïæYûᎼSǃDÒŸÖÇSFünõ½¬ø'Ôó1 3þ‰æ3ßwóïe¿?ÓüC¶û­ù·2ÞŸiþ!ÃýÖü[YîO4ÿ<34>Õ¾[+³ý™Æ2Ùo­¿•ÍþLóÙë·æßÊ`¢ù<C2A2>±¾~5ký™…è!K}7ü^¦úÍ?f¦ïæßËN¢ùÇlôÝü{éÏ4Ÿï3ÐoÍçw²ÐŸhþ1ë|7ÿ^æù3Í?dšßš+Ûü™æ²ËoÍ¿•aþ ã|È(ßÍ¿—Uþ
á<EFBFBD>vœñ>¦­ïvßK]ÿóÍ?¦ªGë參ÿùÆÓÓ£ñ÷RÔŸhü!%}7þVZúŸoü1
=/ý‰ÆRÏwão¥Ÿ?ÑøCºùnü­”ó?ßøcŠy4þ^šù<13>GZùnöÅÔò?ßàc*y4û^:ùŸoü1}</…üÏ7þ˜2<1E>¿—6þDãiâ»ñ·RÅŸp<EFBFBD>·üVzø3¡€ûtð[Hà<48>”ðg|óûðkþNø3Ò]Ú÷Í=z#õûé<C3BB>Yø'×Ä̦ëǃf§`Ïnöw×D{¾¸è`·I¸çÛ
ní_ïùâJƒ[ûW|>ßc°¿"âóÅå·æ¯ù|qcÁ­ý+b>×ì8èóÅÝ»åK¢>_\H°Û¿$ìóÅ-»ýKâ>_\=pkÿŠÀÏ÷
ìö/‰ü|qÉÀ­ý+B?_Ü,pkÿŠØÏ× ìö/ þ<nÓEÃ?¿O÷þÙ
_þù|UA4IüçóýÑú% Ï—ìÖ¯ˆ}¾‰ Z¿$ôùú<C3B9>Ýú1 ÏwìÖ¯}¾h Z¿$
t»Àn÷gÃ@Ÿ¯ˆv/‰}¾G Z¿$ôùò€hýHÐçvëW„>_°Ýç+bAŸï¸Å .àæº_
út ÀÍsúùpÐ]æOx.ÑÖßÿ§TÚü‘ìí×?ý³ççþ¿Ƚ|HX™ˆõÖ?Ú<JÉ‡Ý ÿþé<C3BE>ÛeñW×GKm•_]nyj£þú§¿þúoÿËqéýõßýÓþã?þ“}í¿Wƒ¥hòäöEù¾EûæA¿ÏÜÿ}¿9×<39>£Mîèß•<C39F>”Wý믎~ÿ ҡ꫾<>¡|!Ãc_´Pô¡`Ê^1ö³ÁkÆþoŠpÑØÿMþÖØ×¿±çŒSï³3‰öÑ[[øï9ö«AŽ4‡èÙŸú—»ýoIð·zý+òü8Rþ-Â߇ýŸHÏßÝ ð[´û?Yícä5Ò*}kC^GýJ.yL‡Ve2³oµÏ£ñSÌ&<0E>ÔüWrôëäèù#×Ù¿b\'E%P,Oö+1æub”ù±Ž†5üBŽu¡IsFÄ÷K%ýß®“#¹šä_Éñ.T<>ÙãzŸÅøß/CmÏU8 ö…ÿÇebNhu})ƼLŒ*׬'[Ûÿÿ4`Z<>Ô3}9eÿÓeb -¡I3å )Òq™kJŠÕ¿ÔÐt¢Ï8Tj9ÁúŸQµHÿ×ÿj_5&ª—¢a·sà‰“„)ÏewÌf#®X‰0}Ë胥ßCÖ)Û¦K5M³²ì*±f­<C2AD>Ív”¤_5,s:®[h"Õò![u¬YüP½øÏLu4º|i‰`<60>æpÞ¿X?$\¯ùˆ£ø¥ÔTF@}èÝÈ1D©ŽÒ¤ó†µ<E280A0>¤?œm,Ã?~ÌX[”Çßiâ˽¹N¸x¨;]¤µÊR—<52>X;Ô½¤ÉUW# ÕõÑê'ÃòJÒ¶4
ä 8•SÃk¯å0¯hŽ*' 5ÃzÕ£U]ù¡1îG5DÿÊeÖÔsECÃKõc-õêpH=Ž€yuƒÔÔ)çÀÆ!
­v<EFBFBD>Oéì49¤²‰ê}&ª—eÃF`|é˜vïNδ:Ò…ö5âÃ01Å2¶°¦IPô}†åXµÎØbhêÁ{Y•¤oð÷²”9·™ìžéÚ ÓoØ\èžõeÖPi.­øMš×ÔÉ{éc¤1òð~6QtÍKÃÊœ--Wç&ë”Ùü½£M!µF|§¦êš^ú
IV “†iäòhÕ°¢/ZDZë…ÁLÕ5µº(y+.§4LhXôÞ¡A)ŒRë<52>éÇ2¬Ê;cÒ64,ꧺü=qä#ÏÆaXi89%Ò½ØTçË0õyo%0é˜4³¶áïI<C3AF>DjÆ
LJV“lf>?©Ñ3@J¶¤Ñ ]R<>® œV`ü»ºHS@ÓÕu¥«cH§y­óÝGý L<>ÐòÁÝ2ªœ<C2AA>œ}Ì;\KŠÆÆ°C†BÃדfè ú~`„‡œjY
) œOAu©É<C2A9>² :4aŽæ“DØÒ[c¡ì‡F?éƒ)­dêVé.Ê.¬ÈI!Ƙ¼)õsö÷ÔvÞ8¦?Mœ/tŠ&ÐRŸ§9R uÃ4Lë<4C>Ôk¸,íƒßkõð÷dJS_ñR°¹MÞËЯÙõ߆un Ð0¢ìÂ
¥U'°Î[Œ‰l³f¡ŒëÌÞe¯&û<>Pva½¨kÕó<C395>qÄWúæïi8:F(°ÅÍÊ~êÀ>$u“-’‰¨ɳӯÇ'H¿p)êá¯åÆà¹^öõ¡¿Ýã ýZ"ýú;ýn`“eWcXcÆLÛé<C39B>
Ñϰ&,ƒ4ºÌÊ<1E>S˃eÒ©í¦y5]£‡T $cÔ4¯JÌrA]rIMæ0¹ÉÒ0ý™Ì²Í-ëúÉ
5nSVíÞ¶–&S?aÇÔß…ÉÒ°¦¿-Ü7±:œBƒêª.LëÛꕳæÂŠØÆ˜Ã¿M¦¯.ZÎ
%‘É;f`Skš¯ïÈ6†4 »xpdž0<E280A0>êÁœl`´. Ó*#~S~0i˜¦‰< l˜Vxé¾ÏRŠPM|ä-êõ岌<C2B2>
¡¯”}i2#n¾…5½Ø´¦<>ê=f×<66>´0ý=q Lk“<16>Á{
;i<>韾Z<C2BE>i}hZ<68>MņTliv<69>Ž®0ÔëÅM΀ðh6­V
ëRË<EFBFBD>MYz™}•¿—eµ—ÀF×OÌ{òFØrÍœl.‚æË *ë}ø<·]ÚnsÛ Cã¬ya_0³h Tòðd¹Ár»ü „5´æÙuš.ҳé­ß<76>^(50õqÆ -HZM«èŒa‰€hw0«X ÚP¤·SúÞ†¸SM<53>©û5tb¼`²ìúwrQd{µ\cÎ…<C392>K`RaÑô}²ö­^¤.†‰DUM/»[Aÿ!ÍÈ£ø²¬ÿ”©À>ñž~DKݬޙR±¦éµPwk[®—<C2AE>i¥R£îAÉË?<3F>ÅOoMÔ]˜Æ)×ê^ʃpvˆƒ´ÃÍ
<EFBFBD>ëä˜÷dÜeìbQÓ˜h@ò¬vKiÑçHù§SPaR|ýÚ®<C39A>Ûx>ó¤(­¿i˜(fÍÝ{¥’¦ˆ0èÉè©È€ý&ÊØ±Hh»0Y
éGJ<EFBFBD><EFBFBD>¬ÑœÝßÓ:™`äcZ¤ÕÕÑ€~ض9˜óò)ŒbåÙ9ŽÍCñвs†$.a÷…i¸Ô<C2B8>h»0&<26>x‡:Pö´hL˜ Cƒ¬ÏÝ<C38F>Ý$$mXIE´ÀnÓU¶BK“>´¹<C2B4>æ±µDeñy­õF%E —8Š¥;Ž…è¬<C3A8>+þ8£î´º©W|±_v¥T<>÷¤bâkêgÓ#Ym<Pwlh…<68>´˜ŒVÖÂMÄ1ôw‡ì$ÙSºƒº“Ÿ A6ñ`Ù˜<Ô]¶^f¤áÍ&²WDz'ê.Lš¯·ÊÆd©ä ¢ïZ[ªÔJ¤~¶ª”zŒi¹Ž<C2B9>qYúŒW¼Bꀾ +š»ò#F`³ø"¼§U[/ʨ&Ã×SÉçBßÌVJ0ÍÃS/rM<72>“eì6c¡!¹àr¡ïü(û<>Ìå2ú"Ý—ó4
;ØÕôa€öȪa†H¢4Ë"¢aߨÔÁUè;Ć­¥ê_Ǿ†ôh¡-âJúyñÄQÓˆÈÚ£îÂÈå“<17>òó^eul¹vÿº&.ƒÛ…¾Ã&fŸã ³Á!5}åjUï1­Õ¬é(øªVJ™ªV · }‡W:%ûO²é©é%…ý­Ö%++0¼:MpnäÁ:U¨š÷˜ &È2÷/]T$<E280BA>±<IÞ“MÍ]_Ÿ.%T§q§ŠÕqfÖXT3ß`~V˜¸øØVü:­Å2;fŒñ|Dê'ð/üHé” ºY$0ùà2—(|e­¹ùüæ¡1õ æ‘§ŒhjrÉòšÌÌÒ$£ 8„ò^zTŠT9DÀ*럎“ G:Ð÷Ó²VÍñž” ž<>Ñ÷B~¬Ìãá#‹Ã‹~Tô<54>MÍ…:²‹©)¬ECÄ_ïe¾§@Š7Ö:^
Oÿ-™”:\F(Æ È/­ w+Ñ<07>àú%[<5B>M%žä\³Dú'±†ÌälÃ{E:FoÝó.Eù{@090ƒ<18>]×OeƒÁ¼×TDÝt HÇ4nðKÚU»š¥ÉEi&¢!£ô‹¸‚ýíê<C3AD>uB4<>®p<C2AE>†aKlÏëè¦øùnã,ŽDPƒ`ÓDsBžÁa?Il
@øŽY)…žAñÀÄȵ2 îx"µJ⹱ŊW;'z¥‡Q휵>&\ävš5hZ\ lÕ°)Ë2äÎ<C3A4>uYÆŸÂñ2:£?Ô‰ŽÖÀQ<>ÀÔªOçÌú¯Q™Fg4gô9²<>íÓ<19>Nïé,#¨¡9ëŽ<C3AB>Töp <0C>LÞÄ4ÇX. 0ëié€t¡fº8ªlêtƒ$,wl_.ú;î÷J*Ç+Gîö“
‡E#<23>`¥Y¯z”MLoÔêeA\ëåá™n¡}<7D>¾J·Ì³EN6$\'…<>¬ÅNÓÊ\Mͱêâ=%<25>tU®î«É;—¦¥ÀD2«£eÁÛM*ðôJˆ©¹kqà„¹kAjéFèõW2¤Ë´Hµ‰t¦‡È#*ÌÀDÚ5«™F‡‰#§ØÊèóîºÃg`pDnB5F參9æ•°)f” óob±Bûô—1ÈK“
?r§á<C2A7>ÔbO»]Mέ¬«rÁ©Ót¬1=ºžŸ Ì}A£?ðm)ds«^šèžšÑâ§rzÔÛ<C394>É”UMƒa”ŠC!š*.1*Äö©Úô1ÝiŒ°Jd2?D<>æÀΦ˜¾h‡Ñ<02>2SNÓ²­ú¸lôGë†&twEâ€a<>Z<EFBFBD>5ÉxiBû´*“@l²Ö<C2B2><19> Ž9‰ ö#jÇqlaD´0æeX¾ùî@¶³:R5öƒG,¿À^«F¸¥Á~ÉVÝ2T'êë0ö#¯GÃS2 /2É ˆiÅõ$‡šÆDŽh f$º¼Ãú ie2Hÿ­ÕÓÍeÍäù²ºÉLp—bÕøpbþ¸­¸y>°«×À
Y]šD¨;¤)±ORz`ƒHVÒ¤µNÑün½Ôz%¥´å€-p¬—“;Ò´¤ÊwgT£ Œéa­ò¹v_Fĵ*ëDÇê.¶%v ÎäúÉ b‰6
J#ïÛ`âÞT³aôò:Bé<>aì‡Ýi©ò:|¤cÆ\<5C>ýHs8èÔœL
[„Z»K<C2BB>•M­1 ü)¾Ú1<C39A>ÁZh¦a“HÈBßÅà±Ü ÿq§úÞHÅ%yÔÀXáÔó¼GhGT,¬Á- µ¡ð´þÉ_¬ëò/4}гBõ‰&޵÷xO¨ª%å/¾¤ü‡jö쑺~ðèn[Zþˆ}ˆj˜¥3À t˜Ýs)à3¯lÉVÕl†©KY°Bx·û}Ælj‰OŸAþeSEša²!<21>¦
«Xí|Øõ¿‡íkH«Z@ƒÙÅ|²ÍIdlùk
wvà¤ùÑïÉ
vw…¸ÿÀSCÝ…iÉ®<EFBFBD>6ÃÄ· žêÎަ¨lxŒí'ÙͶîË<qùÈ­ îæa$ÇÄh´˜sQ/iYåÌ30M'/ØO%Þ^„À&Ι¬ê^‰´$â¦)0¥Ã¢-¸!ðö3aåPwaú`Q‰hO*F$D_o„QÃ(VëS<C3AB>Ø¿š dé'ÀÔ¶~8Ö …,Ô QŠ÷ 3ØHZ°}¢0Å}'s¥4<C2A5>³}˜W"<22>o£NðŸHùï`š×DØZ`ZôÑh;©ÛòÛdtR`HH!¤&Œpw9œø™ÇGŒ<47>{Wq.feÏ*6 …à€áTmbKôo½LçØW4a²pÊÂ
¡.wÃø‘Ž ™ì<E284A2>ʉwuèðJ
ˆ<>×#ÇkÒ°<C392>‰æêèÂ<C382>ôÖ˜6ÙjQPñƒdâþ„AÊNR"Ó'¼Iâþuqál6 ?)ÓÇU?ðÒL~4_Þ»1Äý{IÜ5}ÙšÁAZ¢åÙaÙ¡ òå¹{
»‰BJÝ°ì…øÒpk Œ°?A6NÀÔ£šnõ‰ûßnH-H4ö‡Åâ3§4M­<4D>e‡a‰FõîäˆÀ·Öa¬æZW“ý9†Jl<4A>àˆ¼kP¬É¾@AD ý°e bL<62>ÒA/0­š"¦XvH)d¸®û<>UǜІÒÜo! 2”=T-—G<E28094>%0<Ðn÷™<G¨×ÛcO¹¢í`òÞ·ûôïâëaýÌÆ”aåÑ:b²ÀÔdºÓ†dDÙ!ñs~¦!BÿDAìÊ`y.•Í´F`mM¶Åx­×†s[Bÿle„«q¢¤áUkÒU10?×׸Ã><3E>{'¼Ir躥ç«ø¬f† <>$ö%3ÝtúŸøiXw¹&<26>ØJq$ôo{ Ì=òïe Ø›L¶<h4ŒÍ¤š|û' ÍJøÇì‰ã8Fعɽ%÷õhΡëv:ëNž{I)08˜ˆ€¦¿ÄÜSL¢ÿrÄÈxOOÌâ莵Ø+2LüHÓ¦mÌ7×±îÉv-gñ
Ùa7Ó[ôÁCSnpGHAàH"Ђ­-Íß“šu\/¬{²
GÝ84 ƒàJÄJ³»IDÿ-â>ÀÔï•à¹s<¢ÿDÔTZ©¬1
Ò²¥ 6í4"=<3D>¬À:qî·ýlÓ9ïè)&S« ¯uö½3;vsÀ<73>öVÀôHnü<6E>ï¨<C3AF>V»N,'°:ª<19>£°éÁ¾ç
dáD÷ƒýf-Ùŵ<C385>п8iÂÉu`Ë`«+¯±
 Q ÈB‡Õ!š’ B2™+áÅ wBÌø¶-^ÒºÈâªþù%¿·æHÔŸ=[©Ô/¶Çéõ5fY¶0¤z«š™Ñ#è/[ª¾Oœº¬‡~Ñ·²31¦\Ö­GðÈ¡
Û–Šñ"aÎýÒR×ç_“S˲;î ¯&úâRübÈEr[ø×Äû»æÓI7Ý#ìë+?›¦$sˆ1v“w®†Ü",OÅg áФºµh,½-Í;R9 ½2(]1éTýeþ¬eýùÐÔT"5ÉÜÒJFØHƒ¯i¬ÑbqÒ¶˜Ôú»&‰IZyeP÷öP#„A^èFÂ¥ò”% ×ŠùKä-1͇B”Ÿ$€œQÎìkÐí>}˜U[¬`É zL
<Wq´l!. Ê´m…,w;ðëªÐlá}3ëN€¿Äð.Ï‹Â'Õ#³²@ƒL7ò¢Ä´X¼E[¼Ô™cæ_§-Dä€:±xÙ>Uýà+k9ŒœôDú—¬ìCöÀ"ˆû]Z@:µdxZ÷¦dn œH^öç$ë
¨²ŽÊIB)4¸â£ÄYÛ£¸ÚðÖ} H é@‡Ölv¶ÜZ3bšÁ¢¿l×={а¶=v<>ð52ô- A¢•æð/¶ŵä3ø°h.ѺøkB® Ô–<11>´T¸Ödf[Ò)º‚žŽÏôá¾Û¤i­žš¦ùÚ<C3B9>|Ò¥2Þœ\ŽI~„ŒHò^g?a!3ƒ@’Ëðä"<22>U5<55>»TÁî”Ñâ<C391>ªÿÜÍS±Ø\Ÿœ»°5
djh#'H.Ï<>shPþ`#ŸKöJ”q™bëÛA”^ÊlËhI¬þ{šFD
H-Æd«Ì¥ÍÙÎlÂjÃ̽9„Ž˜kŒ9Õw§Öãy#VGÚö®Ñ%H+,ÛMäBcuæôgº!<21>ÐHf¸%'ÛÂVUuØ4©ùên
D8¡ÎÆ$»uÌ@&a28¹bZ¢»ùJ…½ƒ"ƒ‡éZ¦HUó¨„Uùf=ª¤Žè=<Û†N@U<¢÷p‰É><3E>üî+2˜†4²J|ñ;v^P§BË€û“™T¦‰Fh™ˆ¬ÃĽ;Ø7ð(sñ
:I8,[DÈv“N[žŠa2€ú;Mc&w_Àda¯ÚªŸ¶ç-ØUØ7ð½·f˜ôNdµÍÀÂëô÷T`«”—€ˆe;DÅJn‡ñ0­*SãX
k`ý̾!ËvÄ.Á€ÀºÜ_i<>Òd× ÿt¬ˆ­MÍ0iÖŠ cPÐJ­“³x{lÒ©1ZÔAjW[5°Jð)Aý1YÒñÇ
lá¿¢9vô§5w…`'@ƒ7ɤ7V¶È°Î50ùßšNPÿƒœz,û{RT9¦h­až‰ÕZ`÷LÃ0Xž$3<>f©K(¿7éYßfcYÐ
#)";`Åì¿ùK†‰:0*Cç Ά5ÒCŠyÿ…­ 1†‰<E280A0><>Ak«e< [dc·¼ß[,102ø/¢Ô¿)m¥ šeÜø8<¹Ð1Y 6­WlIÊÚ%ïkÛõ”N×ìï±<C3AF>©ÿ<1E>ÉWZfcÀ±¯”ü½Ê„Ó 5£éêƒDzf@]rvËxJæ:ɦ»=$&Ðð)³A$U.Mù0ÿI/¾x±@̬94ÙÎ+>¿ñƒ-Ww&Ø~‡Ñ*°5<¦d~†úµyrsa€ôb_`˜´È÷,vSP†F$c/tAe™Ó£úkRZ7ŒÂH©5Š›´L…ôLsTÌ_Ò<5F>ÖÈ“n/œ^<¨ƒèÒ0‡»° @">ÿ &¸-Oϳ<>+Éf˜eåg [6°®Ä¶ÀH<C380>1óãÑoMR¯“(ïñF
©W¥´ÙßUEwÓÁ6@·p<C2B7>¿ÇýòK` ÷p†,kãŸÇ6€¥³Îv»þp¹?&Å·Ä/ÃØª
úJ¤p¢†±—Ô—M"Œ•tb;¾~ÄkØ´DV¿¿§é1lx†¿ÖÙ°ñ{24o%˜…Åý½A¾øákƒ|ÔìïiÖêcÜØV±Ïmæ7Ëø4Ne¦uD<Ûn ³áà<06>Èî”ØU#frNÊû$¢i¾8Ôäh50©¾lÃð÷äiIÝ|M¨„˜ä²iyêsµÀÌ\ý=(ÿrçˆC+dWA-
ë¢;­ß°Ûi©µ; Ó|b(Kö÷¦ze
7ŒlÈYkú{òtõŸ>Fl´LÒr÷8„g¥æÀØ>õðøE"+4´Œ}€}€Â0Ö5ôI÷©J•¹ÏÏ ŒÕ:œ)7ÛŸ*Žrý\JaÀâÃÕ±êjÖóˆjˆÂîQõ(sa# ‘†œ<”«‰}t°A>a&"ÌÁùø\CdXÇ}Õò<C395>{1˜ÝhOK`&¿k­Ýx&aäÓ“b×ü=-12š¾v± Y=,á ªWo`r_em²‡Šð$zuzÁFqkKx»3<¶<>U[2íìú7œW±
`Fóð·²<C2B7>d:z`¢Ø‡m‰»KáìØ òu <>“<Äú…BZq?šï76æ4+g˜,­¦ºSMvÈ£!Ñš(X"Xíö¯ËS$3dšigú:30fùƒ@<40> Ï×^lÿÒ"½Í[ÈL€i·èº e
DC@P“%Ÿ‡¹ç…
ËÊÞ#dLïGâÿú9Aþ DG|4ÙØ$j-ËòÇ=<3D>LÌs=ˆ 8q݉<57>byN`š)<14>=€nYHþžHÕN‡.ì s“‰å9<C3A5>¿é±?°†7©ßñ8¤¾º‡íc <>rø{̈<]ØXìô¤xÏwÀK`«‘$4ü=M<>š}³ÙJ»%vm§¿'!oØ *Û|m«þ^-
Pp9çbyN ƒ<>_,ˆ³ø1¸
lxÞßk}ïÄuNºXž“ ±yØ.${
¿ü5­ø<EFBFBD>ƒ<0F>IŸ8ŒïMN†Y"Z±üMùå¥û{~|Ê;ZX#ÉãˆÛú±IžD'k)ó81ñÝé7kl;µúkâxÒW^¶š¿Çq³å‡u
[vD&ù{bËט<C397>í!Œ”w\ZwrãÆ@—iM! ©óÛñ ÅVÏç4»>-@:=à[D<>×<0F>ƒ_·È±´Ù˜–Âì§¾
{<>7¶úo<¼<>y¤ø{ú‚{”ç;™rö{
öš,ûa\WéÀ<-&ù{²C;-83WÍñG]ÂÇ›\Cµ°1þ^aÕãÁ…=®¿Ëß“Á°ÄÀ¨j÷4éëpi);kÙv<C399>a„b<0F>@šG4'cŽ©7†i:s-D`äáÚî<07>Ø—ôÚ¬ÉíR?MÆ¿<C386>>AÍ(#¡d6º[hq
,<2C>xM3MúáÎýTƒŒCPû°ql<00>ä18
þHbtÜjN­ÔÙ,®F<C2AE>
êXˉÿ³ƒqŒx<EFBFBD>$w·&;½Š#IJ!¯ì[ý-ö|ÇŠNnhôÔ``27x<78>‰õÍdYK`j¬Æ$a`3LvÞf“cRõÝtlÈJ¾ü°€U´¬%0#|bà9qê'ÞÓº^ƒ<>°ÀYËZ²´lûøjÍ€{ñgü˜&Q‰biK‰
<EFBFBD>]Øà¬K1ã>-m)ùeb`“sñ^#·ÊG<C38A><47>€nIñ©i~:
Lö¡`VÓÿé?ü=©§]l':±ƒ"ê ¹<>ìX%I02$=pÄf€>Is=^k3súÓ0q6N»¤î÷k¤ùz*Ø
néØ"ë½ 6ì´ø{š1+¦9ÕfeµjZþš,Ÿh@õŸ$2_8Û¯ÉFky.<2E>
<zòmÀDŸgJö0M9jÀ<6A>~t=r<Öô×2T",ÜÒ_j…ODE Kl7»å°ão¢¶©V8Ùh&@ž¿ú¶šGîXKr<LáÁÈU¯Ö‡­ jKµ<4B>¾Åö1<¯¾²30‰­x<C2AD>hyk5°Iއ¥-ÙhÝùo•мl¶èŒ¿W2[÷uæ' G¼÷{«ï±¬''§M°Î6­¥-<2D>–šË)G8cn~«f?±ÃXÃ1°´¥Dˆ„Hª)|%Bo‡"²¿GØhø
ƼÇiqŒ3<C592>Gn<47>-<Vý©òÇên<C3AA>㬲&½Å{úI3 6iõñ›±~$^¾÷4ocê~˜<02>AZ‰×Èë)¤«DêÃ<C3AA>âŽ6MP7:|økM3oú™òz˜÷fÆŠlÿÄ®E
ȃŒxMŠ¡™n˜mfjDoI¬€yËlê"òU}ë h§ƒÈä8¦¿FÂ¥<û<>깞Žu˜­‡z+Á©ôèÕ¿€ ÝŒ8£Zš[•ž+
ñ}áÇJµ“I
<FŽ×D¯8g‡w8vý%%ôcޱw7tŒ¸äXþ<05>ý ø]¼7Øb˜+°æ§\ã=,ÿlÞž<3ŽºpVðÕ8W4#œU<NÅAÛ# ˆ]<5D>ܪ¿6n'+´ZKàÌG¼eqó™D)WŠ×Ê<C397>ßU(<28>„â<E2809E>£c¢µÃ­“#oŽ5<âR§ÔÌZË69=<3D>´Zr7l;=Ò<· f.Èך^¶˹ßq0ùé\XïÍά·QÈéƒ
+Ž%:&v…EÌ:¥„,â#ÓP9¦<15>}ÊÀ4[†ï÷Wbøìäϰ¨Xì‰ú`úöyãN<C3A3>Vãâ vv¦[±Y¸¯`žÖ]nBÝš”¹úÃ(-ÞkZ™e3€I©d¨¶,<2C>]Ÿ±ñÅWë
ëNðëkKŸ<1C>Ö<>ƒË·œ*AüvøHÇdX< ¬qÖå{DD­÷´ßc
÷´ñÕ„¬#î&-aÝ5\ù.<2E>ñ4<C3B1>°î¹V“¿7-<ÀQÇRÙi°Áý5¬ûâœwÎþÜ€AT$¬»úàð$D AÇ ã®QιêÃGyjwéÀ Ã40ÛÚOaÜIØ`ƒÒ0.À¨žÌ„Cë¡ fD oŒ,|ïBøœvÉÑš¤HÓ—J"øœ']aÜ×ð+TÃ
Ú<G®áÊ~\¬»|Cl#“ŽöÞ6$NŠÐcIs#GüžL<C5BE>Û{¼ÝVƒ/Åy0î¾hœ¥Ì%EÀøp¯ ×<>4ÞÀ<C380>4ŒíJú}Ä{ÉŽÆ÷ÀšFVÀÀÈ}pnQ¸ûÂNúÅ{?/0øq‡<71>9¶È±,<2C>-T¹ÅÀ0RêVóOg?S³kåxò—-¬&ë¡?"ãÖí4aüÈpL}Ön‰ŸäN8&ÿkùî`%/4ùÎv`DÕÛÆz÷ÝOÇXT7Æý<5A>ïqwH¬ Äñ=¿/Þ³3Ù>Äñ˰ëtïÆ*§W g†Möœ
Ççô3×G8æ×bÕ£ÖÙtwhÉ<68>¤€lg>aS<61>Ì·vNR+‡Ó9•¯iõ<69>0.(ÇøÆ©äØ\ªÄñµ9o¬qÓúÔ 0 'ÙÈÇ'ó- ¿Wu.²có<uÇqxå`³Œ¿+¾Ïˆïq"a¸<61> ŽÏá•2÷{ÓL—ar°½ÞF¼GVìaÌŒ
ðƒô;ÇÇÊ[lWcã•«~Ó¯¿Ø•»Uºå5<C3A5>æ­àÑÜ÷êVK×?þå<C3BE>~ò÷ÿþþQÌö/ÿöƒ<>÷ݾéWù<57>É“O×ûþú/4³éì}ÜJ1=<zéÆzDYÏBr< ϸÀ!Êý£WEéÇó¢p"GSÖ¢Š!Êý£—EIÏ2+ˆ…ßèþÑË¢äçE!Ïf;o¢Ü?zY”ò´(<28>„MÖcNq¸(<0F>^¥>/
»Ë8ív9•rÿèeQÚ ¢àßÍÒ¶(w<>^¥?/
w 4KÔ¸õÊý£—EÏ‹²tDÌn½rÿèeQž·¶ƒÈñ˜¾©ï¢<<zY”ç­­œI¨öý zxôª(ãyk;Œ`ø.ûåþÑË¢<omG#Å/¹Ë¢Ü?zY”ç­íàÞ5¹¬cKr÷äeAž·µƒ-6ùœ­ÙÜ?zY”çmífLý͘^ix[Vñ<>?•@¸?{¥Ùþd³g¿rçTÞ*ððèeAÆ“ vðäXV2S·Ü=zY<7A>ç-è<Wëô1y³€'²<oBç¹rgèÇ{Å<%Ë|Þ†ÎsÏ<>å½ÂžÈò¼<11>犞[–·Š|"ËóVtž«{nYÞ*ø‰,ÏÒy*õ¢¼UüI^³£çZ &Ê[…@åyÒ:Ï@·,oEçYëü]4¤xµ@(í?OUç¹2è^qÞ*Š,¯YÚsíPdy¯p(²¼hiOuDG}·ˆ¨dY/ZÚSMQ“%¿SPY^´´§ú¢£¾[\Y^´´§Z££¾[hY^´´§º£&Ë[EGåE[{ªAÛ‡o Emí©:è¨ï–E×lí©R¨Dy¯L(¼fuOUC%É{%Cä5{ª Š$o•E×,¨$y¯”¨$‘Óøš(<28>¥Eå­º¢&ÊkööTgQÞ*2j¢¼fnOEG%Ê{GM”׬í­)B¼X~ÔšÍÀžÊJˆ÷jš(¯Ù×SmR‰ò^aRå5óz*T*QÞ«Rj¢¼f_OUKå­’¥&Ê‹áƒÇ¦DÞª_j¢¼faOõL-ÌôN1SDI/RÚÇâ¦Çx§²©‰ò"£}¨tj¾àeNM<4E>m_ÿlÄëw qÇþ^l¸¼Ð𭈯6^_iüÖòOV<4F>þbü²oz9büô7Ù¿H$'Îó½~¨Íï"Ä×Hñ]xø)níñ=ÎL‡ŸÔº¢÷­éÇ'WÈpŽÃŸ#óWÈpÖ|NêT¿^ÿÇÚü.oå")¾IY¹HŠo²U.âD•¤ø&Gå)¾KO¹HŠo2S®âo'¥\$Å·+å%R|“sß$Ä\#Åw¹0IñMÌER|“sß$¿\$ÅßÌ{¹H†oR^®’â;^}…<14>97×´ùÈå;×ò;®à“Öôã“Kd8e;ŸóŸ/‘á”æ|N|¾D†S~ó9ãùN‰ÍçTç+d8g4Ÿsœ/‘á”Ê|Nn¾F†ÇæsVó%2|ãë_"Ã)<29>úœR}‰ §Ìés.õ2œS¦ÏIÔ—ÈpÊ•>gO_"Ã)Iúœ6}‰ §ìès¾ô%2<æEŸ¥/‘à”<>¾F†¿ ¼B†Û'Ò]Ðâ¿CjöK<øª<C3B8>„áñÛ5ÆÛ$·}§»V_Ý€zžéß7zÑ8rAÜ)ÿ£½{¿«÷Ðê÷îÝ|¼oô"Ýåz<
=FÜïgÛ<Ÿ ¸oü½ÃÏhòù4À<34>o xFŠó9€{)Þ;ð”§R¼uà))N¹ÿR¼uà)NYÿ÷B¼•þÿ” §|ÿ!ÞJüJŠS¦ÿƒo¥ü?#Åïÿûö_Möj­;e÷ß·ÿ^šÿ3Rœóúï¥x/Áÿý÷R¼—Úÿ”ù1—ÿAŠüNRÿ3Rœ³øï¥x/<2F>ÿ))NùûR¼•Èÿ”§Ìý)ÞJáŠ
Ÿröï¥x/yÿ%NþÐüÏsòó)<29>ûæß;.ð„çówB¼wPà Î'îdxïˆÀ32œÎÜËðÖá€'d8Ÿ¸“á½cÏÈp:p/Ã[çž‘á”ÿ/Ã[ž<>áœø'Ã{'žáñßú©ÿO´{Nõ¿ký½œÿ'd8çøßÉð^²ÿ2œ“ûïdx/ËÿNYý÷2¼•ÞÿŒçJç¿wüßÊë*âñ˜Çÿùx'¡ÿ©ØÃcÿCèá<C3A8>Lþ§¼»‡Ìýßî<C39F>þçc‰^Õ5±Äò;/âÇc‰§h×cã—D»¾¸ûâAŠk¢]_Üzñ(Å%Ñ®/î»8IqE´ë.NR\íú|ÇÅ£WD»¾¸Ýâ$ÄÑ®/îµ8IqE´ëáFÇö8ÚõÅ]<16>í_íúâG).‰v}qÅ£—D»¾¸¹â$ÅÑ®/î¬x”âh×·Uœ¤¸"ÚõÅ=')®ˆv}qCÅ£—D»÷Hšÿù=ÒÇh×có—D»>߆ñ Ä%Ñ®Ï÷`<ÈpI´ëó
<18>2\íú|÷Ń —D»>_zñ(ÃѮϷ]<ÊpE´ëó52\íº¿ßâ±õŸ<C3B5>v}¾Øâ¡õK¢]Ÿo´x<C2B4>áh×ç«,d¸$ÚõùG®ˆv}¾¼âÑñ¿"ÚõùÖŠSäãh×çë*N¡‡ ¢]Ÿî©8ùv?íºËízðª^jñ ülÒÿX<C3BF><58>ÿú À¾-‚š„ Îí¨HùˆDò¢HµÂ»[e…™ç ×e,¦WÒëVcûð3e…êËͪ<C38D>pØ„¢ð£ÙÉP¿£R$/FiÂê'%) 1—wh<77>¹e¥bGÄ(úµ8æ<38>µ]Õ8S6™ú6m¤ÀÖ:R"0Qø°
N
õ õ§žÔ{5÷6êÌ+âG[ÙKµNÕÈZ´6ƒÉÁ§2™W
“½Öì@D«¢ÕË Ê»Yñ
ˆYÔnì<6E>
×2¥2%ï;µ·­âEú+¹Â ÖcPR<50>ªÅu¯ŸKH° *msøõísV`(<1F>j Å
¼€Pê̪%HL­RdÌ>zä+úEÉç|”<>¤1È^£¬ªó¤\ãÕêí<C3AA>­]I'”„§zÓð ’É. ¸¨÷3¥P=6oÕ<6F>—:¯êƒ²•øÔ8|è­¢Oâ=ŠýQûtŒÀ¤@õ°³B«[ 2
¸÷
ùñ­yö±<C3B6>;°¾J÷r¾Rß…mÞ/êÀ&]£ùDÉEuçðB}`ÝS%aécQ¶q¹î
J™¨<EFBFBD>ìLÀÒ<EFBFBD> M/~ Ör]³@e…M¥²1ÍÖã˜|ƒ•ÅìVÇÑ0jEk´©å“DÊ¥T²Tj§\ÓÔ÷<C394>Þåºù{V·<56>ŠkÅB^ë½ÎÀ¦FsVÊ5QÏtÌÛ·O+]Z¡€
õS¥2ËËÍ€iöGá¥Ae3MºnĸéO­~f¢TË@qÉD·ªt`ÛÉbÒöBY-ÃÈœ—ØÚyL}<7D>UuLæCÖ¡X/Q:-ºsÊEÊÌùäq7õ˜ÕF
¬Úq><3E>²ÆSê9]å…Qk37ËÃâܪÆËÖP4õˆã5<C3A3>ZkzeT°©<C2B0>ëÅX<>Äž½Š{£ØjÒxarÄϬ*˜Ô. 1R9<39>#¢ºUŸ|^j0s^2|BkÖ3¥ Ì Í·L¬voiÖW*qSÜݪίfÕÁ“:÷BF5…z©´¿6©±cœ…Ñ[GÉé¨<C3A9>ɾPY_]¨>:%Á[CÔ=Q­«Šo;¶¨ÙîeÚÜôóÃk¡<6B>i@<40>j5Í(e(¡d€¬=Í *P'Œƒ_5ÌÓˆ5<CB86>&<26>ÌšlbMj¦ûØh¦å®Y<C2AE>ÉI‰BšúÿWg
­f5aÅ»´2-Ù±Ã+sŒOÚ/ÓŽÉÉ~–õ[n8âW)o†É)Y˜ŒŽûý<C3BB>YXÝâj½Ò«”$›ÿFs?žX¨:ר‰é˜qšÉ¡àm«OaU"[ý^"‘ƒéå<C3A9>Á4å­\¬°NYv&¨cPÞc-39”6Ò²^¼è+جú39•2cGñžÖ`jÑÌfršF½¨§cŽ,ÊùšAZ¦dM_3¼ú_£Ô*ÕÍä´¢•åP_øº¬ ¯L:&§UúEvÙ<15>+5­ÃštnÅžzÞ,N£,gEbˆ¨+Ë'1]ÒÍöÕkê£bG±€|Ì<>-Y Ã,ŽæVÕ¿Æ2åì”ZÍfë“a(g “3-eÁâ4
y2ïl¢tJ­§Á,ç®§¤EB\Íf9*F5Rò´SÒ-ÎÁ.èP`Cäp#+©?*%~£6Ku“à?X¿˜XmMnqh\Ö\&Ï0ì¹)5G ðô<C3B0>L A¶Ê*fêK­lîu*­ÊÚËkÒ1ê¦VÝæдÓ])€¥¹g,ŒJZ ¤SšvÂr°Šr ËôY@Òßåõ%±˜Zr[ñ_a^'[E01d<31>
Íèæç,eÉWIN-:UVuól?C“pÒA£fÕáÌâtŠÔV¨5•„K&лû°`jÍþÖ1
­5ãi=Y™¹f4l¦Û²Ö°+><3E>Â<EFBFBD>µú'PiÚf6Œ²h¥ú{IŠ) k6DZD©äÀ(´ë4Çsö™]RäÕ<C3A4>D#~Ô÷RÀÆ­Î/ß ƒ¤ibZD©U1,§9`R0Íݘ>69Í¡Ïæ¬ÃËv«µj]<5D>Ëp¼4ë”[ö£<C3B6>CêŠZ±ºnµVõ¹fs>ÍÈÜÖ ¬U
µÇ7”Eåd×L«µj%åC[d-4qG`•úßfsв%…h¶d€‰Ž§9Â4Ôi>K¬Ú*å 1:(.e³Ç,<2C>ѽNs„QT}íß.=[V±2ùdHpäœ
7£Ã ç^^õº[™hQm3:Â*kM?6ÖûJNs„Iµ.™ÝìV¼Nœuº(Z¥sƘ<C386>´§92K ]z௉\Wé€<1B>Dtyk&hyé¹ ÊÜï­ß§ˆÑǰ@`ZŸÖ·ÑhÁêÉ:Œ`9´½˜Ui,55œåòu 0©Àr#¬ï<1A>`õ#‡1•ñS.ñÇÌ9ް,ã““–¼Xóðvd§5Wm…Ò›Ù)N[<5B>½!å7½iTL¿>ŒžNzs¸9ˆ¹SœÆñJµË%V±mfpþJéÃË$ɦt£8`mÝ|™N‰UªhšÁ<C5A1>VF4¾<34>˜·3<C2B7>“™Ô¨lN£¯[¶NP^&lˆ¹8ɦ—ÐQ3bmbð‡“a2š"VîLC}8ÉiTûœ¦Ü†Qóv+C0Yö;Ã0é tݵ²xL'9ÂÔ0K ŒbÞNrD47e|¬+˜|uyÐôó//²"¿ïE<C3AF>Kǧ7×eª¬R8Ü)Ž8«©:Æ0
`ò—ö•ù'ÉÍÍÌ 8úCÊê_@š Úö¦8âZ·¥¤l¸<6C>¶ZÕ¶2¦<><EFBFBD>Áq0o¬Ñc8¦â¶Îq
l\&Ír|µtŠY!ŠÆ²hqrŠ“©¨>«[ЬÊ~ÃÉK•<4B>tˆ²
Îp4ûwÔÀ±uàEç„U Í]ð.*[ô‡Îpš1
´ûÍ/Ýhnõ(˜æ†:×í5V÷˜€eqjl&Íñ(üTý¡åk/5Vå`9é0=M…äÓRX,¡Ù0¹®Òo7R)^fæ¦b<C2A6>E¯ªÅÿÀ¨ï §ŸñJÁ†©ßK²<14>AÐP·Û/*¬2—Ü«bþ@ç[@J#8BdŸ5<C5B8>ÌíèbðõØ´¡ì2·½Ü0JŸ;éæTÁx½µFaV5©‰¼×ÙŠ¿¸<ަù ¿teÐÏh¼=Ž&¿\¶ÚüE09ÀÉÁµ<C381>§nº¿'±ë°aR&Ù;·Î•Ý­D}p\ ôY=”\gÕ{\Y{1„µ<#’£>§Dq­½¶´¦¹%v  ”žF$§ßY¯LŽyDr„iI<69>Ìæb40É©¸xH
LS0"9ªžËGv,±ÒF$§pÅ<70>…iéH`beÉV©;{˜ë$ÏHª™#C]âÅéóc6‡zÆ}i8Ýh¸<68>ZäLj<14>Í1§8K,ŽT3£©æ§`m»W‰wLó""91lÛ<>I "C
hynVNãŠ8Ž9ãZ!ŽØl»€¶L¡zëÐ\pI¤¬²²Np0¯<30>RÞN^YF‰8N!=¹>Bú P'82æ ±k<C2B1> ð8E¸Å©å<C2A9>94 *DGXÙ!fÇ4æö&öÐÙj˜îޱ˴8½)Ģݟ¬Ész£•QSOjê̵™ƒQ­<C2AD>Úݧ,D²ó <71>ƒÓhñp#ŒH×tnѹFG„¡îápl¦H=9èØ{ÿ;"Š#º3§ δ‚Õ`#O<>â:ðh‡S¨ïìűm<12>lÎp†#¦V4«Æðõ³W®äžìå[ ¦‰QÔ­UnÖÙAJ®Sµ~úGã,®âÀ_![Ù€è˜×{'cC&Øw&k`Ò;<3B>â<EFBFBD>Í!wë<77>Zú'H»VÙaŒ–ÚË}qt†“Ðeqäîs®ã1®ãÈÿ h“SÚ˜Æ0Â8òid(d®ctDåå Ÿd|&<26><>ÉÌG'1šÉ+œ¨¼yFÅXM ½üƒ˜Lk„qÑ3Q#¶0¨0>"Œ#¸:­mŒšÞÎpˆÃÃ"º/½Â4Æ‘ç/“¿V,[#QÌ:Â8‡]Ç”³‡xÀ¦E3õ
K««Dœádivs³à ÒèxgxœŒ¿%µ’&Á!N¢aã7ë X ç×KP8<„3ŽO•½iIPN/ÙbJ‡{[<5B>¨´pIMÜÞ Ò\ñø
Aaq,<2C>AýÃ¥j¹R­Ÿî° ª#Yôï_>Ælà&.ÞTv<54>$P„0† J<>å…@z$ì×Uûj´o[ý±ý¿ÂGÆ«XƒÜ,_gÆdÃÂݶÖmFÔ£¤yãq£<0E>¶Õȇ uy؈k ÿí©=<3D>
¶–м
Ái5ÒñC,#'ã0]äÛL³b:4L>Fú3Ñ3M6>äÞ†u˜x¦Ë"FR"i!6}#òÐ=`´¤¼ò<C2BC>Ww ð¥»Ç‹ØªÁ—¿ hÊÜ™Zx<1B>  
¬´Méá"&@ÃŒ·´®‡G¸ÐjaèœèN|ÒÁ"B…Z•dž[`LhgRG¦[ü06Ö|_Öf°~Y_„‰-7¬<37>°J´uøÔ™½uD°è`2ª«f¼‡o:#X$k"ƪñqH^ƒôÁ‰Ô¡.ÖthÉ—wf Ø”)(ÈŠìÌL¦?bE2løâ‡o·h&ÉÁH+Jø<4A> ?( ‰?cv-™k óáLc.¢5*⺸Âÿs{(Ì¢~f××—Uµêμ†?E8<45>Ýw“ ±<>w·Í³T<C2B3>G§Òz6ãžéŠP¦LÍSéL^˜la„ŠˆE‰Õ,W¯…<C2AF>Ô"RÄòÂH®™k²áN£j„Iqj¶¥ˆqËQ»<C382>÷pMWDŠ HÃèæw±¿<#PÄ*(î¥öKÜGmÉ%&Ø¥s%L´+fÓJ¶:£;ð¨Ä
AZApwçQÜ—75-Ü 0-¤)Ð(¶í³Ç§Û¥¹G”(2ï¬öŽ
bi%Ê$uvËs`òâ#J”I nN—¼†ãˆ0
½-?~éŒ8…¡Øq¯HØ Åô'Lîó€):ü1n“˜X‰Ç¬iA£2{ûú|#DC3Wƒâ"ÂSúi
o hˆÿÜh” g•Þ9¦<39>9FDŠ2Ë•˜Ì²0+˜ì@ EÆC%Ö蘌A.)Ö˜Wn<57>Á4L)íe<16>éíᮈÝ:Ø«kD¤H˜mƒÌ¾1u^DŠ`—ì¤g Ô‰®K)KDŠ„Y$£Úè€Í‘"R$¶šö¶,˜š(GDŠH/bì‡Íq0y?)¦¡·­
Ãä—Ö"a¤skJ®ÀÔfv%â̆*ñ?ÃîÜi°¢Oçf`+"EuKä"¸œø¥3"Elé‰ßɲ÷Àš(<28>ó(H|g{Ã"a`q¡g2ò/•Ðä^ÞžÜ?[ií̧Z|Z`Kãå±"aZ Ü=ðKgÄŠ2¡ýy³•L“&bEÂØ<>•dãÅCEòQHÏ O%°QK„Šð_Ž[t}È‚Ê('#S`ìHS`òo"V$LRJ×clÍŒe åÐB@MôÀcEÿH:5â' ~<15>±û+v.«¼bËÉcE zo¶jdü€Á&{6¬?ÿ`mlÏ<6C>$Õi30©wÄŠ„iѲ„˜ýwdŒØsÝ͵¹‘òƒ‰g¥éæíÁÓ\ Ñ H¿ŸŒ×˜ë)ž®^ôÏ“zE5 jLS(9EÊ;î„
[¤Ž{¬¨°ÊÕ )d<>Kdü±”aVH`³í ¦+Þñ¤9ÛCØä±;œj-½8H50x ƒ—qýŸalñGÊX©2Í¿@˜¿ÏÓÕ9㘘\™•<E284A2>!
$398ø¤A
#Múhul;œà¼ ù+õØXo;é‡(¯˜“̾]Ö<>
'8¥|¸k^s`„é<E2809E>ápÛf&áÈ{ZV<5A><56>Ÿ32ÃÚ`UÃ?ÌäNû¯ÀdÑ#TD\9ö¹
ëDœv¨ +F­íœ)kóæd¸ÒÎù&å*cºŒÓØ9?Å8§¨êá¿©e¿”)*¸q2œicônêþ“ öãkÞÀX´<58>òS*ùFQr¬;å§<C3A5>Î%7I4Œ Iß)?²V1—XË;åÇ¢æ
Œ‘û*ú½É>˜u§ü€MOÒ
<EFBFBD>òS,Ê ùŒ˜<C592>b1Á*2ÿ01)R~Òk®éíÓç±S~,€¿ˆäÀ$ª‡Š½êÃÝnK<>·Ð "b\q¬×<C2AC>ïCˆ W·»¶Öâ<C396>ï6ˆ÷<>µ¾ó}øC7Í>ÿMÑù¼~ØI<C398>ÊGΘ6BE`š]¥Ï ñ¸êZY¤^k'ü«\šXúÆf|<7C>¾ljL;áyK<4B><E280BA>À†7ç8`Z®‡ÇŸEê5—FÄŠˆ'rõ³ï̃õ¹ÁïÎæ#Já9y±"0öm€õ#~ÀÄÙ’`û„jI“+“Ò$<24>ɇÌÎq
3WÈ3æÀ4á#VDŸ81nȺ);嬱5wlLZ³S~ÄŽƒÉV´»” ÚrîP™¼·”ŸÎ>o&#Ò0Í&1{|6wÛÀ<C39B><C380><EFBFBD>[t<>äª=(ÿj·÷êó"V¦)"’•ëu§ü 7ô`úoâ1î”0ö®óˆ¹ÅéÆ1ÆòogƒOVÍ-®årwÕ1©O¤ü€-’æ,ž&Z)?ldI!SJþ.ãNùÓZ(3VuçüÓ<C393>'Ôd¼fçü€ÉÒ<C389>Ù7¦¡õˆ˜\R­ÌnVØ]ÒêQáJ†5~´l,ò;ýÛ'ƨÇ2šVþ²s~l®P[‘òBôuYâÁ`[­í”öéŒzù2JΔF§vGÔ“u
Bt;(nT8¤`å÷v;ɪÕ×zAsî| ™6ùÖ•ìPÖ<50>ï¦ÆÄrK`Zn#߇m…â¤Ó°Æf\Š#L,&ý`ú#¯†Éf-\nÃ,)?`2"+0v¹œå ˜²~Åß‚ßïŒAZ5+Ý@°+ÝvÊX±ó¦DìtL¦V6 VûÎùÓ´o~ Ls9r~Ø*§aÙÉŸ;çL~($40­ƒÆÓÚÛg$䬘`<60><>¥îß Lßa0-ÞÖäJ¤<4A>óF\ÅÝ^0R‚å <¢®)ëïEÚ9?`²¨)¼ÒKæÎù)µ÷@G·#+X‰qx]¶É&.q éÔŠÉ,L99¶A%gõo'²s~À¤bÃð`b—ȱó˲€žS«!µ09ìKËË^¬ÀäHÕÛ†[P²3. ªjK1 (-* Y±ˆã€ÉjOO±T?T<10>-f·h°cÒœä€iÌ TFBÅNù»%ò5­<35>ÙMgPÿ±úcgüKz'2šÀHó#L³íÖÓVP$9Ŷ¹ÄL!†ü¥QÑ8Ÿ•¤ ÇÑ—ÁSç-—#Ë'Å[døîau¬$6ãü-|Æ<>î†~eg@ÂlO×mŽ0ŽX7ß$\ç<>ïFt%Â$ƒä»<C3A4>ð×Ђ$õö÷DJÕýÃmŽ0N÷m…ùgÉcê<C3AA>ÃC˜ƒâà{k!,0žHøšUßå³q<C2B3>~Èx8òÎÜ!&Ó:Â8`É¢?-°![GXx¤'ñž¨CòÓ`¶t»µ™ì4¨ñîï1ˆƒô¼Ó}
±Xõ}vnýpa;˜Ô±ún$X+;ݧXT£ˆ*¤ÀÔÝÄóÅyØnn²Ý­ú4·98`šùz×FfÊc;ݧX¶®,²&㊠NÁ†/z¯Li—ìx>VCל‘‰ ©eËgÜ™?vºXóüàÀú­´X<>+ãNø)¶ƒ§u;;¹
Ç©­7€ï|ðÝäáàÄÚù>`ò\Su*lݪ€É©Í—ŠÙ<C5A0><C399>—mkHóeŽmkH¤i¾/1&¡®A01—â;`ƒTDç7Âf¤R<C2A4>Qigü€±D˜CØ8vÆ{E‰à¹/1ÜŠÓ"ãHA ¡ÄŽïØÖöÖ<;g°;#>Y#¢ÞŽ<C39E>´²ó}ÀÈÿôw0­X;†ÃÝš¤>)îâN÷b­®ÎM9HsìtË·8Ãä.ö<>îcéKλšØºmk´(É—qMYÒ0uCð¨B>D°r`rgvgzo¿bX…^E‡¨%6Ü{$=Ýaa<>P®OôÕÈ~ÞaaZ³Ÿcãam“£ïÈ]ø‹;áHõŠ"¬Î<C2AC>ðFeTaëÅ[YgÔk'ü–¯Å>ÛÆôÒŽâ¬÷½|N.Œõ±£8ÂP“t.ôT²<54>HÑleq¾±ä4<34>ðÆÁÀî‰0ÛtÞ7Žh¢ØQR:>ã"`b0;ŠÆ¡_£Þ“Se}'ü€I_kù.áGÖŽXÛ,²9ã<0
˳ÚaœE »±uÜÝë߀ÓxKøƦêL3°©¶S ƒ¸¾fåòÏ“Ï8nù>¤·¥v¹†+ülâïIËÖ-߇- Ä<C384>Öë-ã‡IotÊÓ]Ý 8`2©sC·ˆ¶A½ûâ
6H­ÙQ­£ccuÞ~ ZêËL WDq€,œå'@o ?–ØÈ
<EFBFBD>-‰„<1F>mõ'•î<E280A2>ºåßù“`Ððà7ìp5÷{²‰Yv¾<76>a“£G90Kºq“CÜ£6ÙÑn˜Üźó}ÀÜY
HÆ®½1Íß=ÂéP<C3A9>/,u®Îx®¥}Çp¥Œ£ÍÀÔÄB&sL5Ù>,pá֌쵱1WºâSª<æráIgÝù>`ZV%°Él‰©š ýw—_q§û;¢:0<06><>¼Ó} cѬÉvéÜé>`ËBTëµìβ”·–¢#‡M²´­ÍíDˆ;„c±;hnŒ§û€%æÿè<C3BF>Õ±Ó} »mÕ€‰‡þ>µuåœi}Äîv L •ûÞÓ®ÃY;„¶*·€e6>Yáñì|¹~e60vº<76>a~ÆÀ0ÎUît0ö°ý0ùîy[Qe™][
gæ¼Ü±C8œð¼%ÚƒÉ+Ù!0©¬‡¡83îGŒ÷7@¶z<1D>©v` êÂèÈ;„&Bâ):š\ècÑGÙZ7SÓ6wÇvo‡t„î»
k½rÉLúõ;>?oEÁµ†q£ýÓ%õ<1A>ÿúÇ¿üñÏO¶ð÷ÿð<C3BF>kÿòop;ï£úéWù<57>Ô“O§õ9¬Ïi¾Çrå<0F>^:¶o²ô§ea8-xôº,ãyYêq.]þðèuYæó²pâö±€ùã×eYÏËBØâ±Œùã—eÑO=- ‡Ñ‹™?<z]–ô¼,“¬ú‡’æ<0F>^—%?/˪çÂæ<0F>^—¥<- Äø\YüñÙëÒÔ¤¶gh·ܤ¹öº4ÏÛ^±›òûØß–æþÙëÒ<o}“%whÿ·4Ï^—æyûK¤ò\yüñÙëÒ<o<>“å†4RÃ˸Isÿìuiž·ÁÉùé}%ò‡G/ËRž·ÁÉŽÁÚsj7a.ÍóVøFªþzGª^j{[]Q /s£?]zô>½ÃšJy²]n ø}*tÛ<74>ûg¯ËRŸ•ÅŽ Ê5¶3[.Ë ÖÕtát9£ôÞ5ä&Í ÖÕÔñt/9šòÞuä&Í ÖÕ¤9ÝOŽ4ï]KnÒ¼`]]šÇ{ÊMš·®'7i^°®.Íã}å&Í[×”#M}Á¾š4<C5A1>÷#Ì[ו›,/Z×óýå&Ì[×4ϳÜ<C2B3>æñs“æ­ëËMšx®Is»Ï9^½ÆÜ$x<>Ûú÷x¯¹­Eo]gnÒ¼h}Ï÷›#Í{ך4¯ZßÓ=çu=>zQšW­ïé¾óº~½y͹Ióªõ=Ý{^×»×<C2BB>4¯ZßÓýçu½{í9Ò´W­ïéôºÞ½þܤyÕþžîCGš÷®A7i^µ¿§ûÉæ½kÉMšíïéžr óÞõä&Ëøt_¹dyïšr“åE;|º·YÞº®ÜdyÑ
Ÿî/—,ï][n²¼hƒO÷˜#Ë[×—›,/ZàÓ}æÈòÖ5æ&Ëö÷t¯¹dyï:sdé/ZßÛýæHñâµæÖþöötϹ¤xïzs“åEk{ºï\²¼w͹Éò¢­=Ý{.YÞ»îÜdyÑÖžî?G·®=7Y^<5E>8<ÞƒNÀá­ëÏMmíé>t Q½s
ºÉò*ß}¼ÝBï\‡n²¼ÊvîG7Ÿñ<C5B8>kÑMmiÿt¬ìw¤r‡_ky¯´|«gcôñµ26Özz©õ[Ó?Y¤â«­ölË>êõ¨óÓ_eÿâ¾ÉuG«?XfäûóEr|_¾FŽÛh{Xð£ET<45>,>ô)¢ÿ)ȉçXþ§ðþRœgÀü]câçÚü&Kæ)¾Ë<C2BE>¹HŠo2c.’⛜˜‹¤ø&æ")¾Éƒ¹HŠo2`.âÜ—k¤ø3+æ5r|—}s•ßåÝ\%Çw7Éñm®ÍUr|—es•ßå×\&Çß̬¹JŠïrj®ã{¾}‰§¬žËg!£Åò“¾Ý)ñúœŠ}… ç„ës
ö%2œ­Ï©×—ÈpJ°>§\_"Ã)±úœj}‰ §„êsŠõ%2œ©Ï©Õ—ÈpJ >§T_!Ã÷Q€k¤8eoJè¾FŠSÖö§Dîk¤8ekJà¾DŠsö§Äík¤8egJؾFŠSVö§Dí¤xHÇ>'h_#Ã) ûSbö5R|3¼DŠÛ®Cäé]ÁæÞÏ_´ÿ`×J~«ôÏï®ì
«ûV_ݹzÚxhô¢Lv§Â€—Ÿí߇ÁÇv¸‡ïæåc³i0·dµã¨+üÙ6OGïLÂ3ú|:p/ÅgžâtôàAŠ÷Î <%ÅãƒG)Þ:{ð”<14>G
¥xëÌÁ3R<1xâ­³OÉðx´àQˆ·Î<%ÅãG)Þ:[ðŒ·£í¿z¦à©ïñÁCûï<C3BB>%xFŠÓÑ<C393>)Þ;CðŒ§#R¼wvà))òÃQ<C383>G)ò;gžâtDàAŠ÷Î
<%ÅãÑ€G)Þ:#ð”<14>G¥xëlÀSœøñ(Àƒï<> x‰™?4ÿóÌütôà¡ù÷Î <!ÅéÈÁ½ï<>=xB†ÓQƒ{Þ;sðŒ <0C>G dxë¬Á2œŽÜËðÞƒgdx<Rð Ã[g ž‘áñ(Áƒ o<>)xB†Ó{Þ;KðŒ ûèÀCë/ž!x¢ÝÓ<C393>ûÖß;;ð„ §£÷2¼wfà NGîexï¬À32<
x<EFBFBD>á­3Ïxþ<78>Gÿ·Î<ñx8
ðùxçLÀS±‡‡#<00>¡‡wÎ<åÝݧþ?úvoœx>¢øàU]Q¼Ëøùˆâ)àujþˆ×W·n<ÊqMÌë«û6Nr\õúê¦<C3AA>³WĽ¾ºcã,Ç‘¯/n×8‰qEìë«{5Îb\ýúêF<C3AA>³WÄ¿ïÒ8Iðð¯nÑ8IpI ì«û3Nr\ûêæŒ“—ÄÁ¾º3ã,ǰ¯nË8ÉqI,ì«{2Îr\
ûꆌ³WÄþºã$Ç%±ó^êƒì¥>ÅN\ûâ&ŽG1.‰‹}qÇ£—Dƾ¸}ã$ű±/îÝx”âèØ7nœ¤¸">öÅ]')®ˆ<C2AE>}qËÆ£—ÄÈî×8µÿ³Q²/nÖxlÿwj<JqI¤ìÛ4¥¸$VöÅ=')®ˆ–}qƒÆ)lpE¼ì»3α“ "f_Üšq]\3û|_ÆÙ#üù¨ÙC؃'öRªIÿcåaÿëƒûÚŠúq䃅h§ÿ[])iJåû Æ/ÌÖeuR×Ò¹¢6ɨÕêrõÆ9·T¦~Âë*s¨…²äVœ*'+yhz­ÀzŠãÜjÐ<6A>#SëÉ09á#
ŒçÔÔ@?F«5°¨`ÍÂJ‰.¯³îØZGâ÷LU^{Ôb[¢­’?Ùá2Ôb{G lY±€ãUñr¤*´=
ŒçD1óÚ½ä(<28>ì·U¦Êé ì\+û[•z-Õ*S僚AMßk`£Ì6™XÙ2ØÕqÍ
Þ-jЮ(0ž
+ê½5f`TK±ÒT™BcÒ—þúÏÆ3E‰Æ1ÑŽÀ(±n¥©ˆH&-¹‡×)[Ô ÍQ`<V•¾®Üg`•ê­vÎX5Eo£W¨٬У0õJ:¥›
£öß.0¾4wñ_Ç$H”¦Z¨[ј[½¤E
Ú´ Œ/JoÖE¥¬À¤CQšj¡)+SrŒ´¥µRû°H'EœÚ²âa`}íã«~¨µqT+첨AÛv<C39B>ñÅ··º¼5˜šˆÒTV mH§Í.ªÐö]a|Qä¶¥©æ¢Ð!Õ¡r`
W§qǦôì¿Y(wå•ÃÅê4£X¹"°uìãÇÌzŸA¢m»ÄøÔ„þ/ZêЦ]a|fÄìÝ«€qÊ+<2B>]a|Bg×<l<>QdÒ+Œ<>EH®&7,êЮ]aÜŠ,¶‘ÛØ˜$ŒÚTƒ"V·ÒÊ«¿+Œ‹O?-±1JßXm*j\ŽƒB †L)ç.0.ÊZúTçÅs|e?'µ¢ãË©,´Žlõðº~^% £²Ð®1ÞU¢lÕmuhÛ®1Þ =ÕéVcOƇŠWQ<57>Jÿ15µ%ÏlŒ]c\<5C>Ëk,m|(Cw‰qÎÖqkËaë:˜Y™A+&ëïd«`îå©lRhnmcRf/O…=Hâ<48>³8T(Øå©d5<>Ú(¥Ö4Ý0d¿¬´5U½Î1ØcùÙªrX¡-MeëI*ÐRȪáej|Ké³ëh×.1.GE;½ëX£ä•×§šö9%y 0 M/O5©y)þß­>å<C3A5>÷YüÄ„ ª¤ÐììyÏÎlêÆäý/íš»ÀxVkÎøMÊß
ŒgaS}êÚÜ){W`¼ëk´TŒÀZ¿«SÍÜjµ]T •^M38,*²Ãš\)0ÍÏi5" ^ªÔ¯5ÓbÆe•‡ôd%WJЮ]` ª/ÙÈ0ج»À¸bieÙkÓâØÆeµJÑäE¶ÁF7s´LÉš¾†.4,K1w<31>qYŠ8S`=0ÍΨN%3¢~)Ó …/fhÙÆ…ìgY¨Q¥©d ¬Dø1“a¢ú•™³ÕÌz`-ÉÖ™¹iÃNá6/ئ<>˜´3±(µ•hó®.ÎŒ—~U/‡ æ¥Z17šÕêe*iûoJ´åÅärj<72>5 õl”פ®š«4`źʼnÜÞh@(@Ü|a¦­H¯¿©YÍ$<fóOŸ¬ÓQ`\˜XQ)¥$^Æ©­Ð°aTCÜÆ5éù¹v̘øAV¨£=¬€¨4ƒ¥¸Å£Þzr?ÌÕ@jÞ¨k¾Wßæ>¹7FÚÕÅ;k¤4!Ö:ÊÐÖ]^s)!¤F¦^šô·úq`ÔZÓÒ0“±ò⨸•o\”¡M»¼8VKëDÎmcwjÒR´ØFŽý¼²« ºŸåT¡]»º8ìŒî¢øÙjÝÏhQ²L}x L”¿Å1¬ YÆ2Ó§Fuq0ÊÓ
«ßÆ©]ªÂ:ÅqlDÉk°9wuñøÍÐgªÐ]\ÜDÑÔ*+64JÎpøŠ¿7—„Ò»¶8P<38>b¯ŽIí£¶8FW_tÙˆ»´8<C2B4>æ£:z&BSœß0šŽš]ö¡<>»´8cç%ÏK`âÆÍù
cNíùåë(Ô¡Ééü]öÔä3:´}וéÝÜ@½ò®-Î
7X¾?*µíòÜ}E¦m٥ʼnfŠ|û:IZ­´Îo˜ š+"%0™°¨-Îô‰VGû{¢ôi×V3Á_ï(DÛwmqa2«2>
¢ÍQ\œ¥]ü¬çHÛ߃Ðw·²[ëÒLD·7\N ?<3F>ñá"Wæ „½aøá*<2A>­ßg”6RÇoŠÐ§]]fR³xQ ìø<C3AC>iˆê⨠¹3 J³«÷ÑBŸ£Ç¨{ŒU›Ù)!]CNjdº%­‡L°¯.z*SåÅ…Q|V«}Êé3ê<33>z}qa‡h~Ô7¬ç]`\¦[]BA÷å Dž»ÂxÃBŽë†îΓ[1I©~¾½§o¨Îpõi»zoK£Qn»ÄxÃ[W>Ì;2Pf%jŒ7«Ð-ç¸ÅÏr<z—ÂØ<C382>ʨ uÆ!¹ÒdE#…á8î:ãZgÖ0¸d lP7Þ¬åV:ã 8ý±+<2B> ”áQsÞ@<40>{”xx
íì Xýï[ :!©E½<45>²ëÙÉŽ@JQ6w¨ê—JTÄÔR£U¤´
ÖµË<EFBFBD>7ªÃk±­õʱ‰zãðˆÝâg©»ŽAß5±§cc¢(8Þ «Dy\ý~x!lûMJ­ÄϾAfQP'
eÊþ³T¦­»è8Gw©Ø|iƒãØUÇY
õ®Ô¦í»ìx3³7=ºo˜&_”ot8ìq©åÿ9ó1jªNïSï”`>2t2Ýê¡( …ÇñFe&4,Þ±T©m»ò8n¬:HËfÙ ~ÇK<C387>Cyqº†P¥¶ïÒãrµ µ¦(<28>ó  «Et´Ë<C2B4>ãŒk¡Ïe•
Þ–$¸«†­§>}¸(U»vr<>ò½4S·¬"äm— ¯„PäÁÖ
Üõ¨A^É<C389>)Ë-oÃí$H`ñÕ-ÞÔ|+²ã˜¸r×6^à4¨2»äI¯^7ˆM5ÄùrÙ91ÕøÉeTщ¼^v¼Åôa?¶ï2äî‰Ó?J¹Úœ<Úƒ;·b<C2B7>٠ܲ¨D.°b×{ü,kË.E.ðàGR<*Ö®]\>ˆ8Œ¨tqE§dmÛÅÈ+µÕåOΰ>OtW#¯,†Ëêé:X0»_°6ØDºœÉ'¢4yK9oP«ID}2ïgNÞ{Ô­­»"¹üÖɬlscòãE*ìK®»¢_"'³ï’ä—ððÉ ˆV~jáK<C3A1>G;+´~Ê+óJ%µä¶1sv™`ù“½25òšÞ#^T^º«µl÷ìø0öã…Q;­µGèdžV¦ÜÉÉ$¥i-É7PËC&Çr˯èʾß
“câX­Â0W>ê>jÄßÞÔ²²K“+ØÄ{ôÁ-C£°¤›œíV\££»“i<E2809C>éwgQnâ øE7ph8,²(“Q†ßR EÊÞê“glˆdŽYÉOqÂeCš,î<>vâ„õV¢œÈ†”7ï7E^<5E><16> bá¾g¨¬¤?ú­N9í\—ט6PV#BA™Ðbð3ôG ·þ›ñÔ†:ððñ*tÁ
»Æ1Á"7¨eľ,™¾°$‡âzi»X¹4M¼HÚK¢Ài†IºÛqˆë£5¨®Yl¯(å,¯nÅ”-8ŸQ°\˜´UÞfXI)¡æ®/2×
Ê{Šåšø„Åd^â#÷<>GPHö„èQKÁ|jmŽ¢å™~ý\þ³t—-—õÓ’/Ç0ú†‰¨FáÙi¼n <Á(\žø,‰>C{lò—êlˆÿ¶ºAI¥ËÙ+Èò¸ÄݵËÑѲÍ4ê<34>',߃¢EgÄϪÇò®^ž°Ze=ðj`×ÌOfšDôšü+>EvµîúåâMG|lƒMÓÛIñ UŠÅ[Þvsq¯A×´K˜åïú˜v”õÃÌ£rûN™gW!­<µì"æâ¼úd
v,ç…Kõiõ
Õñ«l}ÍÌöÛ26šØ5ÙÐŒÙõkÚÔlN UWËC³Ëh­ÌfLgëEÌ—Å$Ø…
Lz‡`˜äõV9N2ê%j˜ÏÂj,Å
¢ÞØ}é(úõ¼hÖ
ÓjìwÒP"]ìÅiì\dõI¬ähOX•¡ï˜$\ù®yކ[º<R¤Þ;ˆþÍàJ"d²{^žzJÔm¼àðÊ&ž `»!ýQ€¿:4+Þú<E280BA>åøê#
u•55¦Öø&lÃØ<C383>¬Ÿ:\ưÃÕÕc¥»ò4ÜâåªñÞÈh¸a¢í<C2A2>½¸
Ì® bõZxÄ=?(ú°lH´c´_³bZ4ä¡ÄHåQ·„r4<02>=”ªá/S£<>ÞÉ<Ý^sÝ<73>$f<>dæ
€Žu<EFBFBD>S±=$·öØžÞ׬§Zø6šj=¬œ¹túNL óHÑ^®på7[l7 bA“.±Ú7(‡Vv'¿Ù -NÍä^jñ]<04>
¦Q#T…{)C$˜7¨%¡u3€‡­±âͯ#U8¬¬c¿‰sì»|fo´Ê3í6Ù
í®’Ǧÿýíÿ vn&3õÉÑ­DcD©Æ¶Z<KÛÑÀ+Ü.y%r3Œ˜W2ë—pBïÅwX*pĬäY
üÛm:“§gf ¿]&¤ÄHJgÅ6#j•`û€7PF%ÂV‰hµ«kÇ5¶%©~˜âŒ47†#ìÔL«Ž&<26>Š }|øöoñIãÊžÁÆšÖmgfø@²#R¥µÁ%¦áÔŒ;œ4Z<âMcù~)N<67>”#æ Pä3W¬Ÿ]ÊþYø<59>%[y5wl[dƒCÏ©™@\fQ
¯¡!j¹85Kà >?+pÀÞŒš ”ó÷xÆ3bX¤°-ÖÂ1A¿j ¦aÁ«u<C2AB>ˆw<CB86>(V&MJ¢ûö«<C3B6>Í'm5nÙ>ÁFa÷>âX
%x:<3A><>ZÁ§S3·±¥X7&?`5ÃL
¢Í<EFBFBD>{Îñ<C38E>°¥Öý\¦73Ã-?Øì‰Ö¤uÒegfRz<19><>W,:¾‰™úZ¬08É<38><77> bÆJ';
ÀI
ó‘³Ó=2; 8(›µ¬:/“€³æ•7HüÐy$ÀC Õ8ÅjÃÌè'>t?Â~´Yof §K½;·^ \ˆÍ,A\ñoÒ²NÆHñ7 ¯ôî¶­Ó)YâÂZ”4È;šrPØ«7^F>”T<E2809D>”Þ
ŠåF0K ¶¥ä˜±,&U+µ™%<25>
ŽÃü''çZ1¸ùe£Rªá¼L`»ENØ@ÏR³L›¦ Y-âÏÉÖáØ<C3A1>”¬;+ÃUÀE<"Ê<03>ñ{NÝÉ@Cz®ñ•x^9bYyZJ»\hƒ
Þ#ªÂàψdåùHõÊ<>ŠK31<33>Ú`ë´y$K %rßú5“13ó¤Ä³ï¯˜ñdÜ,¹WJÚqÚ`'Ž`vI d…5†´“œ“â7föYÙRÚéËFì»j´šœxsaq[w—,#ŠÖeÚ¦_D³ðvba—&žq¤+Ùµ‰låçX»í2öäÂ-QÂì@
Àš%Â@K.J©1—±<10>(xbuƒcFÊ>¬X‰¼—X,”ÑsÀHIጠRÉxù¾ì«öÝ¢²FÒé7ZaÚFÄG²Q%@4&>Z 7ÑóÀ†ærÚÁrî{µ
,“ÀIJÁ
3ÁEÍsF0 /}Òfīȼ©º„Ÿ ¥eÝøR²H€÷?kïÉK€2w²"¡éËaç<>7VbáX%Ò8Ö
ŽéKoXš¿)lÚšl3N˜jJ¦cGµö¶˜8pC0.ï>×¼° „©2Œ n…tÂDØõîðyÝ;òˆ`ѬRgL…ÃW2D¿_Ô±,a°ä<03>/±pÆT,Í£ÄÊ
6ÛNb*¦Cav<61>%nìPVù°8V=n EÑ=”Uà³"ÂGü¬D/;<3B> <09><>r™sƒt´‡²È,¹í¦ä¹g;EhfxÆS€Zq¦Âjá*-~”çNe˜µIÖÁˆeÙ帠͹[,KVh,§=ÐÝZw6àôô³
N9éN˜ŠÝŒ/iuh;ŸI i±cn ìôŽeUö`KlÚ<>µòiw,ÔÅ•Y¥7è¦ððN˜ì>ñ"žñÜ¡¬J¨DŽyKìug5Ï«ž{•àÑx¬Î—¥t9âÚ€ä8_HæQÏ -åõPV1<0E>«{ëÅ@Í=Q<>ºAóàd¥9>µ`æE|áp»Dúô¬ß@)‡²À YËCI)BY…¼“Û~¨<>C«£3&@¹ Äò¬l1îü&r(‰*…J
ìl#º]j°m}dϧ;v† ZZÑå<C391>úƒ
·áÁ…Ç—ÈSíäd ±Ížç[ÚiN¥D
š´Ae•™•nÕHÞêN¦4P³E?•6(]ŠPÁ`™×>zôÐ$jú;Õ‰TŸM€$Ö9eÈŽH
“–,Õ·G( °§©¹07¨…#BY7Ó-çÏ®ENl_ºiÂÆ¸<>mƒ¢ÊXÉ-<2D>èÜÜ!ö{ã¥o;ß©àô®øÎr<72>û¾øð÷šü経zb®F™ÀÄ<Å8ËÆVÙOdIIÑbÿ_âÞfÇš^·ÒœŸ«xoÀéý (4ÐÕ]e <65>žØž5zj{`<60>|ÿ@¯‡¤vîˆÌ>yög”á*¿_¬Œ-†DQ%â°N<C2B0>eÈB±PÀQVÚSn´ æ ÍÖZêÑ,µ6ôÑ ºÃãY»Å~5­·ÐKwÓÔØro+ÒçñáuË2 V+\ cÒyå> Vp<56>XgÛ3¡jZVKïì(T¤?eöˆ!t±Î@y÷•ÿHÇöÐhx­Hep&<26>N!íÀmŽ ¨ŒRº§&w¬eb[M¿¥ÂA̲r %-~ó¡ÑN™p„ScÖ°ÌäÖ3¸Å>VL0X}ˆHé$3Ì2·<ì LŒ¨Å\ Uσ#Û#:U a3z[ý¾¼[ˆ½uc%u%Be¿ªð‡>l+
<EFBFBD>üÜ4Ò5÷ L8O^] æzäBebaCä'l% :<(“ÀÊ Ô:A&@-ßøOâ²®|¨Ì<C2A8>¹A@¼/P<>A&ÀÒ{Úk˜ÙXQ€­<>yÀ¤ .f`‡
fF6¯œ(@Ùß=\Ú0L€u¢Ð!ÐàŒeD™ñõÒV(~a&6Ü$ÿ\ó] æzÄ™l7Nö9‡Â²é—VnŽ<>¦¥Ž-âLv(-WðZWvTî¶±¨7æ-?níN™¼¼Ú,òZk©kUÞbC L/âL€ã3ÀÝT7¹|ÈøŒf&mŠ8 +ùŒ)Ùr]6 ¬¢me_˜íNºi"AEL<E280B9>¾+"nÛÊb‡Io”Y ær„™5%j_ ;Ášzb®"…¸B<C2B8>(S6WXô0ælay]‰R€SÓæÑ¯<C391>T—ˆ2 „Èo[P<Û<>ß#ʘYØB¹
^ëÊ•DïRï ´Ó!Κ`m£<C2A3>æËV¶ qŸºÏÍâ¬i\OòØk
Ö$<24>Ãyuž¼Jbã¶¾OÞj[P&âZGsØìÊÎväK<C3A4><4B>òÈ—½D<C2BD>)“=HR÷o·Tá•/•-¬(E‰Å¹r$peLJßIxqguD” Pº·¯o'<27>e[S€W©Å™¼‰”‰l¾fÈiåKÙÔeë'Hüá&}@)ªLãX ÎG¦A´%ÏØ<C38F>¶ü ¹¦õ*{ŒVd7kç =µïc<C3AF>°Â LŒ¨fyõ ¹¥7ëÃ0Yê׸ÀáIÞ>þ,i9â—5V ±ÄŽÙÏ¥FŒÉ¶g5Çbã<62><1Œm&<TO·^`{ÔÁ
Äc]S€²P}™fRåúʘœžäÆ®IR1&ýybÔ7W¾ Œ|@à|”¢”í/|aI‰ûÊ—Ô÷‹|=@?—éáuë¬%¿/³$±-j¹ÀÇ10W7ÈÞwŠ(à„ýÅŠHÖì¶2¦ØÃRõX<C3B5>®èXQ¦aaSQ<53>¼À¶¯œ)@<²3¬UÛCÛ]Eœ(—±@³gË.iõn¤\.P#¹¢Lä»i‡v5|Ö±LDü!0ÁÆF<C386>«ù¾Ä „µÔ2iý“ Z^rcg7¯ Ó ò‘¨PŸ&Åó¼QÀ1b á–š<W<>‰C7þ#N[4R"%üÊfAÀd",¾´‡)è܉´2¦l¡3Òƒ† û_A&²þeYÃÇáÚùµm&ôméŽ@™›c©O1È5ø+Æ8M·Lg[A¦ cÛÖ^> yrÓĹÛ½ö.è„q¶d"‘§­ã ö¾¦3ö'ÈK'ÆÑV<C391>‰5Cµ…»&PVaª3â><18>•ÐÉ
2MŽÛ› lûʘ2<CB9C>#×Áð;>ëʘÔôšÕaç¹Ü‰7‡ïê ŒZO™ÂΉèøÎɶg"­„I0 åD¹iš"¥®ŽOÁg}¤LaÄš?
P”$âL„ª +e|¦\ÖþÈ™"s<>yö vS¶¾J®ãš<C3A3>”)¶º*Ym<>­<r¦&YtP4¿Œ Px<°Ú)S“-ò±2V9˜·qzÑ-YùYKäöËx¤LYj[/}<7D>3?R¦<79>”)¦¢˜Í¢wƒ´­àçb1ÊG8Âþ«¤»—Ê¡üA˜îD#0*QÝfüÌ­lceL&¶ÈÒâ¼#‡Îœ0M~¥–“meLØØ °lþž–Ì^<16>°ì€m…™¦%dô-¢‰o52¦ÀXqWˆr@vVÆ”<C386>â«ÕS~5+ÌD\fbL޼­0H ¢‘8ö•1e ô/Ülj·º¦ÀÈ<C380><C388>ôQ@Yâed‡5¼)¥+aÊ*/Y4íª§V” °tyf²y¸/Ëô8«`­+aÊ@™ÆK÷ÚD‚ƒì,ÖþK_ S>¶¥À`ºû2L‡0-©såKÈ<>š˜[<13>uåK¨ù<C2A8>ÄÍúaªË0å,å<>-F@ùÌ+ȨE¿Däf6NÀÍàLÄÔó9F“#ÆcåKØE²c%<25><> fbÜýHÜågF˜ L]µÂe­0`D笭+K&+]ZQ&@Ñ›±€)5o+ÊD²ºX0ÉçcE™EW<Âà—<C3A0>Yr†<72>ÿózŠÒþç_í~ÙV|‡ÿøK)þ¯·¥Êõsýãßþò//þþßÿÃ?I+þüëþ…vZ7)ìògT:]¦@/e~Y§C°Ã#çÕ<C3A7>5aòëˆ]ÔŽ‡XV/]¦¼. ´üØCYÂ<?º L}Y.*Êd†0‡G„i¯ Ã%<1F>t¬±tæðè0ýua,ÃÀŽ<C380>§%Ìó£ Œׅ±Ø½ÖrÌjóüè0óua,µV~zz؜ã÷…Ûë°9Í<39> 2òK˜çG„Ù_&“Gäºkj]æu œ‰=×0]æu œ-ËÓ®QXÃtxtA˜×-p憀»Œ!Ìó£ ¼n<C2BC>sŸŸ'ÿC˜çG„yÝçañB;š²<=¹ Êëö7CÉ­'ç0dy~tA˜×ío)ÏìêBÓËÚêW¾M%ÿZ:Ú½dWçöb³‰y8!×kYÕçGDÙ_¥<>ëB`v<ˆäáÑQ^·©¦œ½ù¼n~žž¼)Ëë&ÕeÙìVùBêrÈòôäMY^·¨&K*v³ü†¸,ÏOÞ”åuƒj²<6A>8ÏÓ“7eyÝžº,õùúùyzò¦,¯T—eº~¼)ÉÖ”D«Ïkèçéɲ¼Nf]f·ÍÛµJ!ËÓ“·dÁ³Oì×ÑÏÇ¿ßlÿuúJû¬÷OWÒÏÓ“7eyÏÒƒÒ|¶n‡'oÊòž¥Íl3L9³/Q>¼)É{v6s<%=۶Ó7eyÏÎfN µgÛvxò¦,ïÙÙÌ~h~²mÏÞ”ä=+kžM{¶m‡'oÊòž<C3B2>ÍÜAXžmÛáɲ¼gg3yiætxòž,û{v6'Ë\ª{K]žŸ¼)Ë6—Û"ÌéðäMYÞ´¹ì>0§Ã“7eyÓæîéù.ùyzò¦,oZ]Oþ~².OÞ”äM»5»9þɺ<?yS7m.‡ÜÌéðäMYÞ´ºÛî7ÌÏÇ¿ßlÿ=Kì`׳u;<yS÷,mêÍn”ÿ´n‡'ïÉ’Þ³´ÉîÕ|¶n‡'oÊòž¥M\7{àN‡'oÊòž¥Mm·…ŸÖíðäMYÞ³´Iüd>s§çoJòž<C3B2> ¸Óáɲ¼gi·~•G‰²yzò¦,ËÒþͰòô<>Ý·Úío´¹ÈbÑÆôVU!k{¼Ñ6<C391>½ qÏ¿ñÎÿo¶Í¯%ÿ¤÷Cȯ~“ýcÿÍbP?йùŸ‚ÿÜü<hi¾­£½ÑÓ£_mþKÈýKþW?jtþÝšA?d®üzû?$«üzû?ä§üvû?¥¤üzû?d¡üzû?$žüzû?äšüzû?¤—üzû?.i¿Üþ-¿ÝþOI,¿Þþy+¿Þþ©*¿ÞþÙ)¿Þþ )¿Þþ_ÍAùõÖH;ùíöf´¿Ü~9:D¿ÛÚ@ïïív¾Ãë¼ÕÓ£_nÿœqü% ù—Û?'É;þÝö¿äI5þåöÏ©Ä_²¹ýsöð—„â_nÿœ0ü%‡ø—Û?çIþåöô ¹ýsZò—LåßmÿK&ò—ää_nÿœ|ü%ù—Û?çIAþåöÏ)Æ_²Ž¹ýsVñ—Dã_nÿ”I|Î-þåÖϹÃ_Ò‰·ýŸh¿Ü~9†Ÿ·µëiËoÑÕ{¢êzñ£þú^ÁÚzñÖÞÝ}y•‡{k·
YýíŽ|ÞÄòæ~¹'ŸçYýí®|RÉ<52>ùüÛ:yJ}_­^K¥ùC¶û£ùKï/4Lp_Í_Kr¡ùcNûjþZ^û+ÍÒØÍ_Je¥ùçÌõGëW²×_hü˜¬¾Z¿°þJó‡üôGó—rÔ_i>RÒ
¿™þÂâwÌB<EFBFBD>†/f¢¿Ðü1ñ|5-ùü•æŸsÍ­_É7¡ñczùjýZŠù+ÍÍ_Ê*¥ùç$òGëWÉ_¡|‡¼ñÕúµÜñWš?¤Š?š¿”.þá<>vñžÒÑW»×RÒ_hþ˜<C3BE>¾š¿…þJó‡¤óGó—Ï_hþ˜g¾š¿kþJó‡ÔòGó—ÒË_hþ<68>M¾Z¿”QþJã‡òGë—È_iþ<69>3þhþRÞø+ÍGšø£á7SÅ_p­<70>™áÑðÅìðš?&ƒ¯æ¯%„¿Òü!ÿûÑü¥ðš?¦|¯æ¯¥}¿Òü!ËûÑü¥LïW¢:ωݫõKÉݯ4~Èå~´~)Ÿû•æéÛ<C3A9>æ/¥p¿PVoЍuŒÙ¯‡ÔN<C394> Õì-<2D> oî=x´G$è›»Vû·„¾¹ß`µK,è›;
íß úz<C3BA>Á£ù¢AßÜ]°š¿%ôÍ}<05>öïˆî(x´ü»¡oî%ˆ–ï‰}sÁjÿ<C3BF>Ð×ûÍßúæÎ<C3A6>Õü-A¡oîx´GTèëÝ<02>æo }sŸÀjþ¸Ð7w<Ú¿#0tÜÀ}ïZ
ßúævÕþ-±¡on$x´Gpè[Vû·D‡¾¹yàÑþᡯ·
¬æïˆ}sÃÀ£ù;DßÜ*ðhÿŽÑá&<26>GË¿"úæö€hùžÑ77¬öo }sKÀ£ý;¢DßÜ °Ú¿%LôÍm<00>öïˆ`5G èSÿ<53>æïˆ}sÒÿÑþ¡¢çŒ¡hvÅŠþþîÔ_M•»þù_Ô<?øÿ/B#¦PA¢äøC?¯[<03>þû?KÞø»]ÂÎMë™ÿ4ŠéÖ^þüóüùþÛ¶mûÿöçÿýóÏÿ×_þÇ?Ûÿ—µHõÅSý¦Éôܤ}uÿC1MYúÿÚ¯Nåc«[•·úw”ž”Møö»£ëEªÁŽFm˯Bäo„xwü·Je“­×™nÿ¿ÚâMãÿWe¸küÿªmüËÝø÷B?—m—Ÿþu0¨Â»Ëü¯ÿ¿Ú"^wê ý-ÃÿvÏÿUþZÇ'C²jŽŸ2üÝF1`º(ë{ž$ø”íùO¨}øC#Ê ŒîWÁ¨±³õ<MÈm*­,Ñê×ù5I¥wµÿ<C2B5> íFAšÕ8l߉Ño£P…F ä;9Æ<39>rX¹¸Š]üF<C3BC>y§ ;•¾RÿVSÿ÷IeªzûVEþû<C3BE>*òÑ(ÚV¿“ãÿ¸O5>&µŽ¾“ãÿ¼OŽÌ™®­Ìoåø÷ÉQ6êàÚRÿ¿Ô¤²;sÿç}rt
0k¾|#ƾÝ'Ƥjàlߪé~¢¯øZíÒÕÊå¼þüãÁõZ׌¤¢ló:=([KÅÛ .úŸj™ƒò•¥î)sê¿|¤Þ{Ù¼xè˜j-ªrFžÂ¥m÷š­šc“˜¼—¨£[{÷Jssûȵ y~5VC\…¶…
ª¯;Õ¡ïØ¨ÝæÕSçþ<05>Gù#ñ£OJzÕ2a=¡iz¯PŽ”Z<E2809D>^×<>"s”'Ü*ïQð:ï¥zµIa<49>Ò<EFBFBD>)OÃ4)Jžñ­ÄÒKâ=ªRnjrK<72>Q…·´<C2B7>÷*h¥ß^À}«ÍIåõbg{©ïíi'e©õ—Ô×,…2Ä-i`{`3¥Úí ÙËÉDQê™ åâÕåÂE'%©Å<>5Ù5Ûw±m}8©Ó˜Ô/.V 2j<32>:Öežô§zÏ
d'êºùÇQ<C387>ºihôŸÅÂýµJËöÀZË)å$e3³yQkÿðÁÎ7U¦y¯5»*­ª\oZ¨&ïÉ”ž¼ï¤æh¦v2o%J¹:qu¬¨'Å yKªB­À¹ Yú¦ÎóP4Úà ¦m£Tªt¡Iû]Q£–|Ù¥ÄÒy$Þõm»a;'ñËžÑöÔ¨?550©¾Õ9&Ç¡Ï6ºCéÃkú¢ìr®
õü¬ì(<28>þª'
<EFBFBD>¤·ßËÞZ&Qÿ“\Š<>Ò·š~camÛ­hº0}ŽÚ.<1E>ÑÈ m<67>PÈ¢ÙÐ<C399>i؆±-ò$eéyŒÀd4#Ñõ<C391>ªƒVJÐßȽ¢ë»ìŠfb­ûlè³éla(­æn¶ÒÃR“<52>\¬¨§eTúµG‡5ÕÔÂR•mRèwk^•W>áGªšZÔö%eÀK.¦˜&o*SVšíü¬n•g2
óìiGÛõ=eTÑ^Ódbšð&G¶ØŠP¦<50>B±‰>“¡IÓ ÅÌ<>ª<EFBFBD>©TÍ“²íIoç؜͘ž0uCÕÄ “ÝaÀÂ2e€üÓ…ÍM“«OÞÛ4”Òõ2m„v©»,{)’Ä,µI)„,¬P2÷lµD%–Œ¯&—TBØÆT¸E<C2B8>õuþ#ã:ŠÕ”©¹*ë.uÏ}§ôd¶2·ŽµªÙ¥ùø'71D³Û°B!ÙMHïÕ†æhª5°*«©þÔ{²püÛkF§<46>åÃmÇM%ê©2Ùj`¨±<06>½5PŒ²Mf IQIJÕjp z´dåN5ÖZYÔ[c”rèm™}0’ž©õš©¼-Þ¼›;³¾RN󦏴 z¬S
½YöÛy{Ý7×Ì
êÈ Vp¿eûã=iX×äªj<SOx²Ú\¬¼¯Vˆ­YBDW§Œè.i؈^ÏCfDß6·FšÚ&JÙU{`u“v¤¶6L®ˆHVðl²ØI6aê!Œæì6‰ÂæZ`EûLÃ*f_cØèaéÉÑø}ut¢¬¹&•c³puf<E280B9>•TëÔŸí¦íS&ч†YQóÚ†i»T¬¶¤®˜<C2AE>i¸³æ8ïQíuS7Ä÷QÒœqÐDëc#¬Qõ”ObviJjµòY)ã+]h2eÙ°Ù?혰ʈQß<³Úªû4œ)°94»*êÎjK<6A>âß×>¤)š\¨»fzÙ¼òl`šæ¡ÎnŒÖX[î.¡º»8¶PkêÞ÷UÝL\S³}V©x-K`˜ÔÌ«<C38C>ú{úôAùùÀd5óPx­·Ô¸Þv__F;aY¶„Wˆ- MÑšýë´<nSËAGá'Ú/îe•†<E280A2>jÝœ2MvY†1
¢ˆŒfWCßmq/Tß+ˆè;f³™Ë”ÔJŸÓß“òjªøLׯ™°Yj°¢…R~RŒÊõšþ^Õê<C3AA>RV¸É&¹™nÔÀŽQÓrp<72>V@&Á:Z4D ˜¦C˜×A¹ìÀæ·%ox5]D™,>M°±û{¬<>²r5°JºÓœñž¾.M7ÓP"Ñ£²<C2A3>x¯È¦µ²0Ê §a
ï¿)®½&ú,n
<EFBFBD>,j`s+'
†`=5¯k}/ÔŸplTM°Rü=<3D>¿Vîvu½ºÌŠJ[Ÿ1õzÉ<7A>9-Ùý½Ä»ÃâZ]l4>M<07>-•¢³PP7…çê
­ÓmX¿@?ÅàÄÐü½L•ûòÀ*åì·áï%z¶ùd£Õ”êk´ˆ<10>
12Ls!­%JØ„4×÷IVDöžÖšMý÷Ý09XƦx54¾³TÆ/f¶¥4‰¿V5_c¹¤/¥sý-ñÖ!—_:V5âÛô×d; i<>q³LMÝ߃nÒ¢aÒ1 -z¾˜¢D˜®Àšþ¿}7}of}³×oNø"ê½,¥l¿Ób0Qiq·âïÁW4Á×{sâx%/¡DÕ)|§¢»¿§9)Mi Ó¸eÈvÐ ñÚ-y¿ .Oãµ¹á”30EÄS`Z§¥Ó
§ü“®nwY(>NùùîïIÁœ8ëé¹ù{xS
˜|BDù¢nàŸûE˜¬~2 |Õ,•Ù7<_r–õ)H,÷#C黨õ<C398>¿¦ïø-r ÜD*}Ñ¿
µîs½#FGSÕ©¡¤­^Øš+µ¶6îZb5„û„©0Åz84¢ŸŽIbÙ™_ƒ¤¯Ò"_¶+Qͬbº.莢u%[EÔtÝ?Eó Ö:~—)û~°"|{Æï2m—©¯ƒ÷™, ìïõå~÷eÌ´¶jµ7ië4ahm—`9°Š{½
'ÅUú[û¾0¹OšÅßÓ—ËÄ8¨22ò¡G©NKf×B\ÜÝ©xúˆÒ†SâÃ?<3F>호`3™;æb ¤_5PE ­ÇvûÖÔ¸|ÅNq9ŒyÖjLt}˜}+²#&eSGçjþ:ЬÀ°Â¶ß
!Ó‡µ ›â¬1
M_ƒôªh—냰j¥é¿¶Qm¾Gs„<EFBFBD>4˜¹Nãr«e‰-?‡<> ó«Ávn¨÷ä–À1<>Žª¯2ü7¥cUŒ-Çd<C387>5+<2B>S
“yc=ÑÛžá?™þ»³Ô±¸ºc<C2BA>ÍVÜ<56>ñøŒÛ¾WÂ>Mß¼í±Ž“Âî¶T ²ªw¼yï/uÃ4“¶¦?“îf£q<C2A3>Üä*-¸Îf
ÖÆghLlUK犦“è´!;õî‡ÏpAs—Ò¤ÅÜ«ÖäJÔ¼`}—kj˜¸³!ÇÄ@DD<44>¹oüˆ¾À<C2BE>T—ÒÀž<C380>A€ZuÃÑ ÜÅ]P`R"MïKù)òeí0ì\YÅê¹õ€ÌËb¢íØ
Òi?Xó·;Õ¥Ïúj©l
¬ÒPW†A§²Oè²Mysœ-j*s†Sä˜T¦g
véKëš?Â&A
µo®¨,€/Œ`âãæV]nªV™üFÑ"u™è <C3A8>OçzIJ;)<29><66>uBx˜xk2¦ÙâŠ`D8†Ö“„¦‡Ñ­À¤kr»vÞcNÈŒvç¯;™ša¹
s_ªZÝ4bv¾"o`Ò0­ºúÖf„Për ¬îšYXeN™¹-A“ˆ›Ð@»„ÌsW
¥üª®¥ž×¶ç´K0<EFBFBD>ÔËÞñ"!ë1iN&¤Q™wÜ®&*9|Ú ’‹¿#µ YÏÚ4y§c$øásaØ…%óÖ{@2³­²<àM3L}÷³9Czv½A1äî>“…ÉLfxÁr…
ùŠ¬Ù»ÉE0JôAÝ*Ï]'a•€FÆ®7b
²æn£0
u%ć0LÃLD£cÙeë´ÌŽâÆZÞ9Œ…
9ɤéß“c˜´7[786ˆh ¬©,¹øº†Õ'žŒk²xx÷ìx­§r8<72>ø ë„Æ(w,+­Ñõ©ÍÅì4!»[S?h
òe<EFBFBD>!
MÃ\„Ù×:¢eeßäJQ‰Ü}ŠÆÈƒ‰ñ—/Í
<EFBFBD>´ÀÌøE5€Ó¨…Å(¢­ß0°Òñiºy‰<79>B£úã<C3BA>Ï”ïD_º±ÔU.r¤‡»…¬ù¾²òì<KÂ߆ÉHJ¨<4A>ùUÓìÍÉÙ5ô£Ú)½fI9Í' ˜æKkÁ¬Ý”O:|9 |ßñ¶0뢩ú»Î
ò¶r²˜¼.vÂ&oNº<4E>aE¯0ˆêŠdÚQ°3£×ÈwiJ`eÂí0ìò?ôš¸ƒë3
<EFBFBD>5q…Zµ¶<EFBFBD>°Z.Ë-¯ÇÏ«ßÐ
€]';H²Xhãßíf̼âOYÞªˆµ†ÄIùôD"V¥1@òA2Î㚉?3T<33>µp•,—~çC×{úO)©Œ 7Zú(b䘔AÞ×̿Ê0}äa¢^¶Á#þE`¾n¾­V‰f»Z ~’‹åì‡>6G­Z c÷%¦%š1Šg=~îÆû¼1A-KŠaû§•Án±9>·Ö“¯:âþÁË<C381>¾Uó”ÞÉk|g¯
&¾ÍÎ]›Ïü‡0)º[D„œ_6LåPäè
¦™\>æ ³ecÒN‡¤¢}È`±¸lðj-ÀÝB^ÖoDT«ËÖŸ÷DTd>-©'-Í ˜f÷fÈK.Ó1²JêïMÌÉŒÍ09³¢x,/ þ*NãÞ'©O²'Ý” —nìÝß#Ì_mP˜,›Öøál°AD–šÙÌ))ÓˆaRôb}!)£³9G`]¿(¯¥û©,7Õ¿A†•ˆJe}ÑÄ"zúP ¢¢bÖláóyøZvø€ˆ
»; Þ¶ÕŸvîWË·É<C389>Ò¢´5ÍlòZÜbãX
3B]<5D>m€ÉвåfCÖ-±Y<11>¦DBÌÜÈAUÛ>ØG  B|»¨§åf¶>ÒºNÞå4 Va>ÎÏè¼{`çÿ+Ž“f@¢³‰‰e3mâAÍiÏxè"ùÙ É<>góþbÁwe±‰í™a2ßÑø‹`D>ì!LfË‹¬ºþŒ@¸š”CÚpAòªc;
¤Ma—ŒuBYkú¶Þ®àX_ØçîeÄhjMÖÖÙíTBéÑ”ÆúB˜@ŒRªèßF„UÃÈ,“i~è»ZÂqËm”‘ÓéÓ•]„ðv|‰”o-b1ëDS
ÎÕòLú­¸œ“e
ˆ56=ªjS<6A>KªYŸY¬wˆ¦”á y±>;êlË¿F5©×g`<03>r€‰XÚØ±<C398>P&SÝß“‘“F¬ÀÖèFì$:&
ó<EFBFBD>¸êTD¿|+,¼VO#™=͆<C38D>í(ÈN8¹ÑbC70)©\ Öa"¢êv7Gì"PiqKÔüÜ”krŸåÒ#SìJ a<>b9«†ÉNŠ•»Éa<17><>J¦IXÕcþìy«±ë îF²Dа²¬;Ó,
Wj¶“qûð÷ĹPÇ_J<5F>……GjôØ]rçÕœ´éêY,ß²ø
Ýuþ™Ùowµfï®bÞ &ûô><3E>dE“æ¶žà´r¯Zø1`ZʧF¨&.ÐG ¢˜æp&)ÞêjÍFÂpòmlNŒÑda#!<08>ñkù0ÿ+°"Pª<>e=çÀ&ëPžŽ©g¥LÍ1QîlÞªcZHm %0¨R'—¸>Û\=0yt‰|“ä.Âl(0-I" ÙOÛrêdP¯¬0Ã5H~ä¶6K¦hi¢Š¥mþšú]3ÅÕŒ}¬½èá;Ô6}Ï0ï¡|ØŽÉæ†“mÑYÒb&câó97[>äÊ:¦þ)6ZŽMM¼lzT˜'Mÿ6<C3BF>fwµ‰³€
ù)¾Q$Øv„@Ô‰ì;ú[Ò0ie'ÛĶˆ+©n<„‰.ØÞ¸-möw†H¿4%È|1 +“PÓû¤,¸×§>TY_YúŠý—¿s#ø˜íz±6w}¬“ÄlW'sÓª.JU“K°ÉùJ†áAw-šÛ¦‰e»¹ø¦ŽŒÖ¤\úu<>Ü&}`„¤lŽ5$ÖCä3øÌ¤=<3D>u}î¼B˜‹ÙŒ° %ïÉwGX‰eÞ::FÞ„&y L°n¤=á{ã~æ>ý7m•V_cÛ[7žæfŠýO4ò·4Šbˆñ®•s÷·J3âÒS/à<>ø{ÒÁIª†aýF$À<>½³)wÍh llžH¤"õdÇåe¾ö=MU“uÇ´¥“ëc1.ÇF%va×£D2‰kºÿŒ­Ó´ð`A†=z…íw1ºTü=
£í&€iñ'Éʈ a“ìÜF ļlˬ~FË<46>ˆ…ˆ ø{ìÈ$<24>ÀêÔTžÃß{,ï`Ò2ù<32>¸xpÍÙ«OˋӤ)\ÄdW|̲³¶æïMX<4D>Çw …4Þ=¾óð½“=aïÆ1ñ‡<C3B1>“`Ilm€•á<E280A2><C3A1>y8vs,Ã<>w7ßì"ȰoäY<IËSìo<C3AC>©qqÊ`+*
Ö>£©`në1x0œ\§¿×؇(áagÛY
xœÄ½Ï®,»’Þ7?O±^ W'ÿ“€aÀ²¥h`uÏ<04>dôm·Büúþ~ÁÚU¹—ï:UÕ+ÝÒÙ;¿<>ÅH2ŒødüÏ?ÒÇ¡ÿýÿ)£|ü<>ýãøL¹ÙÓ_ÒãÿùGþ\³ÖÖÖ°gñ×~´<>¿«Ÿ£•Žìÿ6}üå<C3BC>ããþXë#çãã_ÿ¨ÕÿôWûSjúÊÿþËÿüÇÿùÔ¯ÿý?ü£ø7Õ£PKùã¿¥<C2BF>òßÿ_úÛþ#üߤÏR<C38F><æÇÿ#qþË©êWæ¬G/#„zxd²üãóäç%é³<C3A9>¼Ž^w÷<<zUò¼$ëP³}¦<ê–äþÑ«’Ô§%ÉGû,i”™g
I½*I{^4>KO%å¹õäáÑ«’ôç%Éã³ÕZRjyKrÿèUIÆó”®h9­t“äþÑ«Ìç%Ñ”MµI=o¦åáÑ«’¬ç%Yýs®šVk}KrÿèUIÒñ´(%—Ï>æHÇÚÓøáÑË¢<oeKÍŸ}æ.ƒ¶ÇçáÑË¢<ofKŸ5—4GÞôðèeQž·³¥¯ÏÚG*¹mòðèeQž7´e¬ÏÞ<19>uåþÑË¢<oiËœŸUz̲%¹{ò² ÏÚ¢y[’†Ö›$÷<>^åyK[ë½ÇôrÃÛ°ê7¢á_­¦S«‡š½Ó7LhZO6ªþU×´1—ä
zÿèe<C3A8>ìxR<78>z”Ï,õóæ><zY<7A>çí§<C3AD>ÿQqõŸ¶|Hž¼&ÊóöÓp5ùú±$«çÚqÿä5Qž·Ÿ&Ê\ÑZµÜ×åþÉk¢<o?]ycŒyH3B”»'¯‰ò¼ýtQôJZ£knQîž¼&ÊóÔD]ë¼Öc„$w^䩘ás¤Þ¥kKr÷ä5QžwU]”ôy¬vŒÑÒåîÉk¢<﫚(}ê§BÿókQæóþ©/eå³ä{£öðä5Q^³¯„ýy=µû'¯‰ò¢}-ƒˆáÞ¨Ý?yM”íkÑÏæ1V«[U&Êö5ÏÏÙŒÚý“×DyѾæöYlØ,[W&Êö5gE ½ý¿-ÊÝ“×DyѦõ9k;úš{2ß?yM”-ì‘?¹FiÍmÜ&Êkv•ÏãÁWºð<1A>öš­<C5A1>Zw<¥û¯ òš¥<C5A1>é³?øI÷^ä5;;Ægðî¼&ÈkVvÈOœ÷æäþÁk¼fcå†ätoLî¼&ÈkV®H[÷¦äþÁk¼f_;ˆ`|­ñ×,j;>§|¡Ô<C2A1>Ðû¯ òš=­és<øF÷^ä5kZÚgÁ:zvAî¼¶ðš5-Çg•4ËŠ¸æþÁk¼È À¸¯QÉ-p÷à5A^³¦r;P¯¡#÷^äEŸu}®G<C2AE>èîÁk¼è±=SPWn¡ïí﯉±m韦°êƒç­¯4Û_h6éc·ëe|­éñJÓ»ÝW=ÛÉßQ£¿¶°®%û —™ßg¿ˆ?¤þÒˆýɦ¾£x¸ùïˆÝn~Ýièü¬Kÿ'§ó¢Þ¶–Ÿ\!Ù8?SéWÈð¨àó5_îO¶õ]ZÉ<5A>·ÿM2É<32>·ÿM
ÉO·ÿ]âÈ<C3A2>·ÿMºÈ<C2BA>·ÿMÈ<E28099>·ÿMjÈ<6A>·ÿMBÈ<42>·ÿí
÷Ã퓆òÓí—{òãí“pòãí“eòãí“Zòãí“OòãíÿÍ$ÌŸnÿ{÷‡ÛHWùéÖîýéþ9p$çñƒ~ä9?øœ1|‰ §Ìàs®ð%2œrÏYÂWÈpÎ_"Ã)øœ|‰ § àsNð%2œrÏÙÀ—ÈpÊú=ç_"Ã7ñö%2œrŽÏYÈWÈpN6>§_"Ã)Ëøœw|‰ §ôâsÂñ%2œòŠÏ™Æ—ÈpJ(>§_"Ãc*ñ)·ø N)Äç¤â+døŽ<C3B8>»D†zÏk_ÑâÛÙÌ/y¿—Pö$·´Ÿß†ˆ-oíÕ]<5D>'½úhì¢ñj?Ý<>÷[cÞÜ÷ãÝ<k?Üwêx<C3AA>HúÓúxʈ߭¾—ÿ„z>fÁGóofÂ?Ñücæûnþ½ì÷gšÈv¿5ÿVÆû3Í?d¸ßš+Ëý‰æ²Úwëoe¶?ÓøC&û­õ·²ÙŸiþ!{ýÖü[ìO4¿3Öwïf­=d©ï†ßËT¢ùÇÌôÝü{ÙéO4ÿ˜<C3BF>¾/#ý™æó}ú­ùüNúÍ?f<>ïæßË<¦ù‡Ló[óoe?ÓüCvù­ù·2ÌŸñ82Êwóïe•¿âðF»?îñ>¦­ïvßK]ÿóÍ?¦ªGë參ÿùÆÓÓ£ñ÷RÔŸhü!%}7þVZúŸoü1
=/ý‰ÆRÏwão¥Ÿ?ÑøCºùnü­”ó?ßøcŠy4þ^šù<13>GZùnöÅÔò?ßàc*y4û^:ùŸoü1}</…üÏ7þ˜2<1E>¿—6þDãiâ»ñ·RÅŸ<EFBFBD>w|üVzø3TÀ}:ø<>x'%ü™Øü>üš¿“þL€t—ö} <0B>ÞHý~š2øäÎl`º~œ4;=»ÙKÈž/î<ˆö¯a{¾¸è`· ÝóÅí·ö¯à{¾¸ÒàÖþ„Ïï÷ìæ¯`|¾¸¼àÖü”Ï7ÜÚ¿óy¸¦`·üäÏwì–/a}¾¸<C2BE>`· íóÅ-»ýKxŸ/®¸µñóÅ}»ýK˜Ÿ/.¸µõóÅÍ·ö¯à~¾¸N`· ùó¸M
ÿü>Ý#ý³¾„þùýªþç÷û ¢õK ß/%Ø­ý~A´~ ôûõ»õ+8 ßïØ­_Aý~Ñ@´~ t»Àn÷gi ß¯ˆv/á<>~¿G Z¿„úýò€hý&è÷vëWPA¿_°Ãç+¸ ßï¸q<17>A¿_p Ý/`ƒ~»à9ý<t—ùK´õ÷ÿ)•6?p${ûø§VãüÜÿ·¹—O +±òGoý³Í£”|ؽðÿáŸþ¸]ÿwu}¶ÔVùè
ËSõãŸþõã¿ý/Çq¤ÿõã¿üÓþã?þ“}í¿Wƒ¥jòäöEù¾EûæA¿ÏÜÿ}¿9×Ï£MáèߕϔWý믎~ÿ ҡ꫾<>¡|!Ãc_´Pô¡`Ê^1ö³ÁkÆþoŠpÑØÿMþÖØ×¿±çŒSï³3ÿ>í³·¤°ðßsìÿVƒ,i¹gbè_îö¿%Áßêõ¯DÈóóHù—w|örzþî^€_¢Ýÿ“Õ>G^#­Ò·6äuÔ¯äRÄtheY&ã1kiù&Yû}4~J<>ÙäC'5ÿ•ý:9zþÌuö¯¤×IQ!ŠÉ~%ƼNŒ2?×Ѱ†_ȱ.”#iÎÈñýRIÿ·ëäÈÇg.‡&ùWrü‡ ÕãSvÆ|½ßÅøß/CmÏU8 ö…ÿÇebNhu})ƼLŒªÐ¬'[Ûÿÿ4`Z<>Ô3}9eÿÓeb -¡I3å )Òq™kJŠÕ¿ÔÐtr5ž ¨4Ô
õŸQµHÿׇøj_5&W/°a·sà‰“„iÔnw|f#®X‰0}Ë胥ß)ëÔÊdË"ÕüY4Íʲ«ä5çg]›í()e/ë³æ0b$Õò)[u¬YüPýäÌyË)°ÑLKÃ4‰ó¨Õ±ú)ñzÍGÆ/Š=W<1D>õ¡<C3B5>.v)Ç<>Wu”Ù¢½ö™JM³<4D>eXÓÏ+Zn<5A>µuàõø{ò›ªTo¯Ã«u>RWG,…Ù¹ÖõEïi~µì»—@«ë»õM†å•R.åø”ôTN<54>¸½ŽnŒ0ÐUa@j†õšZnÙ_Ÿå~TCô'usš<73>¨óŠF‡·êçZ”¿¥^G¼ºajl¥¾V`ã<>V»C¨êçç­Û§Im“wÑ0Lî^IeÖÀô©uL»{§HoZCÃ’Ñûõa˜¼Åšçê<C3A7>5M„¢/4ì(‡DÝÐbhêÁkYr©z³ÑiYúœÛLvÕŒÔ
9ݰ¹P?ë̬¡êÍÆ5uòZúïga3!Ö(†•9[o!ЬkPfó÷Ž6×h9ÃSSöƒi®<69>Ô•½IÁ4ry´jXY³äÖ w™²krÅÁaä`d$”ýÐ<C3BD>”Þ5™j`êÚV Ê.¬-­ù{Cƒ¢ÉU—¿'/ùû½aÇa5ÅÉ*zÔCÝ27¶²¦ÅDÙ…©Ë¥Í4©IǤ™µ
Ï~<7E>€Á1éXM²šùü¤†ápe-)ãBÙ…ÑÚ܃®/Ò?ìš…@‡¦¿3ÝìòW<0E>IAÛåéëË¥¹&Umùà~aU<61>È “Óñ·¥ht ;Ô·5¾ sqÄä ïaˆÇ1ÝÈw>¤ë“lP„½Œ€˜ê‰a<E280B0>º¹Oîplé­±ÐöC
<EFBFBD>-g ‰LÌ0¬(RÃ880…Têêìï©í¬¾ößÔ?Å…^Ñ :œ>c…iVÙâi˜…)-óöÚ'¿×êáïÉžjv<6A>X×?ÔDὌ¦ñ(þ^çÚ€!ÙŠa%7õ—±ó`<60>·êD˜‡YŧW×€5ˆ„¾ Swɧê30ÎùæÙü=<3D>Çhal…­˜Âu`—%LÞ/R9Y#‰j˜â»\ª[$a“À¢þ¶O=èï­ÏR±Œ·_K®¿Ôƒ@Õ±Éâ[ŽfXkš3Í­ãàgXAÞºÔoi4¦
¯©mýQâØ' )™¬<E284A2>ÂbƒÚ¡ï[}¤õè@Ãd36Ð0)™ô”"-ÍXYÙÍ€·ªÐ`NÓß°µ˜¥g°ƒ^H‡M…!%kUvš{'V7ßb
ïaZäŒú0¬ MÛÖL†”Lß­áò÷ŽÇû&ؔ標ai_]Ü<>aR2¬ãÁ]˜hг66°Zž…i©ÉEÂ{SJ¦™¢0Ö4»/Ìd¡,©økÒ­©ÑÜøLtYá:‰¥ISØ< 1¥cz±i91L#5<>â†eÈ<I0õ¼¿'Wb®ìÄàüì<C3AC>÷´œHKË1g`Z0êÄiè2kÞžtL¿!­BY˜ %-â˜ü©A«†uÙÅöcÊÜk<C39C>Pû{Ù—çØèúÉyOAI+yhÍ6Œ<36>Á “×Áõ+0usnû{Zó4÷M7g/ƒKyxÒÜ€!‘çXcakžeÇ2*ÏÆö¾¥VÃÎÒ 2jÙ?nBéߪk<C2AA>4{&ëv@«iéKc˜¬ÝËmÕ¬rePÙ3Yzéðá¶Q˜º_C§n“qïvG˜¬¯ì¬ÕR˜¹J
å Lã±ð]Á´ÜM¼iÃäHI´nW,è/ÒŒŠþ6.-BÝùÊ>Ôô“Ž!ÚBÝ­q,\¨ËÁ5k<35>Ì+ HÓ{ŒP/M´]˜†I°F`2NúÍ:
“9Ð*ìªIçâ#gÔ]ý' ë¦Jc¢™í¾X»*?¡6—æ®!)—§îåD€Öæ<C396>ºO¼ ¹ ýؘþ©>ÃÎâ¬kí¶EbÚØ±H¨»0Y
­ î¤
YÓkvO#Wµ„Ù°kfèÑZWKLÄL/-<14>¹{^"•Q¦lDŸÙL”sXQw®ÄÐÄÖoŒÀÔ¹¹vÔ].žtÀS]ˆ?¡ˆƒ):H“î­ ª]³ û5þ²ˆ%°Û„•µÐ"ª_§q±,¯~â€Ý°Y´xaº°NRèÖñ¤ÀðÖõ<C396>3
/L¶C³ÆGhÙÝòLPxŒ¡¼Ê^<5E>Ì6<C38C>‰ú0–õ{²˜¬aÖ†ºÇ‰<C387>­Åe™d}ÊCᇥ jðJ Lß&@áeì»>N½érÊç+Òœ‰Â #(RG÷À¤©êy~àÝ`³Ý²vV©õÓ’eGº]œò×?Xså[HÐxa~i‰­C`S
W±],<2C>}) òˆ<C3B2>õ_‡T<19>8¸E#(›Íî `6/qEr!ðBá- RnS¶UÖ\Å#
¡¦aöc9VÐ96hȦĶÈâ.3sæN\V…Âãܨ<C39C>Öá_LJôˆuI?—i"0<>œ”}¦i¿´”î÷­ ïòÏ䉪åéÍ5¹3_è;þ ìÜ<V L<>E¢³?ð#e -<2D>`Z¬YÔQŽC¡Ïn+4lYEßq„ FkòרýÔ(Ka?ð­åhWbL‡DHë7ó`ž´$sðåÕõZ/ÑwEeþ<>ë“Dá=Uœž=vÒ1ù‰ê3îVE'\G
¬úg><3E>¥ÆȰ¢wòƒÿT—<54>÷¤+Zå<>•½Dß« MÎcÒ1fÞBß Ëãf´À¦&—Œ ï¡Gñ蘨PN¤† u¯ZŒåœá³:4p´½ Ü,iƒ«âÓ„Ÿ<E2809E>ÑöR5ùR@Z£¢ìyâRʳ˜†P9iÍ<69>ç¯×²|È"ßÖ# 0Eד}Ï<>¤/ÕP©?»‹Ò dÌz|hÐBvAµËÜÉ×ï\SDʧŸWk—·Œ¾<ºg_jµ2f&°©ßÔ¬¯öq2¯Z¦“<E2809C>´Cží<C5BE>u?ERÓ`eüËÝÅå_îÇ­¡éöµÐä¬v¬À:ë1ÖUéZü#þ…¸*àí£Ô 6&Ê®Ia#“hŸE…€ÅcNj¤V+þyÂÚ¡UŠñ²XD3”`<°ÅWͺc¶´(„fj¼dœª|<7C>°ÒRh3ÙŽMˆ
›°,B,•‡kf&¢"ô2w&Ñ·
lÀlŒnÉ!·mÚJ£å€k
Ô†9kò—´0˜¦÷èÛ¼iî\óð^s\î ã°ŠÅ4SfWëÕ Œ LÑÄ´àX?¤Ð¨ûoJɘP²SFêNåiô˜¦…­Î<C2AD>üß+)¯0<C2AF>ÜñÇ.hï9<C3AF>"Çè4Í{Í<>Q#se –“$½+"XÃ[Ðt\ÜÚÆ„”××,a]ÍÔîÁ&ׇIÓý=)¥ërõXM3E`ò2«9F…WGήË7½²€7-,zuÞ¬A„h<E2809E>0^&ú¶ˆé6LŸŽ÷HÐÁˆ&¯]¡óXѱÙqÇäÁcÞ;¯Z†"ÞÊÊËpCؘ_ÈÉØ”c¤È:™3)åó°XF>+deOP8w rlúÆ4žvÍš¸Ñ«¬¢9¡jC¨é¤SbâÊwæ‰Éÿ+
òM_K“÷C¨fÞ$ªü¾ÜJ`mhЗy?<3F>)[— ´5M÷š†z({âX…
™ÌyFsH- ùŽšæüÀA*ð¨Þ™WÌxó}23GÎð
-„ÆjT§Éü &l¬žð}´Â+ˆ)¥cæÂ„ï³pÛk`r€!BZ^†ÉJŽ£æ˜í°*P4çG£¨Ï•¥âpkæÎp~4`Äjò\ªaén.T| Ç È/j)iœ[ Mg<>õq¿èÐ
ÖG`²ð…4ú‰ Ê )Ù~Ê–Ìk^­ÊóOÐÑŠ[çCV?­érr»4…Pv<&u¶Ü²z@ ã1)Þ1bÑ0)Xƒ9·Õ€<C395>p;­”c=îîNÁôz2\†ù×"¯î«Èm}v¬Ã<C2AC>'”]®–€<<3C>ϸð nÓphäõ¥“ã}´!]ÃC<43>-x<>{Ô˜Žì=m¦DCd¾<64>GhÍèO-T2ˆxæ¶š/š]£!ÿ!Bæ1Ý#öÚïMu“f×BÛå¿jõo<C3B5>ZM'Ô½<C2BD>+äÄ~¥¬ïAì ™:2ô¿ÖO©Õ4Œ„}(µÀ:Ú@ßaĉ÷¦O¯ÇÛBqV~¶m¬á"ž™ Ûxtw<74>ZþŒ<C3BE>ˆjXL…Xî,Èôö²-´Õ “)<29>Épw4ø]üO÷[!ÿeQKCÛÉÒ¯Ox‰Ã.>˜ƒr§\ÅøRæVEÝ­ŽŒ`¦‡àA:ê®~•+Ï’Ð#ÛIF3¦¥fèUÿM¼mÂ4Ô<34>m©æN…eÈ¡ É]a¹<61>òMm?!Ãý˵ºKo8³Ç˜\¯.Ça¦uN«£b¸ÿ\.´ó3n¤<>"¤¢î¢EþÀô©÷o¢t|膱U„çaaƒdÂÈ¡îÂ$¸ÆÜ<C386>&ÈÿØ,4Q±OÕœ5 ö_Þ:ççÀ:Q©÷5ADÈBݱ £ŽÕ|Q`<>®>^PîÄ0óeˆ-q”ÝG…™ü¹aR1ˆP0}di ¬er¾Pw2¸eWôI9°R`Ô„ÉÑ—ä¦Åâ=ÙƒëW=¶<>Gtll.( “ï} ü†UhýŒ×æ>¶Vðø:b,5{žþh´Õ >dØ$™K>¡«tg£C_‡A <0C>"AÿA©=”¸Aº°o#<61>iѱÆÅB;|¦R@Ò0H<30>†¶“È&Gñ%æ¿.î<>͆)"©´hØ$vQì`_€ê72Ëz`šº‰<C2BA> ýb"- %[!¯Ž×XK4·|I€÷iG6HûK%0y<30>M,Žið&¾?–áý¡@
¦]˜¼ÛshÜîI•/¤…þÑ
0ÆÃŽ{EÜÕ<C39C>íë pA`å×ÉA{¹1Z¸vJ®ÞÔ
M™l
4a¨ï<¾
*¿BïɳÔ<
ò¨j®¨ÃŠAZ+7ØŽ5Ø´±ÖB9öŠÙl'LÊ$_.¾\ê%êv§yö=ˆJ4ØU®¨:˜"ĸý<0§Ùòc@€ˆ—=ŽXÒN¤%?ë§èc?œáý!@ìÚà\-=:7°&S'ד÷Ì^7®T5L_Ä¿;ઉ ´JuÛ
jè= ²ï^ƒÑÉÌ&si¡¹M†i—mÔÇ6ØyùÊ í?‰Ñ0í™]I<>Wr3í½ÉQ>)0sd6 _ðŽÁ ý‡ú{‰<>-ùo˜vbc#·ì‚`œ[ÒÓ¨6þ“Ò1;<1F>e'MA.GÍ>_…u¶%œ<07>Ì!þe`dxOî<4F>¼9»D†85P%ŽùÞ:–Ýò3ÿ
XsF3O3ªú"J røž„0¬°¾búŠùÞ º°ì)Á娄p kšX˜%XŒ0ÿƶ<C386>eÜI±mÃnúbÚ$H©æÐ`™3fç‰I8é½9 Ö´ª£¡ÎdM×<70>]Ž£Vö½>HAÕLÐò㎼ÿ½<>¦ðKúž}%„·!jì•ì3¢1©[sÕ„öÕ,À¡nÕXäîdÅ$* Þ®Zlô1¾MáüåFã‰'vfYzºí„ݲp¸"F¨ºy^жÎÚ.\<òj£Ùq_Ë=bzk.úÏi=dU­ zP_ìÞ:\?{µ¨ü­g_aEC+̾|†˜"Í= …·Ã<12>lߎ8Ô]Kˆ~f¢æ<C2A2>żáåkD?½Ôãƒê Äø‡;«ðüê÷Ä(°½RõMÅÙÙÕ丸“äõKPÐü2ß²Žz MËQ‰¶º¦¤&“B”&<26>f úcC¤â³vph²iDeT¼ŸX%‰¯ô#l`8ÿHp•õc@¯I)¦k¡mk4Œº)qÉ<02>F^ÁœgI
igÐò>II}Ør?ft¼¥Y)>ä²%YG­x­ø|†ÜǾk¥ü -CeMã·o]Œû݉^z ·ÛôÍ+\ÌÉj<C389>”©財½l³hBZàL˃e†<65>œ ;VµîO#°N$$AÔ²‰ßoKúdû»ÍñÉq"žá:fB:9ÆÆè£½ ¤>|ÙUúxj9¯) Fê†ÜßT9ÌÓƒÂBl…¬½;Q®Ús@Z|¶þáá|/mÔ€ÈÔ×TíÏx¥þïMγì1+©â£° @$i<>d²…CÖA¶-u£OG%&Ú2_M“FZÎþ['^jÞœ³¦<C2B3>[rG|2FNΪdSkœ•}(žB«ê›³²ÓÒÝ<16>&Žíä<C3AD>2é #™Û\ÈVÊRÒJÌiÅÃ55Šk°)©O`P[ ˆµ<CB86>K]&ô§Ë™P<E284A2>`zz4[ØA&ÌïÁáíDrS
sRÈú
ßtñ¯<0E>¨Ë‹Ì,Ú5Á¢OÏÀs0@‡&j17´XÆšmˆ&ãÓõò<>¢¼ÆA¬îöŒÄ¢€œ~Œ`"½LÞ¿•t!y‰\ì£ÜE
û¤AJÀmXÞêm„±0>{‹Ë\mcHB~âU²$…M5:Hz!Á§/·d½êðnìiÐB@P߳ܠAÓ<>•ÆÑ!&?\@BÛþMQCt<16>D0J¬<4A>×}°Þ
¨‡cø¢žÎák9
H°N‰vÕX³2ÖÓcЧ Qq»É&b"ùž
Xð»%îè0ø+°Á®
Xí¤£<18>S ì«ù”þžVúx¦8xÕV](3r7
Ë¿ö«ÀØA& &°øü½•ÙÇ5ƒ¢2Â2<C382>¢VÃ>cEºT
dç9Æt<74>†¿'ûUÓ(áÈj.LVDoNa/Í0ØÜê&Xƒ<58>æÁ4'Á<>â]Mº<4D>Ú"¶Çƒ‘*0ŒO蟾¡ˆãmfm£¼ß“¥Öb6ý½Ž*ÎêrJÇ4z“\v0áðMW0ý+Í(<ïÞ1ͺ©Ö½5¬&L£
8xb#™Mô|úd(QÈÁâïáË^­À:¼ÓÇÒxLóÞä¥ê¯Æúµ†ß`mºãjXS°"<22>´o‡„G°ÁvŒñ&@ìÕUË5Äï1±ƒÿÒê>ÍýÌPÊN!bK
Í1¦l©9 ÉµÌv-vÝR³Ý¨‰Yjö×$<so¦@EËsñ÷$V6jLúhCÔÌGVÀØÙù
¨KÌn™FøÏ•Ê<>Åâ9“ã
¤™U9ÃP?4½f¸ÝP%\xù$Œq¥|·?ØruO<11>ú’¸ÜÇ/e¸®Ã¿““<E2809C> ÄÞלkÆÛE@ò,’Õ¼ÒK%mëä¶Y<½Å/lB«=½¥@®t¾$ù[ZñðS`#Œ$á ÛùÇò¹
÷Ž9p»ÙY&q£¸N
³
#Å
†)²<>Þ[ŒRàÞ<17>có÷`}Góy û^5h³û{räMoOÍÅã-”ò4Õ˜üj}Dñ÷&¬œg€-b³²™.× ô»¥ñÚ.t!÷„à˜
Éä{‡ŠÀlL¡è怮sŒ/•`•{ll_žj±H¥@ î-d'{<7B>icØãïI½ˆü7YLæ<><C3A6>eȰ㦙‹[ïï-­|‡»ƒu|z¦0†<30>Äu¹Ó c0¨9±¾].µMÕ³%Áp"²%±•®Õ$<24>娴lnV@„e¥Ã)0ÙU}ðð÷4ÅÙäñöö'æI¤É˜óØ`6åêï5æxñ÷äüÓ$Ûêïu2Ù<ÝΓLý$é]`„îðN†o°Èõ÷G
Ô˜ªÃvÁØ¡à¶aҲƹMÊFZ†ÚåƮ娇“¤X<C2A4>ç˜åB±%g»ˆžç&HU¨LÒ½a¶“ÜW†<57>ä»ÇH“Ç2Ï@âcuL&¡rwJ`Ne†,<2C>ÝkOG.Pð<50>àäDFá9³.G`Æf¤¾ÑßëF¬UK3Jì<C3AC>û0bs³X¼É!ï> ¼Å>Í_~ÌÀšfõ°4#<=™„¾ÒÆ=Jèì<MuÞÕ“ms­w˜v°A"ŸÏÛGª$”°2Ãm#¼™ÍÃ_ËlÉÍÐõiŽ*l&Ðà®Ôðï£r Ê_“éÂÑh'¢"ƒp8X`ße†ß)%O¢iÉö.<2E>|'…ôf(9ÉsÓõµrcüErlܶåEMb3ƒÈ‘áΖ\õ×:Äéázõ>²<>(Iyr ÂÍìxlšY=ù[ˆwÛÍÎÞ!Fü._=¡Þk&ÝÔßè´Ã£ Èw²1úò÷¶ÝósÀ4„‰<E2809E>£åŽ#0õ9JjF`<60><>È@Ñá¿û[p´‡§ä6n±`vò<>hRà$ Ϙ+pï…Ä<E280A6>£?x@„õÀX$9Øî˜Ìøt^l5rs†¿‡o`i<õÂjú´Ã3ŒðI´¯+0™yùÕß«¹ñžçÂ)Ë0cÍôƒ}÷qöÙ¯…*Ðï¢èÙ_S¬9“»"°ïì[~Q"‰@¥x û®<C3BB>ÕÇûk<C3BB>à3Œ©0VÌ<ŽxoÒ¯ÍE±¬I9oÝ߃Õš½käVqY¾ü6]÷{t3„ŒaóðŽ7Œ¼62«¿g¡¢Ÿí,à©Å{rù<ÿ¦ÀØá”䯭DˆïkÚ0Û£¥*)\Ùòi ýŽ9K!Êâ7VÚ˜üÛnGqà™õ<E284A2>Xªüó¤VƒtÑÃ9h-ËNt9æÉª=°Éòæ4ôûdÃ-¶„çmbnÌ<19>âï±éÏÆ±a$µå‹ãØŒ|Çj“Ñ:Ì•d«SZªû=ÏFIþ^&Ÿ·;Ùÿ>²§36¨pÌèˆcú{uù:ÿÎícù{r݈<C39D>Z`2&‰$Ç4I#GªÀµ<C380>I˜z¼''.yº>Xožc $ŸSfÔµlâdi~µâ¯ÉåÀÖÀÈ~µ<> ß@°Þ$©\ê××á¯Éø¢÷Àà š¹Œ4dG„M°ïl<C3AF>å¯Éÿí¾ýS`ß5ñW|wc »¸­…|'»bp…= uújn¢g§ûe.ÙvEÚT$sš‡ñZï<5A>8Ã06Ÿa½ŠC¶'é±ä»UÖ­þšœ¹J·aR
æXY\4×7“e <0B>uÎc¸£ ý.ßñð8†ø­““S“&H©¦c±ÇêÈÂ*Z®HI{Aã@†}‰—ÔÍÅ“¨ÁÈU[,dÇWÛÎv,ðÄ{k¤êÖ
^<5E>å
%6=%”oz8x˜³ìœÏàjPwÌ9ù9ŽxO«ÔîõAÃwŽ8¥xoîáñƒ0
cÁ¦~° Åe}¡¿W-õÖ·ÁpßV¼'‡Þª8é—Øk
lÉ¢´Úâ=Íâ:}À<>qÆ$u¿Üé˜ñ
íÓ™Îï­6§Ÿ¤¥j¤§T/±5ØÝ Rë5Ù<>s>~°YwÄ{
<EFBFBD>²Ÿ$Wôä;pša¢E!^“ÿwt'¨¡äÉ­XÓ_SðâIÆš6Ÿdj$Ö}Cdà ³ImÛI`…<>H>õ8Ô·³NR²ÍZ0Òë% <0B>éC-©Ò14@ËÕtLëþXFTxùYý4Ša»îì;Ø$³Â…ØzL¤Òdo/Zædíþž»M9æG¼Gþ¥§€>–ÔkœI´H
¬÷ÐcÃ4"œ42¬ÂñrŠÙï@åˆ1«I`Zîô Éß“à3Rj+ü¼<C3BC>CÈþ&§Î<1E>âRÈãµL~o
ˆÌ0p¤eI3V|9‡HåFõ¯5;£ÐcwTßïõõëËW$·<11>©þÙ~Ð<><C390>žG‰×VµŒ]Ã8š®ÙU]Úl7Ûéuó…­%Riÿ8®@GÆì<C386>ü˜|´<11>¿ñç<>«¹bÕÎëߦ€ØÃ}C<>ÔŠeæt±S<53>ë<EFBFBD>ÉCDãX»áïåXì°šcœ73w (Ò+¡cøOfé<66>F±Wÿ-D²ØذÓNÉÔa “~éë`
#€òõl<>[1r¼§•Ž d
ã¼L%‚‹÷AaÝÞŽ¡c]+°';TÛê8wñžuJ[<5B>5:¶öxoÂÏ4ÿM…eœ.IÃ<49>™^Ë]újá<6A>Q7þždßtwliÉ­ú{¢7cÃU!O>â=)0ÇádW¬ï)4/GÈ9IbJœ-tLù˜¹†Å¤/“Í9üütÅà]wk˜\iÍ„û­‡q‡£è~нf®§ÇÅã®!ç X ¬éŸb}“eÏž 5”%èÔxO=K ˜õJ YæÁŒµDW06K
ã>µV<C2B5>x<EFBFBD>['8Ü&uò©Ë²êÁäÇNæc8QÕ uÐ'üNcÇ#Lô={÷3Ì;Áàò<C3A0>!<4F>3“Ã1†áp<C3A1>Ée“¥Ú²4œ17<31>ð÷ð3+Ìû„€uf §—tÇØ ò\Ý
ïGŽã=òBu3·NÈa0üjrcòq#ely¶…aÔéæÄq˜wvMòáFþ~p²7ÌûRGÆÅó óÎÎèá›Ô`Æ„×0ïK
ETøû*¹R˜IÒ+0V¾Ãa:Œ¥«ð÷X<C3B7>ö}Á½yž˜ÆN½~qÐ/õ­ð÷¤X,7JËèP3G oŒý}#¤Á‡Lr´ÖYOªÿ"7Oh­°ïë2k7·ó·˜ þ§5oÍ®½è#¬£â\”Ð$£ïØLHZØ{2-nï±ß1Ýâú뮉È4²ó¥†qñ<19>lձdž<C387>õ™}ï‡S@ O®Ð÷Zãl—Æ0y$3, ü½¼Ëvv,.ÄãÞ ;^ïIb÷þ€*Wg<57>©é<C2A9><73>Ápæœâ5¶ó<C2B6>æ}ɵÒ@“Iíyc³¬XíÐ<C3AD>"ÌcùÐá÷X}¼Wƒ¢qLÁµ¥.8&ýªÎ#V²1“ïj†'¿6Ö»o}:¦euÄ
\¹xBn×Qâ=ò=å<E28093><C3A5>Eb]¼95|!‚Åç\-×68ƦnÙXåÈij†)4áB`¬^ø€<C3B8>±[îþEµMmï÷Ù¶<·A3î¶'ªe<C2AA>#á¹Ù^ªa~†#0®Çø¦¬[:ð_­Þ²Vköš6ÖH«™<C2AB>i}jØšÀÐÛåíÁUNöÑKò*-š‚ì/åØG/\“`ñ91r°OÆxyxeıØÀìÀH
lqb¤Ìýž¢dOvC%»ïqôËOIƒMnÙ-Þ#<23>4Å{äe$}J`¤8¾T°#}üÅ.¼­R.¯84o冿¾Õ¶Zò¹þð/üó“¿ÿ÷ÿð<C3BF>š¤ù·?„¼oÖMå×Ñ«|º\÷ã¿üÑ̨³õq+„ôðè¥ûâe=/
éGÒ2»¨'D¹ôª(ýx^ÂhΩ¢Ü?zY”ô¼(äÿ~áú‡(÷<>^%?/
I6 nÞD¹ô²(åiQ:É’êK¸wQ½,J}^v—I!±‹¡\”ûG/‹Ò^ïh«°E¹{ô²(ýyQ¸x YÆ­½,Êx^”Õ¡%eô[¯Ü?zY”ç­í€8ޗݹ(<0F>^åyk«`
Wû~=<zU”ñ¼µæ`ø&ûåþÑË¢<omGkÒót°åþÑË¢<om—M¬É
[’»'/ ò¼­ì°)à\\†’Ü?zY”çmíö˜þõ—ÇôJÃ۲ʿùòxúon.ÛÍ?{¥Ùþd³<64>h¿rÓSÞ*ððèeAÆ“ <14>zuÓ€»G/ ò¼<05>çZ™>&oÏDçMè<×Í ýx¯”¦d™ÏÛÐy®¡²¼WVYž7¢ó\OsËòV‰MdyÞŠÎsmÍ-Ë[å6åyC:O…6C”·Jo"Ékvô\‰ÓDy« '²<ï´ÎsýÍ-Ë[%9åy¯uþªÈR¼Zž“öŸwUç¹.ç^qÞ*Õ‰,¯YÚsåNdy¯l'²¼hiOU<G}·„§dY/ZÚSEO“%¿SÎY^´´§êž£¾[ÚY^´´§JŸ£¾[æY^´´§ªŸ&Ë[%?åE[{ªˆo”ÿDmí©6ç¨ïæD×lí©N§Dy¯H'¼fuO5;%É{;ä5{ªß‰$oïD×,î©–§$y¯<79>§$QÐøš(<28>…=G}³ª§‰òš½=UùõÍŸ&ÊkæöTòS¢¼WïÓDyÍÚÞê"Ä‹Å?­ù× ì©¨„x¯¨‰òš}=U•(ï•5Q^3¯§2¡å½¡&ÊköõT3QÞ*j¢¼H<…=x«z¨‰òš…=U5šé<C5A1>ˆ^tiK<1A>ñN]QåE<C3A5>ö¡Î¨Åo5A¶}ý³Œ×/¢qs/6\^høV¯}ÄAˆW¯¯4~kù'ë7±þƒMÙ7½Ì?ýMö'ɉkõ+oÇ_#Åwôð5RÜÚù=ŽLpÝî+Îû+½oM?>¹B†3fæ¯<C3A6>á¬ùÔ©~§ý<C2A7>µù]ÞÊER|“²rßd«\$Å7‰*IñMŽÊ5R|—žrßd¦\%ÅßNJ¹HŠoWÊK¤ø&+æ")¾Iˆ¹FŠïra.â4˜¤ø&æ")¾I~¹HŠ¿™÷r ߤ¼\%Åw~õR<æÜ\Óæ£/ß9šÈ%É?½<>“žÏiЗÈpÊv>ç?_"Ã)Íùœø|‰ §üæsÆó%2œÏ©ÎWÈpÎh>ç8_"Ã)•ùœÜ|<7C> <0C>9Ìç¬æKdø&Ö¿D†Sõ9¥úN™Óç\ê+d8§LŸ“¨/‘á”+}Ξ¾D†Sô9múNÙÑç|éKdxÌ>%J_"Á)úœ!}<7D>  ¼B†Û'Ò]Ðâ¿CjöK~ðU; ÃùÛ5ÆÛ$·}§»V_Ý€zÞÓ¿oô¢qä¸ÑýG{÷~Wï¡ÕîÝ»ùxßèEºËÝxí8jð~?ÛæùLÀ}ãïxF“ϧî¤xóXÀ3RœÏÜKñÞ<C3B1>€§¤8<C2A4>x<>â­£OIqÊý<C3BD>â­CÏHqÊú¿â­ôÿ§d8åû?ñVâÿSRœ2ý¤x+åÿ)~åøß·ÿj²ÿSkÝ)»ÿ¾ý÷ÒüŸ‘âœ×/Å{ þÏHqÎè¿—â½Ôþ§¤È<C2A4>¹üRäwúŸâœÅ/Å{éüOIqÊß<C39F>â­Dþ§¤8eî?HñV
ÿSÞð)gÿ^Š÷÷_òÉšÿyŸü|Jà¾ù÷Ž <!Åù|À<>ïxB†óÉ€;Þ;"ðŒ §3÷2¼u8à ΧîdxïXÀ32œŽÜËðÖy€gd8åÿßËðÖA€'d8'þßÉðÞ €gd¸eüß·þbêÿížSýïZ/çÿ Î9þw2¼—ìÿ„ çäþ;ÞËòF†SVÿ½ o¥÷?ùŸÒùïÿ·òúŸb<óø˜<>wúŸâø¨‡w2ùŸŠîb»7RøŸç¢ªk¸Äò+/âǹÄÛõØø%l×w_<Hq
¨»l£­³óùÉeØD<EFBFBD>ƒ¶oÝ_Käÿu žõL­<4C>€4XÃ~•XV¸úU›í
·Ã,¶$Õìí<13>írÍ$^EšÃØ<04>ޱ5S3dX`Øxàuö_Ìšk.qlRƒÇ;„žlH ;R§Ä—i K8K»¿E¬Â
7€I½,)(y<>t½¥/L^·HÕð÷ÔQDÀlØØA G¤M<4D>ØÓ¯h<C2AF>ªŽÉËÑüôhðNÜ? '“«'tCŒ]&öÔMö—ï5€É†ŠçfK{"äúäLcñð6÷RS·ÔY]NY§LFÊæï‰D«ý½Æ2Ù,ï ¬ÉÕÝs lV†º¿'ÿ¬KÅ›Œ¥¬öð÷ž‚[®Áö—þ^ìÏ™,h‡èHµÄ'0uŠ<75>O†Ë>ˆ&.ÓÅFÁrxn†•é>cMVzxâMtq8×bAJïïé×kj¹†Ìøùމި~˜tLÎ<4C>\¯k&­É*¬’$²õˆ‰·OcË&I"}xP|È*¾“c|ÛŽ-þÞ°m}aCë´ù˜†ÉÉJ»,¢(än<C3A4>ÝߤžwMêÔ£œü=MR?üûƒ)•×'~±{â'‰jvj½Ù<C2BD>³<>ÐÙTÀ i<E2809A>µ­<Ç<‡¶9¦•ªÛJFC$sF”+ Û#Éñšäl5†HË€,v³Ä'¶ôãÓóÖÀĵ¼U¿BGÍ,<2C>yZÍîï¡í»í’°¥GcäïI5D—Ü #%^ïAv>6ôó¹Ç5ÎZ
mç*0­M;¹.Že»=ÆT<C386><54>2-ñ LÆ6ö£ÀÈôlÑÙ¡Õ¯ljü5²¿¦å¶²i¹{Ü$ú 4§É5·xi,pN2ŒTëGAšÊZòzmÍíŽE¨¨<12>'&ãHÿt¥ÙC A¤o»a}[2¶?Kå¡ìÔÝ7ɱÁ(îoU²7ܾ
q= ‰e‡¤®µõ<19>3+þtmÆDfACgÉܾ<C39C>¥Þö}¶lÇ4±,ã Lý.¶I^5±Ì<C2B1>±ûö=|IAR-PÃ!igk`“h O`%6=„MKÃ%Ë8Þ“²Fbgè“,á l¹'`lµš<1F>l{N4Ïr ë3öÁ Ãë(¶h™äie³ìÂêŒzË=ÄØl[¼F'tï1vô#Íò<C38D>„í8²Õ9Œ0Y†lɆ%Àèivdê|ìSQÈLa ¡—xÍâÓÞÓܯfñ'ô$cw
#ƒFн7ß´Lúñ½º®ó0hò÷T>r0Éæ<C389>f‰Ä{æýúºLꡲÏx¯Ë¼ù²l‰LšVs×äî !mŠü<C5A0>¶Çé“óÇ&4]+¿G&Lñì$K43.7â½B®«ôœd‡™[û®Ò·á¤‰MyíŠ<C3AD>‰Lh
ñùܨ Ydmö¼í Ãu³TÃdÜœ€qmæÇ¡ÌfŽÍòÂÂÊY4L½,Õœ<C395>
D,á Œduß
%ë<MM¯Òâ=i±™n<E284A2>ΙKwbéÛ4Éèõ¡/ƹ<C386>ÀîÔmWÔr0
#dPEðͬÛ<C2AC>ÏxsŒôj»2İfçB\–úá‡#R¼7d0kJ<6B>•YIl<49>÷ȶÙò lâÝOžÖØ_—T¯%¶B͹c“W_ï‰<C3AF>ŒÒü:
bëÅw;<3B>=Çk-21Àäðä^\Å<Ö3Z@¾¹Åk²ÉžÏÊ!„½ ¢[ý‰ï:ä‡Bº¿Å&U¤t÷Z®-<2D>(Û™†P%Adš=%
Õ2¦Eªs&Ê1Óôä?)ÆÆ™—Ôë8êÞ•Dï=I40<‡l´½/qÚðù p`ƒqÍÕÍŠHSiÑœ4¬Ùá <>CßÀ: "=ÅkbÍÃíá8 ¾™c$Êä²0¶3 …މšn~
€+0Ew vñž\øâJD¿hj•¯á×z.gR6½ìÝ<C3AC>K²XZ
Œ$4ó°ŒêÝ=’Ó,Ç=,»'¹îŽI¿`€)L»V9FŠ<46>y܆e¬ææ<C3A6>)u7ÛdXI^ Ó1 ¦íyVåUî¡+R12D4(Ž58n<6E>I¿¥aÛÉ “ñ°÷H½ä°í¾,?°ª%Bô.ÞÓr1Óî˜\RDzØvÛò˜õJžžó”F ¦e…ýÌÀV˜”ŒažÔfl(‰p“&<58>&¢dë@Ãóqlõt¬óû£Ä{5­û„81Ö”Š÷hÛ]b0Ñz1Þk%íïU²Æ4åR¼§Yd;zŽUwñ‡cbsÍ#D¨Ù<C2A8>f¼·þбºEôŒX[dƒÙ<C692>0ý™ç=ˆ¯‰Œ`ͰÜã=Qá<öذïÉå¶Ž`ã?„c%ŽIl “ñÅÏÀäB87äPé9û¾Ç{Nð[`<60>4â='VöDðe·<65>Ö<1E>0<><30>ïY:Ö`¬ÖgùsËÙ ž}ÇÒ¡jL F`˜s69ú¢µa^C"ñlÙ&‡Èœ<C388><C593>áz~¢÷r”zö¶Ø´XFŽC…+iÞ01 ²7
ãäjòdÇÆcÈ…Yä#Ç·‘\,Ü»D*F^û-†e?Òê<C392>¬°g<C2B0>9ôÙ#ÜAÙã­[lŽUý„ùŽõɱ2ÃúGœù÷<E280B9>q·XÍÎW`s<>Œ°¹6î 7ðI™)Þc~ßF` "X•aEáN׿§ä ³<>VŸ\„ð«'YÆ~£/è…h—ïu;6mË7ÖšGkë°Œ<C2B0>j•‰5/L*»™GçX¤–Àª]Èe˜<k>^tŒÓÝn<C39D>âsêeßãµý±eÆÒtì3Üɹ\-‡ÝRfãÔ†w A|Æyš“V²îôít
<EFBFBD>í´ƾ•{I`<Áø6ð…üª”§ -<>±«í»`ZŸ*¹K<C2B9>ùa'Ãw¹·°©™<Ùéó„;عÍÛÂp}‡·×1±>ó<>øÀêNú{Øw&IÞjÌoù
û.ÛËÀû
»£/ÞÓÌ“û¸0ýÕ¶õ°ï¹[ª½÷'Ù×¢j<>ƒ5¼ž<C2BC>³ÿùW»l¬H¹üøñ¸~<.+Qöûßÿòoù—[øûø'B¢ÿúŸa‡6­Í4<C38D>?“~Òén³?ÿ÷_DINŽá½w+>ÂäíuaHÐ<48>ªÙA™æùÑ×…i^ÅâŠ!Ìó£ ¤ׅáL-~.@óüè0ùuaHlTK˜çG„)/ £N­Ÿ”1qa<0E>.S_f'U”í½—0Ï<30>.ÓÞÆ6µª%/,až]¦¿. aÑj‰<1B>žy~tA˜ñº0Ó¶ÙÝôÌó£ ¼n<C2BC>µqèÔ·ú]˜Ã£÷…)¯[àž‰øfÓáÑa^·Àݸ‡ï¿/až]æu ÜI@«\‹“—]æu ,Ve±¼YûåéÉQ^·¿½?<3F>]æuû»HÕ<‘ª·š^ÖV èÛÔé/7Ä>xÝ'‡{«áþbÃ<62>˜@á|FZªpxtA”ñ¢(<28>]>9b…<62>ßÒ„§GDyݪŽs±#õ<E280B9>¦¾nUǹòÑæR1$æu«:Îe<C38E>B˜k•L˜×­ê8×D
a®•I2a^·ªã\ i s©f óº]§rIK+”L”7­ê© ²\«¦d¼ÎjǹŽÒæRi%æuV;>K+-1Þ¬³d¼ÎdǹÂq±è óžÍ=a²`Ú¥
LÓÞ³¹§ŠL&Ë•rL&Ê{÷\ž©—«µ™L˜÷,î¹V“ s©P“ óžÅ=n2Y®Tm2QÞ³·ç*N½\-ád¼gqÏ%<25>L˜KõœL˜÷,î¹ÚÂ\+µd¼gqÏ¥—z¹ZwÉ„yÓúžê0™0—Š0™0oZßSQ&„¹VÖ÷T¡É„¹TžÉ„yÓþË5õr±V“‰ò¦õ=Õn2Y.n2aÞ´¾§BN&Ì¥*N&Ìö÷QÕÉÄx³¤“ ðžÍ=—x—¿VßÉ„yÏæžë=!̵bO&Ì{6÷\üÉ„¹TùÉ„yÏæž+A!̵2P&Ì{6÷\Ê„¹T
aÆ{6÷T#ÊbQW
D™(ïYÜsÁ(“åRµ(æ=eÂ\*eÂ,›û·†È>ã“+`øfÃå<C383>5:<3A>I¾W Ó¯o4å³ÞŽþ­•º¾Ù_ÿŦü«Þ<C2AB>5¿üUþ/Rçâ•_kó§Àò=RüS¾GŠÏ¡öeîyXWkÜÑÿÞøéÑR| à‰éß!ÅYÿ¹Ò¹øMþ¿ÖæO‰17IñCFÌMRü<52>
s“?äÀÜ$ÅÉ/÷HñSÖËMRü<52>îr—=Ïå&)~\/oâ‡4¤ø!¿æ)~J¬¹IŠ2jnâ‡Tš¤ø!‡æ&)þjòÌM2ü<32>5s—?±ë;¤8&íÜÓæ™ÑÛíÉœm½Qzã§G·HqN¨þc}çLê/ÉÕ·HqN¡þU}çÜé/éÔwHñ%iúKõ-Rœ³¥¿$Pß#Å)MúKæô-Rü¸EŠsö—Äí[¤8§gÉØ¾CŠ/yÙ_Rµoâœ<C3A2>ý%Gû)ΙØ_³oâœý%+û)NÉ×çtì[d8']ÉþGŠŸâ…wHñ¹áàÿº£ÍÿŠ ð·óm;ý3Òûë+Ÿ{UO­¾»iõ†OðÔêmCù´“ñ«ýû¼xhõ—û÷yV>µzþrY_ݶQÂßmó|ôà¹ñkg^âtæà ťïHq>lð,ŵS¯Hq>eð,ŵã/Iq:^p<>âÒ9ƒ—¤8ž+8qå€Á+2œ< qídÁKRœN¤¸t¤à%)Gí¿yà•uö|và©ý^‘â|hàYŠk§^âxZà Ä•c¯Èp>&ð,ĵó/Iq:p<>âÒA<C392>—¤8 8qå„ÀK<ôt"àYˆkG^âtà Å¥3oqòCó¿ÎÉ¿œ=xnþÚ!„W¤8:xâÚ郗¤8<C2A4>68HqéØÁ+Rœ<52><Kqí¼ÁKRœÎ¤¸tÐà)N ž…¸tÂà%N'
B\:Zð§£).<2E>)xIŠÇCûo&x%vp><ðÔþÅS¯Hq>5ð,ŵã/Iq:.p<>âÒ¹<C392>W¤8ŸxâÚ<C3A2><C39A>—¤88Hqé¤ÀK­ãÉ€g!.xI†Ó€ƒ—μ$Åé,ÀAŠK‡Þˆ4¿)Òø”añëÆS$ìØø-°onß8IqG$ìk7ŽRÜ ûæ¾<C3A6>£·D¾¹hã$Ű¯7lœ„¸!öÍÕG!n‰„}s§ÆIŠ;"a‡Ë4Níÿn$ì›[4íß ûæúŒ£·D¾Þqâ†HØ7f…¸%öÍM')}½"ã$Ä
°oîÆ8
qK$ìK1NRÜ ;îžšÿõÝÓS$ìØü-°o®ß8JqK$ì›{7NRÜ ûæÂ<C3A6>£·D¾¹iã$Ű¯Wl…¸#öÍÝ'!}s©ÆIŠ;"a‡Û4Níÿn$ìk4íß ûæþŒ£·D¾¹8ã$ŰonÌ8JqK$ì«2NRÜ ûzGÆQˆ;"aß\ŽqâŽHØ7·bœ¤¸#öœvhü½HØFÝ]ÿ‡’þñ º<C382>A…šÇršTLÕ+
u äÖ¬ uæd/åwJÉÐ#uï”é+…ªv`moyKV?LÿOÿ»ù{iê½Ö{“š5NNÏV{<7B>V—³îTªðšP†µBeж°1£8X¦"q·Š;œ#²ŠfTâ*Tg]²Ì<C2B2>±yåAÃÚ*±#,mšþsîv"šr&üóQg,)RŽ\Ó"YQËš¨œöᇿwª 5¯:Z<>zm©;½S÷ƒŠÞš~e
Zûk5p¼F-˜×ƒ/ŒÂFÍz-Ó“BŠ¥ÄÁ<>â{2¬ôDÕeo“‡š÷²ÞÔ¨.|u·¥Í[jþõ€GÏ”îËT@ñúµ`êå±QŽÅ€<¼îš(&_FßïYtFÖ;ä¤*||£àð,Ý¿]ä#<><E28098>
Úª„-ñ“ðĹ[E&ꘈÅ7õY7¬Hýd<C3BD>¶lXöB 90ªÿö:ü=+I»gÇhB£i‡~9ß•¤§ ©»T'sØQHžûªi6ÛD£“aúÅÒŠ<C392>Ïd<64>êð{úNйçÈÒÑ}¯©[++X¦NtîH ª|åÔ¿úâV¨ò&¥ô¡É0”9¨gekƾí»UœÒ_N«R¶ÉH>v/‹ˆÙ*[mUÇšT¤ÚIì­ ìÌ>³´K³#a2À(@ºy½[°ºªqQ‡Òfo¶LѲ¨-
¦¹7v¯`VV<56>´*'96“Y0><3E>ÉCMPŸÿ™îK¦C†ÉºIòØ<>&[Mi]TT¬¹qÜ [)p«dDQÉ>r`˜<>löF˜ÔwU®rÓª:H4~6™PKa<4B>:šfo„ɾi„šÿ&¥Zw¯|mÕ˜4
r1Ô«Ý»ÙýÇL|êôöl2%+èVEÂzòÙÃf€Td7ƒ“©¡˜(™ÖT3ƒ#Á¤6¬ŒõY±Z­u3“©ÀÞü Œcz\­þ<Ø>(žœý=º7ÊSùŠJ`Tî
Œ×v³8™B/M·T<1B>æîïí=t6 Ö¥«»Y
˜¬°4×-U±bª^, Lš;ÖzQ(JI•çîïm]&7û4GÍ5¯“Yê<>QÕuŽ…éÿÉþ`q²UDJÉWfe°8¦«ÍêTTÚ¦‰jŸÀ2#Û·§˜ Z©fq„QÃ|óâSU<>ÉÎY±–}Â2Ä…,qÍ€°* WO'Í!é6GXÚ(³˜K`"}ÔžD•¨_*k·W—SZ`³AEdD°$Ž4³Ya»•,Þܤö¨mìt
¥zi[«3¶f6ˤù’]÷X8´šfLŽÖº<C2BA>‰•$«‰Nõ:éyäl&‡ªwV¸Ý»ÊÍD{<7B>Ëk÷6¶X[…ié)ÆRŠd æ…«­ÂzÑLNbžÍܳ/"•bÊVý<56>÷ÔqR¾È0ø“Z39ÂXNlÎ;ÖeÒv39Â6)CÙÌõ©•Zzâ¼frXŠv¹}ÔÀÄv¦SV°,Y}…<>)
i†™œTmÅlÉj¾<EFBFBD>É lNqç±d•‡“aSŸàW¶Óxx<78>]-ÿÔ²MNp¬¶b«ÔP L$ÅK<C385>ZMF‰´ÍÀ(£¹'8ZóMa¶²°¨£ŠÁI^ôÃz†QF3l˜:DÖ'¾€2šú"38â&m<*<2A>ËI+Yví ¤Í]CÖ´9ÅI 36}1i”Ѥ;‡#ÍË®ÆW§8ÔÍ,˜ŸYòŒ¤ÂSÑ2iæŒ2“`E“À)ln—hVJ G,P£Z!A0
Ÿ‹™Á<E284A2>=¶GIH0Šë”G${çbR1™{#ˆr”eÖ…iÅ©ÆpA½Ÿ9 guZ§º|Î3¹ “MìÎo„íêÊá%ä8¾Ët;¿×€hF¹Ñ&ÎovV?I˜||šˆKwZc[‰ƒ»^å¬z%jßfµ§¨àÂæÕÀÚìÅʶJmM<6D>Z—gAám¬<6D>0ý} L6É6­lªq<ž‹R³ÙÌ<C399> *67Ÿ‚†ÔÕŽÑ
-ón‰Ú¤šaq†³ËŒj@!ú<>u8¥™VQfrrÐ¥[V€k³ïúp8„é׺
ÿjÍÇ´±éXN)°Y<59>Ôc§.a`Ô>v³MjZYrÃÔ:U€ÍÚ´cÊñàeˆÙÀd“„_
l®Âš`yÅ£´a” ·Ëâ©ÒÝk a;åË›[7«ž8³œ­Á>þV`úX-QÌUjDÏ]
æ¯s\U¶ÑìÍfº #eÕ'Á´¸4'89š>È`Zóå:Á¡Îµ8wwµìø<51>]ËB™Áêó£SÙPaæ†Û"z²{`¬ª2î»aÛP—q×±cry7ç7ÿYT—:&‘õÒÌÍïs#˜¯ÜTo<54><6F>tYö…I¡R7å@ò³Ð‰˜Òdô†è<E28099>Ú=,Ñ<><C391>Ç)öÎ{šY]ý7…±ˆ{ÖI!Ñp?Àv&¶×·¤<t·çZcm0zC…yu˜ó«š2X«g_)·ëÆmÀ0ä—
$IŒ¹ÌF²qšQ)Ñ}¼†<C2BC>Ý<EFBFBD>=9VìX®}Þ¯ÛÝ>ÜŹ»aËwªÃìf0騴bízoȆyuîØÐ·»Ñ*N ]}_´'µòbÉl#\/Ô6&Š$L‰`}<7D>äoâ»6
wqZ‰baêÚ!Ϻ;CfÞ¶H<C2B6>Õ^ΊĒã[<5B>ßd”T~jêîèÈb‡Ý«¸«{ÚŠGèK9EoG^I ÅîyÀMÄ5±8«eG«g LJ3<4A>à°
)‚ŒÑñ.EˆÊ<CB86>¤.ÏÕ<C38F>ÁŒ4Z…cˆÃæ€iD4ãv#82
mQ¨ma¸zFp´ÈáߥîEXå]|˜Ÿ„ÉÉ”%­pA'1Â`sFpØ©[‡sgXš#®ë1¾:…G5t<35>àdÙBµ©EÆ—])£9‰˜ºš²çÐÀÀDš†NFEÒ„,³nÃAÕ<>ê×´”h ݃ôÅAÝ©(Õá«æSöžßmr•(˜þ̃8Læ.S[ôÁ†‰ÌÃúÝæìøTˉ·0çùa6EÒ´ÚUÿ†NEìˆâPë^>SNc„5Ù §8$Ь˜˜ˆâP„]¾Ð‡d¢É=¢8ºÄv¶êœûDUbŒŽ•øVƒ%¹. ÓQ<IšÓjQ
:<0F>tSÈýšÅÉDq\)F‡-Šc<1D>­†íæ<C3AD>Ø”=Ä
ïŠVÚ<EFBFBD>,ú9óÖNÑJuÖű>" EËDïþUÙ<—û`0û$„geÆK„}ä%âiýI)0
™7¾˜k&XCü¶Õ†bÈ@;+¢°·æ(õØ+f¥ð¤Ô"€\Áˆü…#Pá…Ê
<EFBFBD>üX°:k y†ùÑ•s!#U]ŽþYíIR;c”ŽI¬ˆüˆ(VÞ(ÞœþtïùA#-0²õÀ¬À´#už~^K¹÷—üËœ#ò³<0E>ýª¹¦æ"òÙzÆ{;^æŒÈ<C592>þ°<k©m<C2A9>Õ­·1ߥ k0yíAŒjrn˜Ö·”#ò£N*Ü´í Ë dKõ§Ý1ÜLÑ]'F˜Íbõh`RŽˆü°_©©'c}¦®PGDägcoYóØg#XW
bD¨Î©cÔeOùaŠ•P8ÇZÞ<òááá†áfŽlÌ O9ÕÉbyàãFt£%3RM#­?0<15>ŽL²«-ÿZ
µÞ­&<ØôøC6c:©æ^cø™£3Òb1ejf|ºüL5ÌHÝ™-Tïïa#Ë f”Y¼ õŒÀd¶`F<>c-xÔÞûw»rˆ¥0˜EM<08>õÀšžKpPõ“ÍÖäÔÈB ÍŒ¼CZ´rP£
ãˆ6†×™=𣵜€âˆ˜˜Œ`}P#±Ä1½ <Ø\·A<>ÄågÿM™]}ZP#øIs¾ã˜ìCj¤1Ï.ºåŸ<C3A5>)P>UÔJ3¥$~2ƒ¼ÛL1ŒÒóöTF_™×S¹1÷ÑúþQ}‚ºFé½ñ"Q0<51>¡FÖg¤ ½ê<C2BD>0`‰}%õ’gôCþƒ`‡è ìqGë¿mÊ¥/<2F>iÕóÀù|Ä„4¦ŽõsûŒ 3BYÜ
“Ìø<>öé}a[W5¶RËä<C38B>}‡¸<E280A1>3ïÀFŽ»Wà)”ŠÇ"†§é+<2B>ÓE¬\`,΋ä eʾOŸZyC·àE c4Ó`oÁ2îêR!btëb5²5Ç5W]3žæôȘiQP¹
ìéxä&ë“ôâ LŸæ<51>â<EFBFBD>»˜l²G~ µ5}j„Ö±².6Ó¬eÇŠ8ÃÂä]ùŒ!Ñ4Ì—+£E¹©;7}lq#MdV¾¹Ñ"¨äЭuLLV4ÃhaYå¢fg@úVüXF¡~cË>ê—%£±¢LT¦ú>E`2»±" (Q^óQ·T°æ<C2B0>˜yÇC-nü,@^<ð£…<C2A3>ˆ(±˜˜ª<>´|¶æŸ®ÿ´«â¹€jÍ>60)²E~2á=M­\YhIvx÷ä=Í(­ÛNI2¾FñØO¶ð¥Ö¸îF¥l„ø<ö“¹Àg:5L½Ç~äýh®KõÍG¿Á*{è'"rv·¦ì´ø*=­2uÙMÑ|iÝŒäà>ÈA4ž˜Œ”‡~21|)fª>æ¾[„Éa?Fˆª@<40>Ô˜ÉQ÷È^{,Ñ1l%$Gªe®ª˜®
\ÑÂÁΠ™È– “ÈClH[ŒädöÜDµÄK½·4C“/¶ÂQ (<28>Ð5Cbœ¬½Ø<C2BD>“£BH·{ôw«îÁùƒ·Éɰ¨pk
“%—FrþühE?<>šÓ®{òؘ°ŸÒv#9¤àT¨Éì cÍHŽžf5Û<17>i­õè¹d—E®f)ý!åN ˜Æ./LfÒ£?|;ZÚ¦+»í#oýÉĶ5^òøg`âMý¡¯ òo¾…%ÏR
×<úãcÔ1c ‹°¾&ûulÄV¥c3yø•`÷9\b0ã1fs|ûNÍ[H©á=ol#ãñÛþ˜¸‰‡dòÅ¢4^ëmÅu¨þ),¯z±ÆoR"þ£ÎÝѤß`YÿÁ‰H¾s`®æŒøQ>×Þj&/â?lT°Û4]?kCí"þƃžÝm• Éÿ°o +6ãee4¢Îq*ü_Sc̘ÿÈRi­ÔÛ¼3õŸ¥GøGŽ ˜Æ\†Øí"&z½%/ÓÜÖn%°cŒ`¸lXDîÀD•#øC4;Ìs³#øÓ,øˆ<41>ár:ÃÑ4¤RW·µ¤BÕÁ-OnÉfѰaGË]"Äá;¹òy±ƒ+ø#=”}”+Õ³mÏþè-Ê i×hüé<C3BC>!ñ…R&«Ó<C2AB>äXô2ÙVªa…<j#ùõ2DR¢¼°QP#GE3Gò5\ÆÁŸÁΦBhyhú§“#‹òæ›/…ôž9g<39>H­Ñ‡ÈaÈû!"߈ ާoná¼c—<VÛèômåïÞ·ŸÛÓ8ÕÇæ,òÃhj@ØKuèI  a‡¾¿}<7D>ÀfÄöÛßE+<2B>/W<>q2÷,{À[&”=¶ÀêŒ " ÑŠIÙ%Lª¶ÕÈ ‚ýÓ‹#üHaꚈ>‰%§¸Ã70iADŸP g¦RQ-'}‚ò%|ѽ/lÌÈ!bnÈÍ"i̾¡“9DÌE­O=\aަlBd¿Jv?˜g"ÌŒ¬Ô`%
Lž©Ÿ°jYQm·Ìâ·(<28>Ó¬ÂÞœÑæS¸»Á•©ÈA""…ˆU¾JüØý«5Rˆ2‡õwêZ—³}øúˆÍà ’ÿ§ùÐ+±½”qµ¥œSó, ­¿›Ñ,Ϲe߉c/8Rˆ¨×"]—·X%»¡F³þ èoõxd“¡¯öh¹Óòq÷äÛ•`½EÄAÊ'iœÖqLi<4C>$"#Ò–#4Ɉ÷`<eˆƒCÀä)éç´ì¾æZ~Nr,LŒ<05>$9U±
Õd]ð¤ƒgy“`$“.žU×fµCrìgð,öéĆ3Oé°Ø““2y'ÒšµHà!ŽH#bÄ3<C384>ÝâªÁºiD¬Óì£Kµr`Ð5çY¤&i•AYqVk¤±†<C2B1>µ]à˜šö`R6"'[ª5Ë0ëî “¦™¤õ
÷$‡í°<C3AD>óÃkr+¥@x†q”/²ˆXúe$¥Ç§žkd<11>±+¤Ñ÷á!k ²ˆ rIå—…iõXòjû£=0¹¾”‚Ųä²À‚"ˆ‰§å—í<E28094><EFBFBD>YD`ÐKÜ0;ç±$¨¾é°M6 蘳,!Iþ(¾öLÛ<1E>P ”²èä4Ö2Ë"]B0‡3ñ\#‰ÈØúEVnVG$<11>i"
äïÁ""‰([Ro±ä½À´œD, Z•<<°)uU ôhBÙ<42>;W-ßD'Ú6 –À<²d, Ê%ݘ®eSžkŽ$"0iC_[…õID`žãßÇŒ'¹×™òÕd–Ù"–Ä 0ñÑ5­“€g é²»Î^¦µq¤ÊBÊzá#>¥a#ˆÀRÝ4$n8ˆà•H 2ÏeœÃzÁYyI-øV-˜LSÄ„éÇÙÒHt,âH•p *넉«¥»?ƾ³Ãc-ÃH2ßYÊCß6Ëñ5Š%¤«/†§?õ D`Ì©m³>ì¶ŸÛX0R¢Álî&Ú“<C39A>b±¿&µy¾¯œd©d$<10>Õ”W˜šeÒÊà[ EK€V·H “ßR<E28093>÷HQˆ""
éÖ¾Þ›ê<1D>#5²m{Èß“3±G˜ Ü®e76z$eËU*¸SÐ! 9l2ùSë#ˆÀ4.¥y2YçO‰"°)Þ°ÈÊÎâõ£›» <0C>¬±É™Š3|¹šòé¶…iå‰@0ö§Ÿ
‘º|Äfïn˜h…~tôÈ6R¿K<C2BF>z
,nð÷×4.k[µ“0QÓŠ#±¥eY50r‚à$²o֬馥j¬8ÆRÓJîm
,̼;)Z²4ÂÍ iÙ¨+Ž$&Äjçî%XgÀ<Ž”‰p7­èÞ1gù·{ÜûæÛÉÛÂ4GVe÷öæ?iNq„ hœÊœiaµGQ¶Œ![˜²ì"ºA[,ö™‘
¤ˆ0R³4­[ñu8¬B„&³‡ÝèP“-RˆÀd-·&°Ñ"…({Ž’\ÃìX3¼/¯ŽÈ!©*<2A>õ)D`E³)¶´4ëg¶$<24>Éà$_ÀdJv'8øHdý{€<>[äw³YîBB÷xu~#È6™Sõ®œ‹£[LQ^¾S@ñ¡%â<>Õ|µÀ&ÿí&G}'w8UîHdá°nÙÖ›‘»ë[ålNo­Ðay-²ˆ ë· l¤È"ã†xRX Ãi<C383>,"0lkÊÞ%ìðËÁq~ÖÓŠ5è«Y„7'8¸<38>Ù“kâeXe/¼Åo¬YD†©ËÙ ŒØ<C592>Rd ô—6 ¤)¦È"ò4­“R+â]ÝMNý°½é½•Àf‰," k½Ë¾|ö$6¿E×ÔÀF<C380>4" ˜ †±ËiD†ÉŸÙ3Äm±EÍQ<E28098>#Žd)rtÚV ˜8†¤iížã]Í–ÛÊ"ëê)÷:ÀÈutÓÈXé92æ:Y´<11>A+“%£€Õ´ÒˆpßõÝl0ÆÐ9ÁÓG_„È.+H<E280B9>ˆP]=Fâð\YD`Râ5Ñ3¹ù+<2B>ˆÀ<>o÷ÏF$Êø
<EFBFBD>T3rJIÙÉ#Mù¤=>Ž<><C5BD>ÍÃH<C383>¤«§è tqL°ûž$˜:g…8“AŽ´[öÌ„Z9D`š…â=0Ó678¶ëÐm¬À|<7C>#ŒDŒ¬&…]a¤fIóN~€ÜŸ"çDûá
Äæÿ\)D`Ÿ)ª`â¤E²TI¹´žõÚq¡öG
xÑ8Ïê…Š(Xw¶f¡ÜQ$atÁt ÖÆJ!Ãn„ .T^)D`ŸûL`m[)D
ÊJ^˜S¹lòå#ŠÔÌV¯ý0y)(N·Á<C2B7>¸<˜˜YܨXæ“a‰4¸•BÔ¡Ù)5<>ɸF
˜ì {†á€¬"0ˆüÅ•BDî©l¾ÃÛÓJåáçìXõ
L³³Å<>«+üxÅ9ôyÄiœOÃi/É5‰Nsª½†<C2BD>S@se<10>i™•Cš«52ˆ Ó'Lgú<67>óH{õÍF°æ`50Í<30>ÃaÇRëHÏ '<27> X·œ8ÿMüÅÈ ²­9Â&¾5&A°ô8+Ð9ÞµEaÕ¬p L#A0sÚ
“MR--†â,^ô4'Ôz$5m·ê!ÇâŸ>ˆjÉV5©œãbëÊ;…#vµlAqÍìÊè˜(‡0ìêÍ6aË,}g[cþÏ88`Zék6Œäæ 8ÝbØkÈåªæ•<C3A6>-ÚùÈÃF<02>;b^IâdAp¸Bε'±±¥1ÜfqhÌÒßcU‰Œ ÃÆ¾fÁZöŒ  }3Ûí¯u„"ˆÓ|Ctra18`™(³OXs;##È0±m<C2B1>÷ä/¶ÈHkÈ9ÊA†MÑ“ºù<C2BA>KÃFd<04>Éþ¬<0-ÄÓ*ÉP½á6Îâ4ƘG­ɱ¬&×)01ú=2 ëRª´-Œìý 9Dk̪Ů;nOŽŒ °¬ï&ò˜$¢8`i°gãrfN$Ì 9¤ÚdƒVW<ܰê80Íäˆâ€u¶çÜ<C3A7>A<EFBFBD>Sd ƒd”u%í&3«OïÜÆ•f<>¼0uDDqš<71>¥ÕDw­†ƒˆì1
ú#©¸<C2A9>,ëí¾‚ÀÚçèÙê²À4…Õ1=°VBØàئwÓã•Ô8)Á/ ü§<ºä6ÇŽÿpÎÅ{Z¬~[ AÍöD^xŸ¹Ì†iª“€ØÜWB»üáãqÍ@<40>„ Žû5÷I"ˆ&ž)ógD²…qÌXrûªgI<67>tßZt5bM<62>½SŠqn7XþKö ŽiéŠ0˜Å |
õÌ¡­ã€e¿Â%0HmËêˆFµâçÎD 8ºåÁ|Ã*ÛcæŸEþ¢ŠÝ|žˆâØv‰Eß½;*IÆãkž‡D†ù¶ÌM_ž1˜xj^é@`û./­/LTa…qOí5fx‡<78>H{rÌT±X§¢ŽŸZÖ$ßÍ»Š
Ï•
&÷º´èzue<03>éydõ*19æl<>Õ¼²<C2BC>lÏ1ÂYŽÍ¹²<C2B9>ÀØ?þC.c]Ù@`+0ë˜Å!«·rŒƒ +Œ|iYÒ`ÁT\…8Ê.ßÏßc©¯(AbÙaïK¡_Ù@@Etd2VVL>ÛîS\XkOÙ@c9 `xŒ<78>l β‡rZA:wnëSlîÞÎó#h˜9ë»k³°2Ù@`ê˜Ý
­°Yé@œ<>:]ËÈ‘Ûé@¶Éó0
ÛõÅ­<17>R\Âv}qßÅIŠ+Ø®/nº8IqÛõû<17>B\Áv}q»ÅIˆ+Ø®/îµ8IqÛõp£Åcû?Ìv}q—Åcû—°]_Übñ(Å%l×÷W<Jq ÛõÅÍ')®`»¾¸³âQŠKØ®/n«8IqÛõÅ=')®`»¾¸¡âQŠKØ®Ç=Ò‡æ~<7E>ôízlþ¶ë÷Û0„¸„íúýŒ.a»~¿ãQ†+Ø®ßï¾x<C2BE>á¶ë÷K/e¸íúý¶G®`»~¿æâA†KØ®ûû-[ÿY¶ë÷-Z¿„íúýF.a»~¿ÊâA†KØ®ßï°x”á
¶ë÷Ë+ÿ+Ø®ßo­81°]¿_Wq¢.`»~»§âÛý<Ûu—ÛõU½ÔâAõÙ¤ÿŒªù¯ìÛ"(Ix°àÜŽŠ«¡z¤j‡Ö¨¢ˆºd;4¢°ÊJ3%ήOŠ(7Ö­ÄöágÊ
%м+‡M¬žT³“¡rüäöT/Öçì¤$$F'ÍØ0J敊<E280A2>£æ/ÅJ¬yí9)(e“õÏJ?6¶Ö(§’¥‰¡‹†!C}BµÁÄ©'õ^U<>ÅŽÏ%kãÏ<C3A3>£K<C2A3>ø5jFÖ¢¥Lñ}÷Bw<42>É\SMw¢ôãðÒe­SßÍjo<6A>Èe¥PÌ*x
ªÖ2¡2Åî{¯Ó굡_±Š+œ_=†<ªµZ8°îÕsa;UnZ·"©/”<>FQóÜj¼(I9­V"D"ÕgË´ÚCmäO«ûEý°|”OjÜ^æ ¬ÎAoÈIæ¶Röaô]TÒÉG¢¬/ÕŒý=*™ìº€ËêýXÉšÀæ­¶ñRïÕ1J¶Š+Mþ<4D>Þ*¥q&ÉŠý­Ö³•ÕÃÎ
%<25>ÿ<C383>üøÖ¼ »Z<æLë^ËwQ黥•oO=ØR™2'Ë
§[½·À4ÌLœ$,Q½5¯ýíÔ23Ù™€EùnjQÏXËm
ŒBTV—l¦u×I^sÕPõA©h<C2A9>÷ p­œrõÝlË?0ªœÕN½¦©ïQ8ŒÊ}S“ƒ¼|
Œ®9“Wv©çY©×D9ÓI™B+¢ËÙ«<ji…
6”O•œúؘÆ$
/
Ê—©í˜Zú§V@3Q«E¥¨:Õ³Ò3ʼnÔ<E280B0>šRyOs*­Ô¬¡|ž“Ú×ÍË‚É|È:cñô*eä¬[¦B¤œgÉy·BÍÀÜG`ÕŽð ”5^Ô±m¡¹Y9ÈÅ*hU*¦q¸F<C2B8>™çÔ§nlêÓz±# ˆ×glTZÕygÒ⩱­=°1—Ô-c™Ø5œ5Éõ323XM<)î­(˜—™oYÕîž¿Ôç“2ö“ªÕmœQ¼ LÚ¬_PSÔé¡R_.ƤƎÕo('Tô#0ªbÈ>dð¨œx¬nïÁÖ P âË顪“Ø1õ«&¤­ ™‰]zLãyT¯ivp:ƒï¶÷4-(@<40>°9ÈE™M/o¤¹“&&ge4¶—°™šhY<68><59>°8 S«))ÃQóž£vW¦pÕg­¢§ø°…Õ,¥ÏŠVÎäƒÃ ?û,NÉ«+ši6 ˜ôRßi§0<1A>Š]90ʘûéÄbUà¦ÖOMz5ÍâT©¯þ?Ö<>À´ºQøÔ‰È¡™‡8•VK¶z±Â¨r®¡s¾pxI<>Á¡²Q<C2B2>:ÏŽMi· KRÝä˜Äc$«h,k&]Ñ ·™ÝÌÑ2Ó„Ó4Ž®¦¯S38­PëX¾Æ
¨S¤ÛìM«è˜,xü$fˬV1u¦ÐŸ´=ÖˆÌÞ4W™]¯ÓÞee姘½iTG——èi*fûÙ}Y¬Ë!ËÇHÀí6µêѪtEê”Z•Î
³7
%/åÕ»ÀJ¯bö¦Y%OªØÃè%ý ìM³ßׯZ¼¤52\Íf¹þ¨µ~ysÒþŽI0{£ß?4|¦c@C+äp{#Ý
3"¾³¨*†¨np´]bÎÀ4{krƒ“˜cn*<2A>ÁÉÔì¦Hp
ŒJxÍ Ž0Mr*<2A>û×5é&£lŸà¦µ£VÝâà´§–óÀÒÌ3lµLÅC¤S™vâã`õ»G÷U HVpyqI ¦fiùì”Y• ^$[˜ž‚û¾DóSÅFG<46>é}bå³99`,¦˜U‡3Ó©R«Þ+w\,Y;¯-ŒòzóÈ©µjNŽAc¶ºLÙ{²*sÍœ0­·î¢ÒêAEêøyMÙŠ^:¶˜3frÀªV•ÃJÎq˜Ê<E28093>îä8Ö(•˜VèéNŽÿ¦æ²+4¥V<W?<10>,<2C>%°q«óË7PƒÍjhwJ­6 d¨âÖx<C396>Y©Ué½Yzl®ALk;˜ÖÑɱLÅÊTëÔZös<C3B6>f
Õàô.£ÔªýÍßÓ*¬n_5°V)ÒŸP(U·w¥V­œ|h Žœ*X•ur-Sèp´Õ[švîã;d¯a‡ £Ô*µ ±9(.u§k ¥Ví/6a³†¡l“Ú¹ñ`Y¹Êä“!ÉGn(µÚp±9Ì …|ÒǨ-OÛlްJáÄáhiWrG˜ú È*×<>l.Ž<>„s<ÌéÒTÜÅ
<EFBFBD>.R—Ù—B«Z­ÂÅIa­9<C2AD>˜¢´·ÍQïØúum”1OñZ_Ö·Í}k
&ë0ÂÉI”,•¡œþž³6Øœ=(ɪ~©%0Å_Ë<5F>a]“Á—æN¡Õ°¥RK*^ÇS
žº‡# <1F>%Á°F@”ÌÃéVâRlô4<C3B4>^Íîá4+JëGsÿj'·%©l0“µQ2ÙœØÝ9oŽ6ë_·7TX•Yu§q¸R‡WâìTXŸ™½iD+M~FÙ.†y8`²ÍZQü 8¸,sjöÆüAywË'+aåv Œ°Õª#dôeËBigU¤QÃ[pGXc@§+%>›†Ê]az­Q£;0<>õá.Ž0+së…Øõ™xQûJÜ‘¬ j@dwq<>¥ÙÙe)^þÒ]aÒ,y<>®B”XÕì.Ž„9_&ÙŠ”{à>ÎÑß0O_VNjy;z­ˆN-KY6f•ÃÝÇ¡Z½üˆÃŤü%Ì‚}…{“^ÏpqªÕp•矠ªeû8Zí 56F]Øðq0 j0Çoêk%cø8fßdV@Ý£uíÀ1?|•¡Æªpqðe´g`ê”.u<>)PßZK+‰{8êuõ n®ar†ÚQÃÃI°/˜¿æŽy;²R‡ÿ¤´ßË óÚaDÉŒo£´ru
ˆWg@…Õ™<C395>“'¾Ã0y^NáàžÎ¥.<2E>D…Õ5<C395>Âèv/M
+h6LS~ò³†es4Üéf<C2A9>³æS
¬Y5c>¡ÂÎM)_Gªú]³@}‡â<E280A1>øAÖ©å,Õ—+ÏÀ0•æáÒzÜ)ájP5—Ó=<vi(!B`Ô>wG˜*ÇÞ_<C39E>²¬Nã§Q¦·øì©DËY œi<>K¢h± §qÀ¤C21% 9€ÎâWôl”cf§²<C2A7>¤‰Ü]+;[‰ÚàÒfé!ˆa²?Ruwp*+rT@vLæ:XuùDjŒªôËâp Ž0yúšÇÓ{LÎv­ÁâÔdÕ¬çŒ÷(D<>ƒÅ±U?ÒŒu<C592>ÏÀÏ#•ÒzâK©cšœÁâTÜþÆ.•<>¸ô[ê,N¡*µtqXÅj0}n°8´¡9ŽIÃdßÜá(ñ’·]<5D>Ì3Æ ÅŒG3¿Å0bF 6F¤è[Yv÷p
0
„œP­-Xœy VeìÜÃÁÄÈLN¯Á ˆxÌâPÿ9|FëÏFиŦE@ʼr`
YƒÅTVD@cÖUÓÁµ“e@^™;8ÏR¢{hÁÒ´7“Sà,1ÿ ßÒ<ÖY}u™÷ŠbÆ:‚ÄѺ"g±+Ê™<C38A>iÐqÊ`ÆQå+{ŒÀR,ÓâþM±úÒúHÌý ÆóÞ“¹G«-Ùë4^ˆ|x÷oXÀѸÃ0‰$Ž0-ir§ŒE”7¢&j<>8™ÅPÆ2¦¬…mèšz6Ì<ÄÉ0^Zª/Ê8œZPÌÅÉÄyľ&ãûÎ$TbnŒðÑ+ŠgˆùqŠŽUnäžlåLiæÀZ°™VðXÝ
íéáâÚ$'Êg`Qï<51>
á*¯<œkaR<gqHæ°}ËÕ²wÖÅMãt¾uàz6‰ö½»ºLúœ»´<C2BB>³ÆIĸ
Š4 …;Áâ$´Ë˜{™—O*û‹“à¨$<24>ÜÃ!d«,Šî$wãä±R"…ˆ,w
{K`m­ qˆHe…³Óéͳ$ÎÁ]^“«¼j`ò»Å9ð1†'=a0îáùGdï±(e,$„Ô*°i\¦¾:D~}‰°bÈôb8°7JÙrŽcC'qVÃ=—mut UÕ9œ… £oknlH¢ÌÙ)œ¥ùب=ï:kÙ ‡38S£¡M¡Á†´SD{~LYšp+4¤^šæÜÌÃȈ|ÄÊlÕéýYŽŽ"Àøäþé«’ Í8lËß# 
ç,;caé0_7­›ÎÝà@*XQÀâ]/ŲüTÉNeð æ6m`ÁS7ͦn>˜2ü0~X-ü)<|Arqœ¸A5q¿}‡CMârÞf@{d3ލ9gmØ <0B><>\¾CÖ§U(—ÕõtY`³ëiÀõñ³Ýï²ôIxœ²™Ä
„Ù>“Ðpc{”[ˆ*D.<2E>6 Þ2Óƒ61'Álw¾fiîi<C3AE>Ö?lÍY<C38D>®<EFBFBD>o”*ɾÚ×N}¡,<2C>93h ”6Íãp²Fz['ÔcµIP8ƒ«<C692>ªSˆ·ºarÙ¬<E2809A>sÓ|¨~Õµbyž+jSˆØXÓf¦£1Ý…é Ì<C2A0>;î³gYs`td*ˆIl8ƒ¬Ñti…œƒ<C593>À kŽÁ'ÉuJ˜Öò kd"ô#Ù7²€äµWsàvHµw§”Jž«»2<C2BB>æ…m´¦yd<>Ñ߃ˆÓÅ\¤´YÃmmÝ¥LjdMb×.Ö?aRÙ˜ k·YÉyЏн+öFÍ•a£4mØ',BÃ\<5C>L±:=¥àx„ÉW$3)ûn½¡_[p5˜wÙ§½£pè¢y2 /GþV¬¢ ê&Qd¥‡“ÐpW£¥FòkFÄo²½;ƒ«±eFÚg"Û}Ë]»âRógº-vŒkp5,mrô?ï¹æÊhELkîÖcI5vîÊÀ÷4íëÂ"4Ôøu[c™HêÀˆù¹æÊd|<7C>Nèá<C3A8>IÅf
ªF³Bj½Ó2TM¶M:y:îÚ.ÛT ª†õ~Ÿûj²
gP5pA
µô­-0yøAÕȇPD4Žø€…£kOÕ&»
+Ë<>WC.È"#ƤW %­LÎÕ@)¦®ÎÉ”æ›#Ó¡šµ¤<C2B5>Cô®F˜" ¹Ê)½Ž ½UEJ+Kp5Â!¼[k0Mùàj„I]`Î "(\AÕ@/2÷käÀªôÅýaÜ8Ç>L`²€ÁÕàÞUy<=šÓœPhÛQZ¾4å4)r`s¤àj2»ÌE.—­¥”Gp5d÷`µ÷'4œ‰àj„iùÖÜÞÓÝœ÷d„Í¡yìÄ*˜ÚÌîÉd6W¤÷ÎaRzì]ƒIw³ïíõ|U“Ñ5ýàþTM6º»¦
ª/šˆà1¥^~<7E>f2ï;É5Òb=
“%´•Ö><3E>¨ªüR$îe=‚«֏в}¯ ÷éÄmõkF?ر]<5D>±ò9W#LóhxMJ6[P5zA3¶Ù°!wÞ¹©„b/<È4ý½:eꚢ`
0«Ö áü¬ÃÀ¸ês<C3AA>¬Ép)pQ# ÅBÁÕd|8ß6Lþ?ÓÚ
ÊÏõ»÷ï<C3B7>“z!yÌتo¦µfeÏÔ?gã*ÈÀÌJs`Šö‚¬!ä’)<d: “:æÈ·£í`eÁÆŒ|¸ØäzY©(¡¹Q“ÍIæÙXð'[¡µÚSúÑzö¨PÉ´­VÐÉaŠÒô1Ýûr¹ídM!¾ošÙ+¤$Èš‚-C[r
L67Èa ŸÚy×<79>sCð
¿/m<18>±Æ;[#,3<>†qišHŸ¬RÎÖ“uH«a¦H0èHQyɳ˜íì£<C3AC>“Ý"åacZKƒ®!Æï—ÜwÐWà îâüBØ•ëm'Ý@´ÊÚyd+Ù? 5ÜÃQH/eÐÏ<>[S,ÿG½Süó´´ç<C2B4>s uO70…Ç3LN1Ë/_vmLÊl
¼n˜Éç9Áó±sn„)à’“S`³íœB€Ô<E282AC>ð++íœaƒÝ£<11>Œ§“9Fal²¦@MšŸ˜Ü ã¿ÈÕs¸bb-Úθ)š $%˜Ã ÄŽHP5$SI^ß²°}'ÜV­<77>±Ö$ã¤ýãöªÁkö¼ºĄ́;á¦ODöÜ
<EFBFBD>pSI¹¼ÅÏÔq'Ü4™‡¾F`ls:Wƒ»Ýê­9
óØ 7`š%²ü=0‰ê\<5C>QŸRÍâoYæ:º¦À\fß•¶ëN¸<4E>£:Ø©vãPX
˜ÆI=k}'Üð5­L—Dþ|Þ 7Pù¸7±rÜ2vÂ
Øôm¡À,”â92
ÎM» êÖN¸5<>{Áä–:WZ.¾Ö°´n<>·¨ÃsŒ)ëÔ
®ì¶=4Š\yÍ÷p`ôb$°>w¾
ÌÕÃMQ¥ê×ηSt3}L«eP5…˽5Þž­¢ß"g1¨°u;¤À45³»8…‰+{<Û~Oî@P5tù,YǰLðT
Xkð )0ͳ<C38D>qÓ¡KåqÚö·]Ⱥ_7‰lÃÃÍweîÞ2n:­rÉ}"s¢ÏI^gHs—ÌaoH²!XÍÁ¬²{™jXƒ ²ŒÄÁ•z`rˬ±œ¨µ·œF%bÜ)7`<60>,87ÂäY#L1¹ÂñA<C2B1>žþ¡ôÝ#y0sÜÇcŸÌ·ðÀä“GÎ
;I•yâ3<C3A2>-޹sn,KIs«çج;çVYAÉU†-Ò¬ó­îäÓÐ:e¦<>T¥mý
¶wä#Ê…ÈŽi]GR“£97`«h,}V¶ôéÄ^õoײ²˜˜<CB9C>i<EFBFBD>öœ KRò!b_«íœ6Ê4
G`ò*Èä2D=M^\ kì”°©Å¡z§4Öœ<C396>r#Ln“å¾6çN¹#!o¸²GXwÊ
˜†ñpªl;å¦@„£f>iaúÑÃÇä°iñ+°‘"•+¶ì.gÃØ:ÝY7`…ÝíFììnÎà@#î2H_»vÖ<76>0-g$¨à»µb³ùØI7`ývZLJ$Ý€±ÅšÜ Y•wÒ
•™Ee9& Š'»J7Â[þ$ÛºÙa‡J1<4A>oÚ€ù*Pü=M ÜLNòÒꃶñÖÇκ&'MËÝr.Êκ+Ù‚›À$Z9`2¤}©4ºÑ[áæ<C3A1>š6v0˜|±`rX%’í ¤À<ã"¾^Ýä¿©E<ï´0Er{`sî´;?¬,>e;ãN»ag†xË ÃÛëmSŠ£pÀí<“Ö¹…J <15>:6ˆ0IýÇNºÑb&ù³x8Ó‡å
…Ÿ#LÑ <19>†M2Õȃژ£Öj• 6ã=}6<36>arë<72><C3AB>t#L“™Œ±áçËšÙ-D_¿v
Ópù²00<>ȹ ðÄ éBÐ8`¸ØSœ€Ãr¹ZƒŽÚ F9…Õ±¢¿ø¾37ƒë[‚ÆkÄN¶#¦¥+h0ŃO9ÈwÎ;ãl‹½“À<‡%û{egÍYÊÂnr„ÉwìyCþUÌýVÝ&åºí„°îÙ^†áðDÂ
)ž
Ñé—¹@ï¦Õ´ì„°ÍÑ9Fc¸8“-¶µ½9¢EéN9â=´³¸ã=˜¶;áìWnæ Û¼ï„0RK²k¤°žwÆ<77>0ŠqøÜ¸0ŒCeË)‰Aĸ3nŠó¤FH.Î$ã<C3A3>fû¾©ˆ±íŒ°Sê3`8ïŒ0yì%"åI
ûθ)÷IC@ᨸu™<è~ä]ÛòF¯gËdã0Mx8žm}dX!a;X°faõ
¬ß*€I—b¸Ú$í|b[hËÐA
C¥•ñˆ_v¾
þ¯ÜE-6=°ºv¾
‰|wlÝj v}€fǬY
áÆ(ŠplS3ØJŒù8aºz<C2BA>8`š¹êܘ¾#‡31êœðž†&Þ7`R­83°qìŒ2\2Œˆ12n€8¦T£¹E$»YœyŸœ®9òYĆTF!­ì„0ý€K<>±E[·±Á½èÍc»E¼¸nÀä­ésj`± â®@@«<>¯º<>pcùC·3 ÍáLãô
Ö)K*†ó8Ã`.N¯Lͦq&¹ïÆVq¯Æ<E2809A>·“<1A>ÄÚ4Î$YŸO¼%>휰¾±ñ°¶Í!o|•è1Æ<>sÆQ˜ê¢0ECÅ<E280BA>¿”Ç>}
¦ÑÞ,KÔ/õ[x^;鯰[ò3˜^Ú,Ž0ö¢<Ý]¿Mi•Íâ,8ÙWÛ…¦j!°¢ù4È|1LacÙI7`•»,|Öד“6ýXÈ< 
 X HÌfq€ÈÏsˆ q§ÜAÛ™kÔò]Æ<>LÛ'9°H¦Œ<58>ùOfÎ8mGÆ7ö6¶Ž[Æ
˜ÙPÿbÆ[Æ<>°d»V30õl<C3B5>8vv(<28>BÆqK¸1þ·<C3BE>_Ø(·„°IJ¸ÿ¤TlÝnHÀ!4õëõpÜ'x<>O ÒÕu“³,O°uoDfZõŸ$'óp³`ÌGö=F°:o 7
xuXï<EFBFBD>
<48>§Mâ[29}4[äÛ,¸ Á˦p¤jZ$ÉLN̦pØßζ%f[˜;ÝÆ0§/³Ô/·7°
b}?S&ƒŽÝª­`vÑí<C391>©}KžP89œé”ñ2K­%q?—ÙØ<ªçœ€­é6@2&+w<77><4D>ncisc®uÅ'Ž<e™3£æe>8ß´9ŽÂ*ìﮯ¦ëo¼GÅ”QýÓwºM±#¢û ˜BÑÍá€5(~ïJN{ît°%#j@Z66…ä¾²alYäã¯q"cú9n0µðoŒ+ÐÔõÁÁßßÙ6ŶGŒò ¬Ž<C2AC>mcX³S?<3F>Éâþ:3%;gV×0ýuítØH+Æù‰ðoÀÖv "pÀIÖ4¦jÑ
BÆt`šÑ›Á“í9¼7m¿t§Û€Áµx¢D]ÞÖFžr
ægf…ŠjamkSÚ/+%Œ(<<0Mk7ÏØ>Zß YÃn1…ñ+}2V<32>RmˆLz®50Ÿ„ÏǶ6øE]ƒÍ97<39>c;·ú­åX»ÀÌ/zåþ§ôñ;»>o¹¥ZG\†hôéìÿúÇ¿üñÏO¶ð÷ÿð<C3BF>ù·?8?<3F>÷9ùôQ~<7E>Tϧ£òœ”ç,Ýc­ð‡G/<2F>™7YúÓ²(¢=W xôº,ãyYêq®þðèuYæó²pÞõ±zøÃ£×eYÏËiñXCüáÑ˲觞…ì¯ÇJâ<0F>^—%=/Ë$ù¡žøÃ£×eÉÏ˲깪øÃ£×e)OË[|.ëýøìuiê Òp9BæÚ<C3A6>nÒÜ?{]šçm¯œòëØÝæþÙëÒ<o}S²+4R¥Ö–æáÙëÒ<oq½Îe¿Ÿ½.Íó8YjˆcKwÝÒÜ?{]šçmpr÷ô¾ øÃ£—e)ÏÛàd'}ªÔnÂÜ?{]šç­ðÍ©ú×;§ê¥¶·Õ• ôå…?¿Ý8ôË}zÇk*åÉvÕÍéסÌmC.K}V;¨ØØN,l]¸öº,/XWÓ…ÓeàŒÒ{w€4/XWSÇÓ¥àhÊ{w<>4/XW“æt98Ò¼w'¸uui/ 7iÞºܤyÁºº4<C2BA>—…4oÝŽ4õûjÒ<^Ž0oÝn²¼h]Ï—‡0oÝnÒ<ïå†4<E280A0>ˆ4oÝnÒ¼àçš4·ËÄãÕ;ÄM|[_ð/·µè­»ÄMš­ïùrq¤yïNq“æUë{ºd¼®ÇG/Jóªõ=]6^×Ç4¯ZßÓ¥ãu½{׸Ióªõ=]>^×»wŽ#M{Õúž.!¯ëÝ»ÇMšWíïé2r¤yïr“æUû{ºiÞ»ܤyÑþž. —0ïÝ
n²¼h‰O—…K÷î7Y^´Ã§KÃå­»ÂM­ðéòpÉòÞ<C3B2>á&Ë6øt‰8²¼uw¸Éò¢>]&Ž,oÝ!n²¼hO—ŠK÷îGþ¢õ½].Ž/Þ)ní¿hoO—ŒKŠ÷î7Y^´¶§ËÆ%Ë{wŒ,/ÚÚÓ¥ãå½»ÆMmíéòqdyëÎq“åUÆáñr‡·î7Y^´µ§ËÈ<C38B>¢zçr“åU÷ñRr£>Þ¹ÜdyÕÛ}¸œÜbÆ7î$7I¶¥ýÓ\Ù/¦rS‡¯µ<ŽWZ¾“1÷ñµ2Özz©õ[Ó?Y!â«­ölË>êuÖù鯲?qßãâïúƒ5>¾ç˜/’ã[~ù9n£í´àgK¤3?Xùç7Fÿ7ÿ)Î\þoôþRœgÀüUàáçÚü&Kæ)¾Ë<C2BE>¹HŠo2c.’⛜˜‹¤ø&æ")¾Éƒ¹HŠo2`.âÜ—k¤ø3+æ5r|—}s•ßåÝ\%Çw7Éñm®ÍUr|—es•ßå×\&Çß̬¹JŠïrj®ã{û9NY=ù|^> -ŸŒíN‰×çTì+d8'\ŸS°/á”h}N½¾D†Sõ9åúN‰ÕçTëKd8%TŸS¬/á”H}N­¾D†Sõ9¥ú
¾g®‘┽ý[B÷5Rœ²¶Kä¾FŠS¶öo Ü—HqÎÒþ-qû)NÙÙ¿%l_#Å)+û·Dí¤xHÇ>'h_#Ã) û·Äìk¤øŽ3¼DŠÛ®Cäé]áͽŸþ¢|Ñþƒ]*uP1`\°»²7¬î[}uçêéà¡ÑF2Ù…
œ,Ïågû÷aGð±Ýîá»yùØìEÌYÜ„\á϶y:ŠðÐø{gžÑçÓ„{)Þ<‹ðŒ§£R¼wá))<1E><JñÖÙƒ§¤x<jð(Å[gž‘âñˆÁƒo<>5xJ†Ç£<05>B¼uÆà))<1E><JñÖÙ¸%xhÿÕ3O­x<C2AD>GÚï,Á3RœŽ<HñÞg¤8x<>â½³OIŽ
<Jß93ðŒ§#R¼wVà))<1E><JñÖ<19>§¤x<ð(Å[gžò‰<1F><HñÞ™€—<ó‡æÞ3?=xhþ½3OHq:rp/Ä{gž<>átÔà^†÷Î<#ÃãƒÞ:kð„ §£÷2¼wÆà<1E><ÈðÖÙgdx<Jð Ã[g
ž<EFBFBD>át„à^†÷Î<#Ã>:ðÐúgžh÷tdà¾õ÷Î<!Ãé¨À½ ï<>xB†Ó<11>{Þ;+ðŒ <0C>GdxëŒÀ3ÿ〇Àÿ­³O1G<><Å=<Þ9 ðTtwŸúÿÛ½qàyFñ!ªºŠQ¼ËøyFñDx<44>š¿„ñúêÖ<C3AA>G9®á¼¾ºoã$Ç%¬×W7mœå¸÷úêŽ<C3AA>³W0__Ü®qã
îë«{5Îb\Á~}u£ÆYŽ+ø¯Ç»4Nü0öÕ-' .áÀ¾º?ã$Ç%,ØW7gœä¸ûêÎŒ³W0a_Ýqã.ì«{2Îr\Á†}uCÆYŽ+ø°¯îÆ8Éq #vÞK}à½ÔGRì$À%¬Ø7q<Šq /öÅ<1C>R\ÂŒ}qûÆIŠ+¸±/îÝx”â7NR\Á<>}qׯIŠ+²/nÙx”âŽìá~<7E>Sû?Ë’}q³Æcû—ðd_Ü©ñ(Å%LÙ·i<Jq WöÅ=')®`˾¸AãD\Á—}qwÆ™;¹€1ûâÖŒ3uqgöû}çˆðçY³‡,±‡Hì¥6©R=þcÕaÿëƒûÚŠúy䃅h§ÿ[Y)«Çcçfë²2)©—iç­ˆIî^¥¬¯¨/ι%©M©^•C-T%·ÚT9Q-rX½ÀzŠúâÜjЩêÅ_…hGÔÏ©©<C2A9>Þ£bX”¯æ aýŒâó)°µ«“)ÊÒÅ_ý5j
Iþd‡ËPï±k¿pP{teI<7F>p<EFBFBD>òâjâµ»¬˜ ¸Õ¥Ê‰ZŽ^½lò"n<>Q^<
êTÞØ(³Ym•|ŸÂFA¡(/žê*R´j´À(—b…©2„†à8a<E28093>Jä^˜*S•ˆbÀ^·ÌŠ.Q+J2µÔÚý=*
Eyñ|P•~ê¬
X¥z«3·:­ÆŸ3Åð2õŸèñ£ú÷Qûo—_šÀ¥IÊ
LDaª…¾UŽ~D}˜]^|Qw“¢ÞV.L:u©V§U+Õµ<C395>´jÁþ
Ó©ÁÉr½{`}íòâ«RQ5Ív8è‰(Mµøt+íSëÇ./n¥ÐVSY·Pƒ¶ïòâ·“É)°w}ñ¹´šèŸ5ÿ¾fÂUäÃMTjÞ^¡Üu³ôíÔªËYo¹J[Ç.0Nm¼AÁ䥅v…ñ© Í,YVQ
l¦]a|fjñ
,Ö4<C396>w…ñIõÍò4JžF…ñ¡ŽW‡ã8Ö©Å©¬È"ÅÇ}¦P…¶î
ã㮊)ù»Â8õ%¥~eÎXëQaœ—C}ée9ehó®0.§UÖkA:Ví¤Ÿ@ÕÏ©ÑN·÷¤˜x}PXCT½9j íã½±à÷_°(xõ©z<7A>¼d«ìý<>šWQŸJ™}ìzR`cìã<>bš•õÂߣsw‰qN×¥[1M°>)$Õèe0ÏM|*ÐÖ]bœiAA¯I &uöúTV”ZÃïµÖhû.1.;Xõ§Ù\(@ku<6B>«U®¬f+í÷ÖËOWÉ]—_nu hõ7¯1ž)\JT«8F™^¯OEm¯%“3§·×¨yåõ©æ´Zxk¥ÐÜÕI—æÒŽjj‰GÞgñ3ɬ
E{`#ï
ãYsW¦S¶ÃRê5w…ñ<(›ØëÑêõV`<Ë×¥ ¶“\<5C>Ò±wÆ»LCòb«`ê_å©fÓà,‡¨Ñ§Yo§5_µ^̘VÐÙÌà`è'•­¨2˜Ó¨/.£<jŸÔ<C5B8>£íÚõÅ1 eÆÚDÚºëW*<2A>¦Cýìï%*^Euª†S1²¬E
lt3GËT¬i}£¦³aʼëËÂtéIw‡¬Ï]_\V„¢¿Q~1AË®/ÞØVEë¥Öˆ$ü˜N¬tcx¿PƒVíå©ÌÈLø€É Žb§ÝÜtŒÚŒ‡¦¼~·Ô0&ï®/Δ§ ^î-0/ÕŠÁѼ®š@ÕKÔ-ŠÑÖ¨/.H¿ß©>eó¼þ¦¦u¥ìpq»H-Z-Ƈ<1C>‰þ™/”T¢ÕÄðúšÔ2c²DÕQ:6v}qaZ|ZL
Ñ–]^\<5C>fEŸ>¨C»vuqMùƒŠ®-Ä_”—<E2809D>ê⊬º&†½7å´ñ+fm(V­%F<>°«nnŒNéàµ_Zy—F
Íâ•fEhg”﬑­ª©<1E>¤<EFBFBD>ÒâXKÎF*x2,[ù8/½) w§”Qm×F1:w—£»kc³¦¬Áðá¦íصÅ;i5á;°¡WvmqaôúrfU¬­Õ†G`T?[­û!-êC6ênL>7Ç0-XRµØê»¶8X£Øqô³¬kÞµÅ;(¡˜–Ù¨-î¿)ÏÙ§ehË®-n²è «3eh)³n&‡o˜•zÊ.'¤wmq°jÕ¥[`#íÚâô™><3E>o2Œú»¶8X¦üªk4uhË®-Î8H`ÍOk<4F>:´s×´
¯Ì
&iîã0îšÓg¹¼(«‡juY”ûô™@!Ú¾£f²ETà lå]\œ%ÎŒ²»B´¿N¡Js;5ïÜ9§mÙÅÅ…M"õšB´ò)ÝÅa6$Š$—€ôǨ-Î ²p^¶<>ÃÐ,iîá“öSð5Öû®-.L†Oë£@!ÚÕÅYÛåŒd/Ƥõ'ª‹Ë ¶‡ª^¢ÅpƒÃ³z,#LkUËÛäô„¯ì“<C3AC>B´¿Î)'êÊIôu™B´i×Ç71'0<>Àd¢¾x'Ôa<C394>õ/<2F>SSvyqlŸ¬ülqQ‡vÉ<76>Na3;9x ËEÚ°¤U*Ürè©â(0.LЬÅàQòÔ+Œw7g²™ec}WmÅt«GŠ-µõCâ²ÖQc¼a$ÕÇÅæòùPù²ÏêβA}Eu'§Q¤6na0PãÜv™ñf…—¯nÕ™½
ÝZÞG€ÞuÆÍ+ŒYbÐ,»Ì8NÕñ„Ž»ÎxÙ9X¦×å6D¡qóœéœ)¯þØ•Æ
Ô°G©ñFØ'—'‡¨rëÝ<03>gwaIKwwêûåoŒhR?TbeQ¶h >1Ê<31>7VdjàŽ¾A
»ÇÓl E_ñ&%âo24ÊbºÒ©W><3E>„鎹ƒŒ-tƒ}Š&¥†@+Aßà˜»ê¸ÅNZü½µúé`6ÌÛ#çE¦,§
Žc×o,0³nAÀd|ÃñÁê)°;Ž(UÊã
]AO<1D>w}dˆ0º=FŒ2µrýÃ÷É”D­i
üÅÚÅÇ I)²Û³•jÛ®>.¯<>RäÇ …NÄ“Q~Ü<F…^L—"ËòÚvýñFép}ذ8Û@©<>Ó<€Ò&Üšè=i× '$WHG<48>µAïNôàÁJÙí_BL¹«<C2B9> lÔ¤¿c<>Íâ–ö¿:ðG¢ y%e¢iN¯µA™2'{lϵ‡D3®PÌŽ£â¸2¢82ª<32>W~BQ8bĦš/ÄsE*‡•®©ó=æÛ«µ‘ÓØàì»yÅû¬5œmùHòüsrƇˆS ËDÑÚ±k ”‹!_u¸°T­¹@)²æôìkW#W ¢×(+ëX¦uT#¯W×håÐt<C390>2hQ޼âNܵVúK©X³M<02>qòÊɶ<ƒ÷Q\¤?¶y7PÞO?ìB->SQfÝ%ɹâ#©7ómUoö%„µ,G|J³0ëW)¬ôÕkF=twŒ*Ô~æ:ÇiJ¯‰jˆîÔq“Èlc£ÜÕ%—‡Nñ£ƒîÒÒqxQy
³lA¹<EFBFBD>æüx­à _±Žꚉ6Wð?ä“Tjmç<6D>µ¾K“eßoµÉQ­,¬¦
V+2Ì­…™Ý ü¯]<5D>œ}äÿ÷X»
§àj5<6A>ÍÖP÷¶A™ã]Ÿ¼â<C2BC>5쟃É
9G…r8Ö*-ÈŒ™¬ê1AA—
ÕRø<EFBFBD>Ë­D9œ‡Üâ7&`Ò%†É|Jûc$õCšq»H¹š—»;Ëš”ÿDPÁNW_¬ ï·Rår'м¹4ë[ÞµÊ3<Ëê
—æ­(sÅÀj|4°ÌpDŠ¥<C5A0>”©®®µj¬´A­"¶¸‚å}¿ØÑü(W.EƒÎ—Šæ
N3KÒÜ);ÀH%²,=K«@惼±ÖnàÈQ±<(«„tP3@ŠÞx±À®È)Þˆšå$°h@G
QŽ'”qžB¶X×ês£hyf!<21>`u¹êT|¶]µ<áéa¿jÙ ”“€}•=• $<08>€é[vÝrÙïѶ°çšø²X b Û<>|Ñ(\ÎV<C38E>|DÜ9‰Dwår­­Ô³m<C2B3>¾0Ÿ‰E“ ¾ÅLǼå]¼<A}AU¥¨‰$}Ä(É9 …éD¯@™ÔºË—Ëç€ñÓxæ
6yî1ìô¨<C3B4>ö+Þvs9^C?ª^¿<>
æøz•<‚˜ë¬ù—š!ж®Zs¾K$oW««0ôGà4®Tv ¶~AÖ—v˜ÀîÛb©Ô¢pëuY°˜ZŠbTË«˜ÑÞdýovÍ2éì,Ñbja£9iÃ<><4D>7ÁõÌ<C3B5>õEÌ'¬¤üà4½Ãåoèk<C3A8>t2=X7Öš3Å£™ÓÔüNaPŒÙY¢AŒ¢Ÿ(áe
«æêw,†Å‰Y܈I—ÓDx§Å‰iÇ2û_N±Û!Ö¦<C396>MuKÂ5pnÀ1õ“¦µùHDQZ†ÒŠù<C5A0>éU<C2A9>/þèF6©µ0ª<30> t9U4`Z2ScnÌ÷
é/ªÆ\pH1©Œì$ :6äåèkM'èy]=…s-ŸÈ˜ ÃøH14B­oŒÜ¼#
«>E#&ÈGGb-øÒŒ“åC®H¤æîL<>iq?œ`2LjãLÚÂä9¶Œ°A¨fD<66>“ßáLÑb<C391>Ôl+acé”+€R<©5GáK8†„”Z¹Ü1RpÇî<C387>Üÿ
ŠÆ+¸"ͰÊX¥uF¬h±3DÚ¿L·œA·]ÄÒë¶Èâ0¾2ÆN0¶ÙlÊË<>%ÔŸâdwŒ1iBÍî„V^÷dH؃ŠÅ*D±æØHv¡â:ˆ’¤à‹ì8nP&%%3@ÆÀËÁÜKb·dÜ`Œ±ËUf?oP¶³¸c$sÉ\J·<4A>Ô$ÑOºc$C«Nžˆ@Më <20>س• y³¥<C2B3>ÐTfÇÖÜÄe;“Õ
Ú(a: DÃÎhžøþkñEAv¬Ôˆ¿Ù:JðFàmÍÛf9Í1b¥)¸±€uÓµÜ1Ò%½•ãS@àd3Ð#[Àš†¹û<íò/Š;*¶ô¡yì7Á±.Ârõ°D²L¹åâ®VTý"ËâÜàÀ{2×H`ç¸Í^Q<07>é É6ô[–¹ έ(çOÊæaÀ9×à<C397>2S*(È»MÍaŸ´ÕœƒÛN<4E>…Ýž`‘ð´`µ•o`U„è®QÂ"¹ª&ï}†k$+Šç²bEáÖ;¨k¢“N¸¼Ê~ÎvTxFÄÄt쎓ÖI—Ý3"¡½„¤Š{¶g$Iàpãè+Ã3\‚ÆHNKH­Â5Ò”h¬´ñ«ŠrìQIûdÁòÜ ÌB0I™`zÁáÆ¯“®îž‘ü?$ìÛWHÞ„{F„<ò `ê6Èn<C388>{Fx޵Ø6ƒ¾L÷<4C>®#v¼œ#™$gTA¡üü`š´ŽÊhîDfF<66>ø@ D2I`<60>-U¡{vßHàÕˆŠ
â »oD0Åš7b<EFBFBD>Ÿ
î ”Vi<56>
o<EFBFBD>-lEZî T´M”wÂ$0<>Á&e¦Þú5Ý6B
3Mxë8c-H3<48>qÙ¨ûùIK¹+—ê›”- ÓËÚäÞZ©ƒ
œ¼ÞíÊOâÒd@wNÏŸªã¦–ÙøÌÛdR†ñHé6
¸TJlE,˜Žok°•2ýMÙ<4D>Ú¶<D¦+¸$aì ÏëÉìY™iH %«P7èĦ‰ˆ†s3)S±©"îQ©>6/Ê5 A&nârö=&Ħ3dwj®3E \ì¼
Â@ܽØ7(ãdñÞ¯­,<2C>
²”Ñ¢¶ áZ® =ò†#¶¡f˜9&˜d|%0'Mœº1­ÞÉœ%?ˈý» 3±³j@…À±
/¼ðšÍ[”ñ—&E`*_GÆÉ$fø«>~<7E>mA`
îºlÚãËmɶ<b® ŰUqi<71>ô!¢h6+ä7Þ@4Ô\¦d±¸Æ9ÅZŠÕ#<23>P<>˜±œŠ“Ýi*ø¾wí Ái¤Ê
¯Àòx"‡ÈBþ…‡°»NzG°'<27>“}¹º.Bî<42>EıÉs]"§Î÷að™ÿK­<15>ΈBºÏs<>3#ö™x|2åA&ÁO(4•<34>i¬³™TlÁXЦoàª;•H 6MÁjqZJ „Ù¦<>öħ;™¶BÒ4ß_Mx™¶Ãé|R±pögƒFe;Ÿ$ÏHªÏ°àºm>I ì_³Ý(åï¡õ¦þôì’”,l'A2Kò%¬,RÅ rÖèÄGB1î„"<22>Ò^ù¢¾*:/etwÔ&…}NFÚ¬»ÑIP 1ñðykÝ9E€Ss(ç(½¹×_—^vßi…h;«¨ÀqjA÷<eT7¡$甕7¶ƒ,î<08>„¤ˆPÝÞ “ßÍ):unBIs±à÷cƒA{çÔ¤¸™Z†`Kî5jh{h4 ü½ ”2:žRÌ
<EFBFBD>Í Ì.ÀˆqNØœ|àô=°
Z@ìªèÅ+±™ÐÚáI6ƒ5)H@ÅKÎ'<27>iõ†ÑsL“"¥à“²¬ÎìΠlqðI€Òº­ærÝ}ÙÈþ«ðË>`× q¯I ¹‹{-ÀwOugŽ®™^Ûµâ|‰<>Ò©©* ß]"ø$#åÈÓiƒÌ^÷šâhM¼½)w+¥¢Ÿ9ðJ4,ôs¯ PIܳA| ÷šàcc2&ÿ¡Ý¥%a<>•6¨Þ
BI lÖT׺Õ"ß¶÷ ”a¸¶acË;å~1å<31>Öjw§™ƒPÔŸf°ùFÝÕ<C39D>tdIaòŒJ̼LкPlCšf¿¾í´£Bä/óôn¸oM“+¤£mƒšÆ(Æþ`puæ¿—<C2BF>xD>Ve…êáÀÏ園'kÉŠ¤
Íúÿ÷6»ÒôJvÞü\Åwz•ÉË–ðDê™ái·Ý#Ý?àõDkWæ.Ÿ}ª²w<1A>î~¿\;d0¸"d¬Ä#"äRX¶k$ë³zLÉÀÆWù
ØY\Ý0~ÕÔŠMH貦}äV܇™ˆw✠PNr
Ò¸t^ÙGgö½»ÖÙ¶àLhZ^Lr*<1D>ü£Ü‰Nê ¬ûJ@d/l3¬VŒ2Sg ðfô¹Ü‡´r<C2B4>2.Šç.PY ÆÄ¶Ö®þ ­´ øÊCœD'ªÃ‰R%ÿÕ„cJ[áÖ19¥?<3F>è¹¶Ý2l¯Ã/Ïv„ä)<29>È:˜Ùïÿñâ<C3B1>2uÎHÔe¶c`ô¶ú¥ulåúÀj]ÉHÙf¯|©õ£¸«+ °=N hun˜ØÍìϦδò‘ÖÄB4”Öá€8cê@#‘úµˆF˜ <09>4Ê= #>WJRæÐš´¾×´@uN„™Ë û/¤Åj¬¤$ÀÕ“¶`bvv¨}adóJKÌÉ|©ˆ3šŒÈ$\$,e"w¯«GÊX Ø]DšØñÒÜÞòh|¹ÿ¾FìµÅÏ:½r“弈<C2BC>¨â¾­Ë Õ—9ftÁm]ÙI™*­®8*`Ÿ+= P
ÇggQ+s][pú3Ë[˜z9M€ Ɉ+¢Ù9nÝAd¶øþ>Áÿ L¸øìŸÊ¡‹@ á–á¡@kA™©-pé"Ò¶­$%öxdd<>Æ ùñn™Êdrªi<C2AA>s_iJ€¥ÏXG
q…a¦l¹Ýäô¤J="ÌÈÔˆÉW¤xs%* LðÈ÷vß½ôŸMlNm5ÄÁe]©J€UþâÞÚÙ
ÂcÓÐ{zîÎ>îd&<26>“DÇ +©uÉ5¯tcÃä²B Ü2 LRôÀüó2f%¨-)·ld»Q"•àÂMþ<4D>ØS¤+<2B>þ&±<>`K$¯Š°ç g¤^ä•®”=¬h iŠ,EŒ 0wvú£I<ÕA&@Ô6¹'‰d[éJ€ò¢5ÕãM¼Ö Kä: 5¼†,à´ò•lêrØ(êp=`ŠíÈ¥|d”–ë»Ò.U­<55>nѵµ"½Y;Ù®XóC œ0ø
©¬G 1ùÅš“Á—Æ<E28094>lVÜÕ1&v9e!5>ÏÉZic2[°ìãR#Ædû£$£„vTiÙ¶2åŒHËçÛ£ ì1&¸«+a ŒÓE³”úù¨î£É­
e. .W1er9)k‚¤º¹ò•9ŸÕbm8Õ ÕY³Çx¸¯|%Àj™™ÐJY,«$O£ïk¾nLÊú²JÜ¢Žn $/u[VI¶¬ÈÍóÏ$ãSþ×¶¬ÌŽ…HŠR^V‰¬<E280B0>YDnèX1&vÔ´L”ÕfÁ<66>^1¦AæÿœBàtÇÖWÂn#6ƒÒð^ÒŠ1
òÄ{¶8çJXlƒ%(:‡u¬1©ê%0¶z\ätpÆçBƒµÔˆ1
±™íï…éËVŒiX¼cEù¹&yj‡†#kÍ®ŠÉs™8÷"âS¶xmÂØ"ÈDœ"[ã<>ù<01>0NOYßœ„úÙHË8MN¡•<>®Ë6Ÿ?c×ÔîÎIsŘ¹ye<79>+@ù_+Æ4èâÎRº@£OΘ¦y(eO)[1¦i”-NhÇŽÜ6q8cìZ¼ËÙMÛŠ1J#mˆ<6D>I»q¨¯Œ%ÀL?‰ïD8Ú
2±jpÓH,?ÛJµ1Pì<50>¤Då²Ö•±ȉ·
Ò9´2 $
<04>ue,<2C>É.šÁ‰*¹MÁ—HRµC}i<>Àê)KÛ´`^üj'ûv…˜Hì0‡úZNÛ&@³¹ñ!x¬<78>”%¬˜Øp v×™§+gIX"E$ìVç€è#gÉØ•ÝÂÊ剨ÐZŠÎ<C5A0>²Äua°ÍX-þê#ei²_±=8ÚØÙ3Y1¦i™-·°Çi4Ç4x­Ä¯Êu 'À-Iñ²ø{~€e<R,=aÿ4Pœc…˜å[¶0>ƒ¼‡GÎô¢¾0<C2BE>imÑ”„ˆÞåOøÀþ£,´)…ª $Ý,ø’@õ:‰Ÿ’‰°­àã <>²a+À4 |ªGØèèˆ0M~E¶9¢(Ü!²­Œ%Â(OÓcßó˼P=.³øä9
œÕÈXÓ‚;Sø†²³2 ”;û`€dš§gqÜRóf…˜ì„²VÐd<C390>c_)KÖ•¤¾sˆ3µ•²(§ª¬q$G…uÁ9`ÕH†-œRº±R¬øÑ¾ÒÁ´Ü¬˜µƒ‰i¸"LÓNËŒªLŽD]9KŠÝ¬-Ú]ê²J™<4A>±=ÔC`é+eÉÀj'²(3½"L¤Io¶ï`!½xE˜¦…¾5õ÷j)Z&ÀùE8gåÚŠ0±É-G®x¦ ¦ýŠ0ÊJm«g;Ç3(¼ÎžHd1-»$F¾?bSSþjÙV„‰q²hq[ ‰ä”†L¼¬¶"L€ãW¸~ǰö),siE˜Àú#Až#ÎæË/³Dæüƒ}<7D>a¬ÄùìM¿îgR÷Ò?¹á`ÿë_ì†Íýý_ÿö7Ž«þ¥õþ/\Ä?þÇßþùÍßÿ<C39F>ÿõ¿“Tò/ÿóoD¯ÓºË`ÿ+Ý%<25>N×p<70>}”KÿtÁ<0E>\œw?Ö„Éï #jQ9ÙÊê¥Ã£ ”÷…ሔVõ=éåæùÑaêÛÂpS@V—²\˜Ã£ ´÷…áš
—,až]¦¿/Œ%€„0Ï<30>.Æ÷•PðC˜çG„™ï ­UÚú°9‡GŸ 3¶÷…agZŒpÊÈ/až]f[˜Lo宩}xtA˜÷-p&ôhÇË÷5L‡G„yßgËòÛ!”Â<?º Ìû8sF_ r&<26>'„y~tA˜÷-pî¸áÜs0Â<?º Ìû8ÚñÆ<C3B1>åéÉQÞ·¿rXÙ*]æ}û[Ê3»ºÐô²¶ú•—72}/Èí^²«s{³ÙÄÕ8œCࢰªÏ<C2AA>.ˆ²¿)J!Ë…¸ìxÉã ¢¼oSM8üòuáû<=ùP÷MªË²Ù½îrݲ<=ùP÷-ªÉ’ŠÝí¾¡ .Ëó“eyß š,$I÷ÇÊóôäCYÞ·§.K}¾~žž|(ËûÕeÙŸ.<2E>ŸÇJò¡5%Çêë"øyzò¡,ï“Y—¥Ù}ïl~-Yžž|$ žýg²d¿~>þýaûïÓWÚg½º~žž|(ËgÄÝï_ÖíðäCY>³´™=†)çoö%Ê׃%ùÌÎfާ¤gÛvxò¡,ŸÙÙÌi¡ölÛO>”å3;›ÙÍO¶íùÁ‡|feͳi϶íðäCY>³³™K˳m;<ùPÏìl&-íÀœO>“eÿÌÎædyKu'CÙey~ò¡,Ú\®j80§Ã“eùÐær߯<C39F>9ž|(ˇ6wOÏ·¹ÏÓ“eùÐêzÚ÷“uyzð¡$ÚÜ­ÙÝíOÖåùɇ²|hs·ì7¸Y—ç'Êò¡ÕÝv¿ã}>þýaûŸYÚd‡ºž­Ûáɇ²|fiSov§û—u;<ùLô™¥Mv³å³u;<ùPÏ,mòë^Ÿ¬Ûáɇ²|fiSÛí÷/ëvxò¡,ŸYÚT»ßõ¾¬Ûóƒ%ùÌÎ&²ÜéðäCY>³´‰›Ê£HØ<=ùPeiÿáXyŠúÆîGíöÚÍ\»hcú¨®<C2A8>µ=>hÀÞ…¸ç?xëþmóßkÉ?éóò»ßdÿسÓO<C393>â_nþ§àð/7?ZšoëhoôôèWÿrÿ…ÿÕæ<C395><1A>·jÏ™+¿ÞþÉ*¿Þþù)¿ÝþO))¿ÞþY(¿Þþ‰'¿Þþ¹&¿Þþé%¿Þþ<C39E>KÚ/·ÿCFËo·ÿS˯·ÿCÞʯ·ÿCªÊ¯·ÿCvʯ·ÿCBʯ·ÿwsP~½õÒN~»ýŸí/·_ŽÑï¶v$Ðûg»<67>Ÿð:oõôè—Û?gKBþåöÏIÆßòŽ·ýoyÅßR<C39F>¹ýs*ñ·ìâ_nÿœ=ü-¡ø—Û?' Ë!þåöÏ9ÂßÒ†¹ý=è_nÿœü-SùwÛÿ‰ü-9ù—Û?'ËGþåöÏùÆßR<C39F>¹ýsŠñ·¬ã_nÿœUü-Ñø—Û?eŸs¹õsîð·tâßmÿçÚ/·_ŽáçßmízÚòGtõž¨º^üS}¯`m½xkŸî¾¼ËýµÛ†¬þvG>obys¿Ü“Ïó¬þvW>©äÆ|þm<C3BE><¥¾¯V¯¥¿¿Óü!ÛýÑü¥Œ÷7š?&¸¯æ¯%¹¿Ñü1§}5-¯ý<C2AF>æ<69>æ/¥²¿Óüsæú£õ+Ùëo4~LV_­_KX§ùC~ú£ùK9êï4<>†?LKcñ;f¡GÃ3Ñßhþ˜x¾š¿|þNóϹæ<C2B9>Ö¯ä¿Ñø1½|µ~-Åü<C385>æå<>æ/e•¿Óüsù£õ+‰äïP¾CÞøjýZîø;ÍÍ_Jÿ„ðF»¿ÍxOéè«Ýk)éo4Ì@_Í_ËB§ùCÒù£ùK‰ço4Ì3_Í_Ë5§ùCjù£ùKéåo4È&_­_Ê(§ñCù£õKIäï4È4)oü<6F>æ#MüÑð‡©âo¸ÖÇÌðhøbvøÍ“ÁWó×Âßiþ<69>ÿýhþRøÍS¾Wó×Ò¾ßiþ<69>åýhþR¦÷;Q<>çÄîÕú¥äîw?är?Z¿”ÏýNó‡ôíGó—R¸ß¨E«7EÔ(Höû!µS h5{K èŽ<07>ö¸ë`µK(èÅý«ý[bA/î4x´G0èû=<06>æoˆ½¸»`5K8èÅ}<05>öïˆî(x´ü»¡÷DË÷D„^ÜE°Ú¿%$ôýþ<C3BD>Gó7Ä„^Ü9°š¿%(ôâž<C3A2>GûwD…¾ß-ðhþ†°ÐûVó·Ä…^Ü!ðhÿŽÀÐq/þõ¼Shh5|KhèÅí«ý[bC/n$x´GpèÅ-«ý[¢C/nx´Gxèûm«ù;âC/nx4G€èÅ­<02>öïˆnx´ü»!¢·DË÷Ĉ°Ú¿%Hôâ€GûwD‰^Ü °Ú¿%Lôâ6€Gûwĉ¾ß°š¿#PôâÔÿ£ù;"E/Nú?Ú¿#Tôœ1Í®XÑü/;õJ“”°Õ¿þéŸÕ<?øÿ-B#¦NAJÓª<C393>?÷Š/è?ý“à<>ÿ°KØùGÓzæ¿•tk/ýÓ¿ýõÿ/Û¶íÿë_ÿÏ_ÿôþí?ÿ“}ð¿[‹”^™BßšLÏMÚW÷¿(¤)KÿïûÕ©P4±Ê[ýÔžµ·×ß]ÿ+BPv4uÁ !>ÿ­RØdëu¦Æÿï¶xÓøÿ]îÿ¿+Äßÿòï7þ½ÐÏÅkƒ *ðîÔ±ùwÿ¿Û"µ]wÊ ý#ÃÿqÏÿ]þ^Ç¿’kO_2ü‡ÍŠR©²¾çI/Ùžÿ„Ú'iö}Râ%4¢Œ¶•Qcgëyš<79>Û(TZY¢Õïòk ª6ïjÿ• íFAšÕ8l¯Äè7ŠQ¨B#òJŽq£V,®b_d§ÐWê/5õ»Q<C2BB>´Q¦ª·—*òŸîT?<3F>mõ•ÿû}r¨ñ1©uôJŽÿã>92gº¶2_ÊñŸï“£lTÁµ¥þÿWKF<4B>ZÈþræþ—ûäè”_Ö|y!ƾÝ'Ƥhàl/Õt?Q<>w|-<2D>véjå5ÿúo×k]3V<33>Šú±ëHô l,Eøv;ì/¸×25µ+KÝS+õž§—7S­EBÎÈçY·%R)47õmã½$j¢ßh^ãrnr-#Q‡•»©šÞšÙ+™
_-vªCß±åÞ<îB%¹Ô¨g<Ê_òÿt-ÑÛôŸÂ:U“GÓ{…b¤V0ÞêQdŽê„”Ä»œ%K½<<3C>°&ßžâë†i]Ýw/NG‰¹YK/‰×(I)©’;FßÒ6^«ôJmÝ+OOªRS: b/\|¯yÎIMê: ߨBLõÎ6SãMâ¶o^?Úr}æB­xõ8µö6ªÛ6r£ ž&»fûÞ…X]
R§Aå@KKØk³ò†<C3B2>u™§F}êbå±5<>Õ¨[¡B· ¢ýmœÔ¢À9uAê“Ýk 6Ø÷ž³r=N.Ô„¤H嘾LËÔä=Ù
7O¯<)8š©œÌ{Ibm©Eå<jÊ©+Õ½¼'UÙ¥{¨ÑÔHömö>,éAÿÞ¦øNÛF¡T*ܬf)<29>fd“dz-ñá[k­´s¿ìeOÍÊ.§2êB(r(ˆ"’’ÄËѧ-ýñ<C3B1>èº|+ýouÌÀ4=
t=iÄólbÿͰL¢þ'¹»˜~•žÔ…µm·šéÂø¸©Þ.&î”h6Ï<36>Ø&eØG Lã6(+*¬[ñÀ:K
L¶I3]ß©:¨n ˆßÈú ^“YIɬƒ }5-D÷]þkqAÚŸLehôd§¶èÐ<j# ia·ª±eFÛr)>8x4±4-_@óTdjK<6A>é?Ôé2ÑìåK¤¦¿ñ÷¬ûvT]Sæ*ô Ô4w$
¯%ú@žM+†Q$6U³LÅ<10>¼¬%XÍâ ÍRÒ¤Þ¢¦ÀælFó„U6YÓæEÙ“Œ¶¬Ú&Ó§EVfl67Í,<2C>˜°M:«•oŸŽÉÔœÒE™lÏ”EÈ<45>Q˜”â²Â
A·J¥qäb]sKú Œú¯«à'P—§®ÎÉVJï‡9†eê­V)¤^£ìð6F/ÇkUSKÓñ¯ÜªL«fVñ‰
Ð"¹ÉK¶Ã*uœ}úLV%¶úSïÉô¥9óîEdÕy¬-f:þâX=bÏ®HÂ
S¨YÚuGkÕ«½6)*9¤íS»'YóáÝ"% ?©ôœ«üÚ”˜ç#°¡Í”z•]“%ÔìíuÍzY þ“=ú.ôy}]°®¡ëÍÒH˜¡ØðîC;¨«ÞÌ`å<>¾´êÍXëš]5‰á‰Jhî~õ™•÷mê¶f<11>ÚëÃ5^Xš^TñÔÚ#'•ß-š¯¯ù³a %yd-š®»ƒ0Ì]Jm7•˜Ó«6Yî´4 c&®ÊïRâ?E` hYåcŠv¦SH<17>To×Q¬š¼¦<5M·DéX)&Z¶§šJ`}h†uÓxRÌ
»<EFBFBD>þž5×ô7<C3B4>GÅw‰â]Íå
éõÍVîUó¦úÌ$S¬23&c7dpZ`<60>²§<13>§ «¸êÕ_%=å¢lY6lª?¥È «šÝZ€x##S&6wL3'3ÁPyÍv ÜÖŒN\PѺ<C2BA>ì@S, ®Z¨vËQú½g­S% M_-((¼ J=ôás]ëNÒÚ/Šä¯<C3A4>ÝD`=iDw^ ®¬_³
Ò`VzÙ†Ó°¬‰Ø¨râX“ÂnU™éý¤VÇMk±Ö¡j˜HV«æ—sæF?‰œ¶Cˆd^Ðw[ßÉlt(LRÁøšÎUmÖ±™×éïékô3FJdádÔeŒ©<C592> Æeuh`Z[d¿Wé¯ÝW¬!M8QwS͈HK
Œi9¸A ž›º˜ˆtJÓ!L<…×!]<5D>µ¦ùÕ¿§óÕg¤ñi~<7E>ÝßÓÏk>§†FŠïÉ<C3AF>ŸÎ<C5B8>"¤²<C2A4>´ g¥Ž‰×lÒê¼~r Ö<C2A0>Mqîm3}GYªP<C2AA>u©£¾-5Oó$G©y0¯Ä\ü=J׿sO´NI Jö÷´xjyvÅÍô´d÷÷ZÓR\“¬.6
Ÿ¦êÂ옅‚º)¼†O\¼Ô~ú)'òïïåu«câ9S,ÌßcÙPZwŠÒjÖ÷5
»Oí= j,³¦Y)Íñ‘6Ź´Þ¸âÊþ@8
JìXÊ«¨»aƒÝ³éƒ.làEÔPxY´¾•+,å\„•ü½Ú‹›.ÇdþDf6O¿X1Ïׄ;âïÉ·Q÷žæz­}cZù{"œEfÑ{¥âtôÝìÀT7ˆ†÷ÀšþϾ³mÐ7q/—EZ&Åd½3Lƒ¬<C692>è{`"Ó›–¿'+[ï©<C3AF>4»“¿—ž>O_d\t÷×4gôsL—!Ûn5eVW÷'í”s6 R¦9'`⟓®w£ÊÊ6Ü̪<>û'&»79s@]Ž)l<>\s-6n9å² ÊuûÎÅ=}súQ!Fs3ý’¹å|¾ä,c¯†{ Ü<> }l¦ïb×*î#Ŧïx.Z‹“\a¥/
¨ŸÓRâ ]€”<E282AC>¶jÐCаgIÿ©Õ„ËÖ²¹˜±?âÐ<C3A2>MÍÕ”[(ñ“ÈêØ­ƒ´‚âÒ–€:s«˜²)Šéhí²Q•;/$×Á”<C381>€ÄÎzR“Ï*±LÙa%Z8«ùá ¢•q¼LÙeêõy²V=0yäÒ…Ý—{)¨ ÎtLë•ÜÉšMÙåjIKÕÐ ¬ê÷ŒÎ<18>·¨ìVqÚ^ü=q„¬õß”•Á‹.ÕiÉ|29WQÚpÊ¢¥3*™k€5ÊÝ3°¼ì¤c<C2A4>¸ƒ¦)‰‚[65¯™Ý©/EêZ/Ä9S`<60>¸aË»5ú©+Œu5OŸZ*AÇ0Ķå
%ÛëæOÄuc9Vö »ŽÕÄUñ÷6)œØe l¢ú.c€ZŽ´´ùضLV¦ þ>ƒŠqvgâÄâlðŸ*X¥üI_IÔ¬Ê:åáXCÎ䫳0â-hËÀ_<C380>)ÄX€˜û-ržª®‹ÏÀà›â’É<>µu}oð%lôð×ö'oHX3wÖïêÎPÃyÐìªè»0™¢K=°Z&×iAo „Ø“3û¦!Ùp¾ì Ô±]¬;E?KÇ´äˆQ¤)³ÛòçEîE烼WõÜ6]¯ZßѰŒG½55՗͸»ÈºS+žIÙ¥a„52¦]îîN¬Â±¾îƒÛäIʺ;¶ãЉ†cÚ¹¶*€q7¦¹Ê¦~žxQ†év-];¶ªK£eUmmt¬Ùë2L+škœ¥.û”7[üÍßÑßŒŠ³åXýÌTíÓR”ð³D6d|Í'<27>Û%ý7ÅÉñïêÃ_->æîÖÖ¸‰Qž¿ú½kr?·sKb=°’ìÆÄX'²!óe>Û|ZL:<3A>Žá˘LIe£4°6̉ã=¦…>oºé“vÜŠ¦w=ZæØÃÜ[ú¹,§šó÷¤eZ{5Sša2G²
ÑgâR²‡ã…߉ŠÍÕ×R3¢ìFƒ‰û
¢<EFBFBD>†M}®¯ÝüU™ õ°\Ù˜/WXxatzÛ=¬#õÉ„7*“Ï®YÓtNNT…õ)D¥9у?¢Tݤúá|aáܾɿÅoJl}aó«5KgKî(ÙÌ!S Ï4ÕÀÊ!<19>5|}°¦Xkvå¤VH™šÄœ‰Ð-¡½šoäX%¾A` lcŽá<8&jQÕżGÈd¢jþ
DeÉhXÁÀÔíì4wè74ð>î2múó<C3BA>é1LlM¯ºïb‰ˆ-½ÂX5ìaÌdd¥Òæî™òb£D¡Z`<60>H¥<>e­Õ¸„ÎnÅeÔ5O4ØÅ13éZ
¬ß…–„²±²ç) ñä<C3B1>ås<C3A5>Ôxñ(©ÎìáV³X?­m,ux<75>l2 lDz`Ò7³PŠÍ5<<<16>äDŽ<44>
#š/>ÝXôÄ{4¯4|(ÖX^#B?d¬-¢Zv&%´­i<02>}A½Ú‰½ENÕ,é®ì°ÖØy»,æL9_&”ßñ¼0ï$‰6ŽÍ
Ë´LýqN´W"Ñ`aö]d]ˆ]xd2ÈÌ£x§ôîÿ–ÓÂ
>ÅÀÀË!+î<>‰Ê», >!Íhî]ÁƒC˜¿´Î ˜&=0Ö±ÅÖ<08>A'ÏD6X 3ñu-Vcs8=«È¶pÄF´ìij§r¸# 763ë5²uß#<23>"+X/âÿ ‡xb5ôTÁ7ñTz '<27>#($Ê‘’{¦UÇ#Û¥M2tysÏJX%ªQì†<C3AC>
<EFBFBD>Õû¢=<3D>Ó5ù¼§¥rÊ/Ù-F” ØÕ ô“ Sæ²ø9Ð×½¡æ¦Jw¬HV^ÉéeGÅhöÀQ<>É}—2!š6o.Al¤Þƒ¼cVú/[ìÁäÊ<>MÚÓÜ<C393><ìÍ1"ãÒ¶‰e·?˜ j5ˆ<35>ä<EFBFBD>`ˆlýnz&”OPƒYAbýÔ
¦I>“¦Ë¤cØw
°Üšîqk:b#¨ÁÚŸ‰ ~"­“Ä&öaשåißãéGšÇÝÆTÂuã¹`mÉÆ°s'¯V9Ñ)°AT£`Ø“†’=BßÛÉ„ólÞÙBѧ×Q“)ÓÌÀ°£—˜Ò>üûdЈjT »ô¹è¯¤90M½‘À* ³Q
ÃÄmö˜F*î¥ÄðÙÙ[M_“Eö<45>ÌU÷®P¬-áxmm!"+ÞÙ<C39E>t<EFBFBD>•A4˧k3¢næÁô±¨<C2B1>v]Ó\Δ,t±æçÔ ÄÌ-®âO²#) !G n˜uY6<9j˜XA
:ºÀHÔ™u[<5B>Ø$…éÑuýÖ0ÙÑC8<43>ÉÉöJ Š<>ÑÝ0MáÒ“<C392>Á|éÔ_&£åÚ©“<C2A9>bÌzawEÔOfË0iXÕòÅ€Û­ž{
ñ5{ hÔáZ²ß1ÞöI1ìdë„o<E2809E>ë÷™M»}ýpíû WQö.ÙR±ÃÇæ¢Xœs#²äˈ,£ŒòLÞÐÀ5¶åG>´ÌlôÄÅo{,M•ßÈ<C39F>u[qîw/p¦áC'k\‰JG³ÚmCƒ¿ bg™ER$Òbë<62>MCÚ4C}÷(ÄÙV]©ýŠ€Mƒ¸­°’=æ´[ßj¢ûk<C3BB><6B>^ÇDT1xÅy|6
ˆu4q|ß«N4v#>ƒà>£¿7ùÖþžú<C5BE>x†Ì„qŠLü3S˜ÖKùØöêÛÀI³FÄñ i´¸¨iΈÅ:FôZÒã0ù+䄊¥¤&Q¤X>èÄñ jôà>CÚ1ü7Q~5V í¢Lr '{Ô<>G;´]ÛA{é30'`²ä¹„˜úZ<C3BA>Ý cö&qucK _δZóãŽšå Øš)§ÅuÖG&Gñu†@>®ÓŒÈ”>ÂôV64©ß;ËU¶À#ÚBCókk7S-Ø"Lë·ˆ<C2B7>ù:†5QØØ c‡ÎkØ  Ó}žÉÖa¬Vý¾"x`âÍ¢¹Ã1}°üÛÒ¬By:V ­öL×^' «»æ3|Y¤N:ƒ1lÑaý˜
mÎDß´Ø'gæì™lΰÁXm ,Û³/ˆDòm<C3B2>üÐ+ %[DIS!êþZolõ¡gùØk?“ Ò‡<C392>½ÌPÛ4Á†qvZVBá äÎ1K͵`§hºBâmvƒ±tDôLäKýÕ jäi¸§ÆZU˜Áòç
<0F>Cë+ a|­SÃ6cávžQ`ÐÀ¯iäÄÿÝÈ LÄÉv¨þ±¸½:"Ó•Žù[ÖÌ5Ó¢oË
HÝw6²g<C2B2>t|M÷ÄÚ\çŽlaô<61>Äd ‚Í]°<>H&áˆÝ¼»M'æ`Z<>4ÀØvb>LùW»ú|Û4µlC§<10>þÄð<C384>mûkšÖ2¨Î
iÔòìÆt¬ÉjØ×óÕõìÖ5<¯:áC<C3A1>i­˜Íxrƒ_çî~; ±ÌdÈ!©¹çO;ÖY¢‰ ã×â5kÚ{sOC}<7D>mopm¢ë®z„ð=ÝÇßÓêµÏfa¥ì)Ú¨<C39A>¿§*Ä­#85I=“a×ïW!¹Õb­b~ö¼¢ð«¯ïšYÁDHÕ®´ø¤™EÍάïä%øOBü5]¡Ü¸ûR‡)ç|aIfW.£¹¹û‚®µ?[xwxXÛZbøË]“Ân¼ ¦µŸL'[>À´:ôæqnãr¶ÅÀ*ç<ãÇx<C387>¹<>+FÎÅ"Äð弨\[Aa )YÕÜj3"ú¾ä±P;E-}ðH‡jo̤¶æï=Å<>¡…d<E280A6>Þ=²"Õ<>jZ<LEÄ*;¦ »Çé-x<>L„ÙˆÈÈ Éù²†ÓmÑÐÍ1Ÿ½¾lÇ—eßÈ?²Hޱ”ݶW&ú^2v 3:䤄8~Scø{ê×a«cšú"ƒÓßÓZ§¿GÚ.Rõ÷¤<C3B7>åÑžR“ºÏæïõÊtLžæ”É÷÷?šœÎÇ'ꜳ¿§¿MÉ9°I bó—œsÑc÷!ãÕĶƒõîNƒcbñš"N^³eB±à¦^Höô×Ô™i­¾ÂäMhQ
H.¥ˆ´
,k±Ìpõë&62{r¤ÌØz[<¨Tv™Ž \¶¤jv
l;˜ÖÞî¹P¶ljŠ ÌÂ[[lLëL¦SuÃæJâ*ݲ°,âWIté#<23>©•j˜¨Áô³RYnNò9Cð¥‰%§`*†¿Çªn¼ ¬~íȦU½e÷³Y*NuL«`bïÆ0ŽCãþY4—t<E28094><74>¸Q¬iÎñŽUÙž²°ª¹eÙGD;åÖT÷ýÌÞI~|,ƒ´çÍí7Æ)“²ùkò\l°c™l|&)—ÅaöVÒvº¿'³%ƒèþ3F·YòQߟ“®Á]< äH Ò§i(ÇŠ‡&Ïs/~ çÉÓ<C389>¿k˜Ü@><3E>I4Ñ­þ^%5}Ð âËJO>¤Iµ=‰ˆX²L“eUzÒRa¸Š #ÃÂÖOh*9!ü&¿=7Ë,_qoFXM¾ûí˜Nê¾ÂÂ'M£Gzzz„<7A>(ºíˆ<>$<24>>}õ%„¯Î“VÇ{ɧOIBødO<64>ÝßÙ6½r`$…Øþ£aýËŸ!„¯|Û‡‡ÔYH¶î
ÏÙl=G6ÇÔÕÅsØ•Øå%t6Ô
I8/0Odmމ:©Û<C2A9> Âgõ·Ü#0j³¤øöñÇc$9Þ“çÁ´7Lë€\»f¹G<C2B9>¬PôÌ'-!|ö\¶êר¤&ö$Q0ÏlÙÇÚ2°õŒ~×+ÉßÓêF0ÊÖ+ÃÄ<C383>µÙoÂ'šÒã*eéƒ\“<1C>Ö¦<C396>t‡4†G£mï<CK>û:y FŽRÖ><03>X¼H<C2BC>ÜZÍs#÷…Yry\Õ#ûÃajëèA.º¦×Üâ5âyÞÏ„ï‡e7¢ekF¾­%‘–º¿åä;d”Š…GdÐâ²
r4ú¶¦¹²v×m‡”ú?Ù•O·øÞ&;|yëñZÓL.NœFÿãA±ì<C2B1>¾k¦2òbÅ__Ó2 ¶:Ù]ŒàCÌKÆ/„¦üÃG«+¶Bì¾ByR@ÓvÅ[`RƒÜ,í¨ÃŽÉÃp£Iô«hiG`…=(K”a«½$M­Zã=ÛØq_“ð}'ëµÅ{ã±khY~9¶ïÍÆìák8æ<38>X³íl!6ñv7Òð ¡h3î?AÊg»9ˆÁÙ¶xo$'5`$ËkjYÚ0ÍcY!a²£êÁ-›£añ‰Ô³—À*áû^â=Qi+BæØÄÜ•ïÐï»<C3AF>žÈ¢Y±7ß5LðÃYæ¡ÐäïÑÏÝ3YIªÉæ æxo§{d|&·`F<Êò‰²oL¦éÂm`<60><<3C>¶Ç.åîÛ;†<>?¾ÙÞý½Lþ\ZP+a˜
* ´[±)ƺizj6¬µ´bÄDñ«È²íH<C3AD>i&4wI­ÞàF[ˆRåÜFy±¼#°/Œ´}ýípÌs²a»51-ñ ¦`ƒ4
K<“nhJû{dÁ ßo7ŒD;<3B>õu<E2809A>Æú{¾`ØðŠùò¸YD`<60>]VË<ê¶+é±°b ˆ àtLs´·¶¦…lšmXÜÞcû™8&)Þƒº<C692>œ+ú3<ÇÜh¥áfõW_ÖÍÒRÀ§t×_Óàll<6C>±Çª<C387>ˆ÷Ö7Xç9Yêxmí :Ä€¤žã5ͼ\]y}™ì3W1õ<31>¨i)ÙʸWÄmÉûK:VÑ­³4E~ˆ<>ÎèþV·TJx…¾mËi"M/? ŠNM3©ä ÂÞ#DðeÂ-²mX{d—sl¡pø$õÀº9œ)°ÈÖ LΟG_ üb©%ñêo9Ž#°Á æêfEÌIäÝ8(ÄÔ ¸ø{#Y,»ÖIÒè)Þ“=ÝyçHSZŽ{¤‰9ÆžÔбÚW‚»(·Ñ=½Ñ0­×­Î˜f“¼Ïïu²|ní
&ÏŽ¬›#>û°<C3BB>š755š(e°í_Ç$²ü÷0ï">Îi;
y˜w™vK¿l<>¤1üÏFN
QaÞ'‰@e, ii˜†ÕTÈ÷6L:Æ6»w†µ8W☾‡ ÍxOÔ+2j9m³s%‡y*A#ì(ïÍÍgØN\_J8¸T<C2B8>H>½’çÂÈ
ìë½ié¼[`;‰û>a‰ä2êl‰üŸÀ4^£—˜œoÏ¿æ Q.±<>î÷•eïNùlÿ<6C>¯­ÐXa!mXCþlq|×òx<C3B2>x«Çÿ9E¤Ld ^=n=•À
¤T8&J§<4A>õ÷še«ÈbÄ{Ä
V{$ÌËm¿| ›ú=Ï90Œ“ZÓÄ\ͰÜã=­ªÉ|0¶‰Š9øS·Äòsa Ž÷ˆì# öÌ }4D$§c“½}?ÌaXaWØPXßb½2¬Dve!ŽßØ`ñ^#5­ô82ä<32>óäc¤h°£$˜«ƒ j< æ?›œ?Iјï;$"ÏùNÛä /ÈyN1Ç ò 9Ã'ï¥õì<C3B5>y<EFBFBD>»>s¼O¾|ÛBy˜21ÃÀ±ÀDŽÆã=Í‚é~8U€<55>µÆksøoÖ?6_8êjXŽtÇØ$70ÝÝmA|9¦²Õñ^yÄÕÁä'¢:ñ^yø3vêÑOßÅ{d£&ç„ñ5_d?r`° ÓŸxöuPC<1C>™â½¾E~<10>εAqQ¸\Õrñ㵡<>Á¶<‡ÀD§§EX8 *ójÞŽlÓŒõÛâöýÏÀ" Œ«
ò°ÀX&<26>Æ·åÁ"=¯f[tþžüki£¥_¦×8jXáüɾÇ{{Õ§: ”_íàf¼—ÜWDvÛ$ Èó޳
û=,j&ª̰ðŸ»Ç¨ Ëî`ÖWr¾cC ¹¯²¾ß>,ذ‚ í£G(_kÌÜë»ñk8sÙ[˜ ­*¶9¡r[˜ZÞÝVÊçøÉ¶÷Àæˆäe0þŒC³Žµ”²#ÌvÛnXw™Þ¹f:9Q~p¼Öí²Ä=°¡…œ<E280A6>ÍÀ49><3E>hÎv†R“"_ì“¿ö¿þÅný"wÑ/d<1F>ÛØÇãf¯õ·ÿõoÿãoÿüf ÿñ¿þwxÊ¿üÏ¿±QÖ
cšÆ_'ÝÓé’±¿þ¯¿‰ ’É›,'Ã%;<úìzz„ÉÛûÂ<C3BB>¥¡ÑîxÂ!Ìó£ Âìï ÓH.àTÑ|óüè0é}a8ߊç
]&¿/ Y…ìûáÂ<?º Ly[-©0ê
Wa<0E>.f·Tx±á—0Ï<30>.Ó>­­­Úú½„yztA˜þ¾0G«åo<zæùÑaÆûÂL6µÌôöè™çG„yßk1²ìÛïwa<0E>>¦¼o<C2BC>{&äw˜M‡G„yß¾ ¿„y~tA˜÷-p'
­r?M^
|xtA˜÷-°X•Åò`í!ËÓ“ ¢¼o;û=rH'—ç…,Ï<>.ó¾ý]¤êßžHÕGM/k+ôò¾ oWµ>x݇û¨áþfÃ<66>˜€xõÆýaÊž]e¼)Jg«OŽþÈCž]å}«:ÎU‡|d."B˜ú¾UçDK˜KU‰L˜÷­ê8×#
a®•(2aÞ·ªã\œ(„¹V¯È„yߪŽs¥¢%Ì¥âE&Ìûvuœê-Y®T22Q>´ª§ÊFÈr­¬ ó>«çFK˜K5ŽL˜÷Yíøªq´Äø°à ð>“çRG.ÆÅêG&Ìg6÷\
Éi—J!!LûÌæžJ#™,Wê"™(ŸYÜs<C39C>¤^®I2a>³¸ç¢I&Ì¥ŠI&Ìg÷TAÉd¹R>ÉDùÌÞžË)õrµ ó™Å=×V2a.V2a>³¸ç²Gs­æ ó™Å=×@êåj$æCë{*ˆdÂ\ª†dÂ|h}OÕæZi$„éZßS©$æR<C3A6>$æCû{¬›„,—Š&™(ZßS%“åR%æCë{ª¨dÂ\*§dÂ|hå•LŒk+™ŸÙÜs­%|ùk…L˜Ïlî¹ðÂ\«ºdÂ|fsÏU˜L˜K%˜L˜Ïlî¹$Â\«ÇdÂ|fsÏõ™L˜KÅ™f|fsOÅš,u¥R“‰ò™Å=Wn2Y.•m2a>³¹ç2N&Ì¥N&̲¹ÿhˆì+>¹6\>høQ,Ó˜äg•2­ñúAãQÇêãàè?Z2ëÅþú/6å_õy¬ùí¯ò8——üZ?–ï‘⧘ò=R|
µÿ+s×ÃÆ-ë7õ¿7~zt‡ßøßbúwHqÖ®¦(~©þ¯µùSbÌMRü<52>s“?¤ÂÜ$Å907IñCòË=Rü”õr“?¤»Ü%ÅßÏs¹IŠ×Ë[¤ø!Íæ&)~ȯ¹GŠŸkn⇌š¤ø!•æ&)~È¡¹IŠ¿<s“ ?dÍÜ%ÅOìú)ŽI;÷´yfô,Z…íw1Joüôè)Î Õßr¬oâœIý-¹ú)Î)Ôß²ªoâœ;ý-<2D>ú)¾%MË£¾EŠs¶ô·ê{¤8¥IËœ¾EŠ#·HqÎÒþ¸}çôìoÛwHñ-/û[ªö-Rœ²¿åhß"Å9û[rö-RœS°¿eeß"Å)ùúœŽ} ç¤ëoyØ÷HñS¼ð)¾6ü_w´ùïþa¾mç¡Ez}cåk¯ê©ÕO7­>ð žZ½m(Ÿv2~µŸ÷­þrÿ>ÏʧVoÓ_nì«ÝñëúûíèÁsã×Î ¼%ÅéÌÁAŠK‡Þ‘â|ØàYŠk§Þ‘â|ÊàYŠkÇ
Þât¼à Å¥soIq<Wpâʃwd8(xâÚÉ·¤8<C2A4>$8HqéHÁ[R<ŽÚÿð,Á;ëìùìÀSû¼#ÅùÐÀ³×N¼%Åñ´ÀAˆÞ‘á|LàYˆÞât>à Å¥ƒoIq<pâÊ <09>·xèéDÀ³׎¼%Åé(ÀAŠKg>â䇿<C3A6>;{ðÜüµCïHq>tð,ŵÓoIq:mp<6D>âÒ±ƒw¤83xâÚyƒ·¤8<C2A4>/8Hqé Á;Rœ< qé„Á[2œN¸t´à-)NG R\:Sð<14>3‡ö?<LðNìà|xà©ý§Þ‘â|jàYŠkÇÞât\à Å¥sïHq>'ð,ŵoIq: p<>âÒI<C392>·"[Ç“ÏB\:"ð– §#!.<2E>
xKŠÓY€ƒ|i<4~S¤ñ)Ãâ×#<23>§Hرñ["a/nß8IqG$ìŵG)n‰„½¸oã(Å-‘°mœ¤¸#öý†<C3BD>7DÂ^\­qâ;5NRÜ ;\¦qjÿw#a/nÑ8´O$ìÅõG)n‰„}¿7ã$Ä
‘°f…¸%ö⦌“wD¾_qâ†HØ»1ŽBÜ {q)ÆIŠ;"aÇÝÓCó¿¾{zŠ„›¿%öâú<C3A2>£·DÂ^Ü»qâŽHØ 7ŽRÜ {qÓÆIŠ;"a߯Ø8
qG$ìÅÝ'!½¸Tã$ŰÃm§ö7öâ<1A>Cû÷DÂ^ÜŸq”â3NRÜ {qcÆQŠ["a/®Ê8IqG$ìûG!½¸ã$Ä‘°·bœ¤¸#öœvhü³HØF1Ý]ÿ¯ýÊ;ˆ°n§ `ÐF<C390>¦Ç±œfU,ê@È3¬mÔŽÎœì¥Æâ¾GÍ“ºw«ÔW(kÖö³Ìk`úßj¥ÁÒÔ{”DtLjN
t?9m%N¶ìïQªÂ+BÖʶo
4æÞåÛ€²W`ª†Mõ«Ñã5ºÈSÒ×4¬QÞêûÔ´ýÑäŸs·Ó<C2B7>ÔÑ,ú>oNXOrüýŒ"%É»£pÚ‡ŸýÞ)ÔËúM+šê°Ù;u?Æû4L?3Gñõ÷6êãäV­ºn!=o£t}ÒkÃ0j)g7ªïi ¶…•ž¨½ìïmÔnóZ=`“JÕ…o ø6å³U
ª‰¢ÀÊ<06>IÅ ÁÔÍ”Äö÷6+—Z¼_ꟼ•Ñ)zFõ<46>¾·I½°Àz£jP©†QLPm#D>ÙØÙ ­j Ë\P³ââ|Béê÷ÔK÷¯ë¨"m…]<5D>òÜÔ ¥¦ŸO½m«1Ê`´Àpræ—ã]© «BãXÝ¥<™ÓŽÂòWÉL°©ïÜ<>¦ß,q¯¦É2Ѩ"¤é¡ŸÌ»Í<01>Q SÏfêneêESÈ@Bé[̺ êzéÍ¿¬ÍNýi×° I™ŸnP¦du€ÒÎV¤ d+%—dÅjN¨po…y¨…ó(îX“ŽT;Š](à8å/R?ýáï6Œ"¤­<C2A4>X]å¸(ËÓèâ-Y‡djE}Q°¼*<2A>9VV<56>t+´‡^86“™0>œé£î.Ù“ÎK¦D†I]¥¢¹¦1lVG“rE<72>bœ`<60>ó^1ÞJiäÑïÀ¨‰œÍà“þ«Ö)îUÇOõg{kÒ4#Lˆr­»×¿¶rL̃HÅP™½ÑÈ\îÌÃl.ÑÑ»aÒX
n<EFBFBD>À(…½ÁÉ”P|Ô›­&XŽË&$Tf§º*X±j­²œÜ­”xÚ­„-˜S™ØßÛÇ£ŒfµÎ¥<G]4²Ôoë30^ÛÍàdÖ¯§kX¢ò•ìðîïíYVØkH<6B>uúÝ Ž†«SÐÉ¢X-U/ð TÒ³¸â*RRé¹ûk²5m¯V3·¢ã£QˆŠ÷˜%SŸg`ú_ÙWìM¶zH»‰¥2Ù¨„½1E•ÃQë ¨´MÚa_À"3dô]„‰ŒjGeÌeC½§e+z“•³ôa­2Gm
™%¿c@<40>¦ñ°“ŠI šÙa”Ò£Ø^`b|²ÂØLñÒ´O7a2Z§GÃÜ)ÔÏÛÝ> Ø®>Ï#úkRuÔ6uºÖ*OÇcêˆ636˜¤® AuAa¬Z÷2ÆF<C386>Ì“U0¨x<C2A8>˜5ò£ô0˜t„Z•Ù°Ôb‰“ÀA¿ù!±rÓn…I
Q”bÆX?é5«-ÂzÑÌMbŽiqU¬{iÞSÇIGrm6lvhZŸdæF˜ ¦^s.R±„Z…ÌÜÛ¬´ºÛûJ)=^37¬CØÖ­”À4¦ó­
Ф±y©hÊR/LÒŒÀô¯ÍùMâ0Ö<30>6gûZ„i@úRËJ
M*»cn¬´¢ÙkóÉd'8TdT˜sM¯ÔÐÜŠ-ùÒnFvÞjÞja¦xÜÂÅ<>ñž>±*%4ÅÌÞˆ™4 eK7˜FzcÕµO<C2B5>:wSî˜LäpgÙÖͳQB“ìØ@4©Íí”0N¸:Á¡ff‰:½`;U,7'8beThßayw›Ãyá60Vn'8"<22>b ŒÚç($ò(•Éíi£¾¶Ì¤Nü!«y
FÁd*vbp„iêjqê‰@Uã7Bœ-6—„:‚¨_°Sc>3}g`úWw#LÆ“j<E2809C>¦¸òKwÙn'8bâžÖ×U骕<C2AA>͆%ªŸwWÀ&ÞÒÅjÌàìœ*ŸRV§aª—¢ömÆŒÛÛ}•6çfe) ;÷J5Vÿº.Ï‚äXaâ2">/ÙŒ<C399>u°¢©YvÇÛ”qp#Lj˜DA²AÅÆ³Û•6©gXœâì²¥ÔÝÇÂ0NNqvh…M5ë.³ŒØœ}ç“h—/®ÂôsÝ)µm!r³Þ1 h16g§(õ<>:Xy<0ª;ÅÙ&sôöÔ<…€Íæ+OýÅ a8²ÙœMßÚ)aéýeÕÖ£º&:),jÕ
£T¸•X÷°Ì´•êÝ“Saüµ¾£~âÌNq6<71>±f<C2B1>‡3€¤CZi™¯‰žQŒ«2<C2AB>fr6¨—º,¸¸anÎp6\ͲJk®J3)¢ŠÉ¡Îõ.vá%±ÁÚFýNLÎFyn1ŽâNN§¸a¬Œ…šÛær¸}àÌnÓ`¾nxJb¡Å£0y½sêw†Ë—Œ.—Qsß9ÎóKbØ) Y˜Ý(eÊaå3ù
Õ'ÅJ“Q0κ…Ó!È õ['VRSÙ«rr=‚œ)1-gÿcç½ò&+¹Wb<57>T•¾+­å‡rñÕ(á5ä°úÀ\F-ôXŠÌ«_1°öuƒ#¬<>qŠiSÔ^vxVWÎÏðJòú,+©uSõHº©EBNÆV2»ß1X8™kŸ€ ÜÜ«vLj¹Åa×W”ZKŸ3¸!V°]ï
™±=Jm:6ôqÆqò€j"ì¾Î é•þÛ8ŽX
õÓk ½Öe1lyïGÉ,P`ã,Ær2}«ÕhóÈ`Z9Ù©ÒDmW©ÏIå?ŸÑRõÁŒž”ÄìO÷*î©mš(Å¡AÍÍn,GŽk借ˆ¤cpÄ}dƒes}þÓ=ÒCã8lCŠ7l¨Ša2>lŒániá-N¼…óµ
ÇTAßLÍM¦†Cóm7ŽÃ.ަ¾|ÿ6aš9»qœìî´dpF¨!NNèôÝ”á
j$¨§æ!6*³û&þš´Kßc‡¯c™ÝK<C39D>QB×(ŽŒlAÒì¿™9Xí!ºY¦VÆÜ¹ÃÄcÍ(Ãf!Íî+á¤uhª°<6‡
AÌ
𧝡Bulj7†ƒ¦Ë<C2A6>¥Ü¼i‰æÖc8L,±ÀUgLÜÇc8Lä.)E½§EæåÑ$77¢*ZŽZv†*Ìy~˜L
²_#5åùRg8º—eïà a²ÈÂ!{FìnùæÓ¹¬3*°wÖ°<11>^<5E>ÅËÍXûüÀ0Q<30>sÙ¢©­8¦¥1"8âµb„™Ÿ
ŒòåNp2Ãmµ¥=õ†œ¯œP™âl<C3A2>
Á!U?_''™À/„üŠÞ©´ûX2âÎzŽTª´ Žñ±éçSå_
A]ŸÄçk4Œã%">Dð ½ 5˜Ø„쌂+&vó³aj^–ÙU½wѽ<E280B9>ÀŠ™'Ü­1üNˆ,GȇÜ&ãš³ Ò˜bò!PØ<50>9"=Š˜<C5A0>X®|%­ ˜å<CB9C><4F>¤†Z¯#0-"òEÔºV¦?Ý{„|PG
ýlÌJK;òݺ츱<C2B8>™s„|Ä¿R¡öò>Ssò<>c©?à‚`;.æŒ<C3A6><C592>þPÓ b;<13>n>$K\`¡<>É+h>ô°Åÿj÷âÈm‰<6D>ÏæºêT ï>è.˜æIÍŽábŠç:Âꨇ¼7‰ÅDÀ‡}J1Ü  ¢hš`->RD}n<>l¦á<C2A6><C3A1>ÏF„Nü`7;£EòOtônôd”l7ùÀAdÅV€©1(”gF&¦yVôÚ±*Sbt»Æ÷8¯nçm+ñ<>ŸTöÍ@¿üÉ ÇÇkòò{°!i)Pëþø—£O"¢WS-<2D>i<FÐ!u¦þ
˜7ÔÑëoïN]†öJ`2[Ð!±:(eoOüß÷ CÉêÈo=<3D>Àä9íA‡ˆŠh%KæÚè<C39A>´Ü÷ätÈ¢¼
HU:$]LÁ9Àp7³G|²Öæìñ<C3AC>˜(N}Ð!Qµ‡( ÿ2.
Í>x‰U½· CpÙóþÀdzСFin_…ÀÄrA‡*Áõ]Ki
ŒÞA‡´ù¢ÔøCuEŽÝ;žÊuñ<75>O±“öæmF_i<>´K4\ÊÕÑ›ñÒ@L¢ÿ†I¹´Žt¬<74>ˆ;¥ë©jÐãb&VýFÉy¨ÀäoyÀ‡$>{«in˜(4†ÍÈ<C38D>0I%Ëéø@ô¤WkIìü¶ÌÉ<C38C>܃¦!">˜Èƒ_¸;<>&åvßÒW¸à‡Î/üVŸ«Àk¶Û‚ v”;ߌöƒi¤· C%ñô[°¤œ[·©‘:81«õŒo9=Þ“íªY|ñyÃ9ï<>|±¥“S^˜>Íã=ò>ä0Ê[<5B>Ñžš°}Ø<>˜¬~@Þ²°²n3Óœ%Dn!ÅÀFÍô<C38D>ìB<C3AC>Õ6<|Þ¬¦îŸÜÔ<C39C>²ñ2A “f{À)e•rû°gødö€<C3B6>l6Ã`AÇÀ4Èð±<BM$SXÄ”%¤ñ¡L4F´MØÓŒØ<C592>IdqgŒ°æø¸¼}©–´›ÅÅ‹|´*h¡R—yØ×>ê®?±(1FúOñzãC<C3A3>g¶°´LÀ¦F<C2A6>ˆO&®§aú&`ËRÂb{Êžl®l·“aÒ0<C392>øàà­Ê‹²á+=<3D>ød⤠%6¢ ¦uÑ#>™M@½¥¥Ô>¡à]<0E>ød¢Ãr{›ûÕ`±‚&s
4wD3Œù]7#82<38>²Sf¿S`²RòÉDïù<C3AF> ¾I„Í)Dçô7­, <68>àhþxÕpXî2ÆR“mß@Nîôþ*Z9Ø4£CÔ]*$œ<>
éQ<1C>­Heí¤è¦Y*ÒeÇ\")ƜưE×§‡|p¥ˆ³±lÑÜî!ÒÔö5k³zÈGOññ4Æ!§L¹9Ò²:ɸùcL“iN»æ »¾kˆ«O6<»o<C2BB> ƒâÔÌ| Ìwz“ÞÛõžhþØÍC>¢ ìyB4†‰ãÊ?2Ž“ÙÏêSO˜œx<C593>ùdb´šZ6
³ýãÍc>ôTE4»&Úä1ŸœYOÑA9¨RÕæ1#q Û§w,"úšB™“V†ä\¬JÇdåœä0Ÿˆµ§plÇCcÌì à, Ã×ÞŠ<C39E>©…¾ãæ³±„gÚ-œè,G
¢u@_ät¥â6Ôú˜ SõûnyèNsÔ¹û“ ô솈ú°Y^Äþ†ë`ÅÉœõ¡#$950idD}Ø£H¢ç#d§wšÃ^ƒõŸ þ%òâ,‡-ñIÜÃÌ
 O…ýÍ¡èNœÌéA«]Ú1fòÖìƒ"è##¥gƒ90
ºŒ±Æ¢ÕD*nˆÔ¸ÅÜnú?¡îÊ”"âc±o™˜´<CB9C>À4Vñ!Š-i¦КçdGħa¿ø°0I­4RÁ»F<C2BB>¨Z"â£J‡`áØ0ca^­”Áú;ÛŠøë`kÛÕ¹1ãòa~lΦô5RôùtÛr´m®ÀduºÓ„Ylíð÷
ë´¬°„a”ÝûŽÕ}=ÛegÑ4¨á.ÎúˆŒ±¨Ý˜Z Ï0½°<C2BD>ÙÀæòd-XWÈ€pËÑÈ]Èô<>|Û†<C39B>ÏrÖé‰;¸<0F>ûmÁpWâŽ'p;igío+qG~†ÆQþ]öo¡O+q'aF4³r[˜Öv<C396>úXÐÞì[rL´®DÐ ×I\»jz`uFæß@·È[6L#ýÈé€EW™ÔÝ÷3ÁØ7t¢3l¥Ü‡ÊÀ4ö!ѱj4'Ò<>á6ÒE¯LWacFêŽ ”¯ù÷u²Á"u‡© ¦5ÔÀÓøxÜÇÈ…”;8¸c[”Y.A
S_èa³)‘‡`˜´L?é4‡½å©3Ž÷dG»¨9'ÿMiÙŒÄâïÉÆÔHÜÉpOÅÍ=wõÑ#?#'‹«@ÿ¦Àg•I|´Lf†Yf«J±49¾0w¶`#o'ãõÊoÐ ]¹YNrÍ0Í(=ò(ŽÌ€C
<EFBFBD>o‰ºxQäšW6)
ÃgŒ¼¼:¿¼lajÓ£8¶à™öydHžŠ~OVØHÂSÜß1ý «ú¨ãŒJê¶ÕHܬ¼ÔÅ3Z`dp.’Ã>Ö"äVÏ 9b83„¤šGqX7™Yy·{`j×£8°-æ‡tÈzd`Ó"qÇ<48>‡µ01[äíÀÞpÑ«~b<>¼VOã:\ƒ‘·#2-Vy9¤{÷EÓÊNô ùli$²lx¶-w%‡,œž‹¼V]­g™¿1¢À`âOc÷Ü#õiÅaEa.É7À´Â{6,3/ÁWäÁé¨ÈÛó= ŸYœd‘·Ã¬#
%ö$ÁFDÇ
)—ÿç³gØÙ3ã°Ê×µ” “zE‡ìCýYömÚžtDqØ<07>]Zæ[˜fqqS/ 7Ù0Ìݸò'eQ;-L&*Â88ú˜â 8êƒ?DœàÀhdÂvïMvˆ¶ÈÛÁe<žæ¶ˆŒÅ67SÒUŒ´<C592>ÐÄmŒÄÈÆMs£6z$3>辌9<C592> 8<>l&%0öGÝd½9+ôßÃ8¡½ÆN&ˆ,QDq8r%´‡Ó8!ñƒžé¼¼UHKµcÚöÍ6í “†<E2809C>KZnb&';b8¸…³[ŸaòHœà<C593>,<2C>JûfØ#ãl>Å…ÉüG §rÔ8Æÿ_ý:çî<C3A7>ó°ä¿<11>eÞ#ŠÃâ"mnÞUr-±ÖøMe<4D>Õiñ
FS V<>Z·È·°憴 ­<45>˜t";¿iÛWZ-Ëe$îØ†—ÖNM­qç70ÌèÃð#qŒ c_LqKõpÿ#°é1¼Ý0ß·Þý=Ñ<>=wÀ4Ù-TØè‘¸“-EĈj3 Å<>Ä0Í7±”øvÖ"qìmÖpx"<22>CjI~xÝ(”Åc²3hMë̓.<2E>}ú–|;,i%m­¤…'â8ÍŸDÍè,§}¬8Ž]7¾6ôÁˆêF‡~Ͼ<E280B9>ŵùþž¾Iƒ×ýóäÔ´â8 ʤÅ&>Ï¢r+ŽC<VÓ6™ÓÔñ;ÛXqœŒÓ ƒZØXÌ}q<71>ˆÐÊ*×Ç!Сé´[| ¬çG'“xа8†ÑKì*Ämke„géX«¸c4l<34>o4\ltÁ ^Ó¡lf‡ÁôëÇñT<C3B1>©7­Ïv9ŒÙ3w,¥™²·…h"ŒÓHny¤ü͉;ø?[³Áó/‡èEâØN¸A2g8d<>â_. š"qL>½P‘·d+Ìf®X‡‰$9Á“Ú¦˜—¤±wiEÎ…, ‚üÅÚì|m!F$ò;z)¢8 ÈÕBÍ«ÇÖ”õvyÚ>Í©<10>#oÇ }gäç<C3A4>ù®<C3B9>MWÎw<C38E>Ðn[£"-J‰¼¼EYx1[æÁfd̆ù—ý¶ÞJ˜‰¼ÃdÒlsÒ±"oÇ7¶Å[î»å¬EÞ›¦‘›&§Üƒ8†Ét«7ý7¥_\3ŠÓÌ5ÚºÇ]ÁZäU& 3Œü˜ÈÛ1 ¾a)@µEÚ<0E>z²b˜
ƒ‡GÞŽaœí<EFBFBD>ñ j]>zwCVxh·8!Ø,·c!YÍ¥È?îb¿e¼ÃD ûl 5òvÌi·d­ä²ˆÎï·ãýÐZîæ<C3AE>y;„‡71•±ºš4æ1KK«2x6ïØv"ñͶö b»kå퀉cˆAæÀÈ0t†ÓÈW™nI^m+qlå=9VÓJÜÁs
 Ô× 2oËÊÛ$¿×rså퀵ÇnMgϽ®¼’îÖ‰ÇÆy;ÍÒ„Æ<âj}åí€Mx%0Iê!œFn†&Iü î¢èâ˜~Ï3µ€ZYI;<3B>ƒšð=»ŒÌ§•´&Õ•Àp#„ƒ##Åò£iÒº¯
4ÃD´e™K`¥¯¤°Q-êä<C3AA>»SäzÇF4““²rvÀÚ®ÿN-0ó1º·ôWì™Ì¹GÒñO}ô D4(â7 Ýöž]EÄã5ûƒßt:@.Vî<56>µ±vÀŠå÷Ù{…z¿+iLSNÚU“óñ<E280BA>Üñu¥i+i§™¡vÛï˜ÜÈüFX÷”ÿÀD"~cË<>´q#ƒ!?²v:4»eŸà…Û)VÒPÃ3qšÂ©<C382>ºvÀÄ 9¸i”Ao:]ÄãÍÝÕGZŠXÐöëÔSÝÜ]0±ôJ.?<3F>°Ÿ0VÖNcï^_š}„µ²²vÀð8}sêf®¤ ?Ʋ0Âý±M¥Á<1D>ëdƒîÓm
ÜŠ<EFBFBD>ýÑã<HÐv Is=*yŒ¬úšËÕo1²v,"´YO”À4Í"~¶Ô
ŒmäHÛ1¬ Œß$û!2Z=Ê$
á¡‘Ž#Hè®Iƒ„†êßÇ™°i;†}E»œU<C593>õÿöQØ_õ!F~½ÓÎn‡øJ<>¹ˆà€é»µÔöÀD(ضÛF"ý ñžˆß€ù¶ž ™ñ¨#~æiÂ)°Gjºac[Q³?¡ÑÉ"¿ÛÓúɵ[dáD¢sHYIäø
˜è´¬n
L<EFBFBD>lÌÕ1;â
QÛWú¬ap·ÙbëÌ ŽÒ¶‹ùb ÏRš°ôÈê«52q "-öŸäƒ"ǰ¯\0™Ïˆá€u<E282AC>V,>x<>)2q “ŒÙƒýÝÜÄÈÄ“ýYF@<40>ÀˆáXÐvéhXÃeœÃƒ½µ¼0}FÄpÀZ&‘Å].<2E>Ö܈á€Iã°˜§lþéi6187îò%¬ÿÜè`²ÍÖÀ´6D Lš“‡¿ìøz g ¬Â#0Ѱˆá€Ugâ<67>©û"†Ö¿¬Ô8E*ŽaCÆÂÓ»ñÕ•Š#¬˜»µ¹, A0wD<06>
†c§Wµ7—S ¤ºÇ0è<30>H0,ÉŒE Ì\K×$[]V.˜fŽÌÕLü&8`cŒì¡ônj¼rq¸íÁçÿIš;sóXÚšý¶rqšíFr¸dFFPœñ#•<(Ž0
<g s°¿G.<0E>œ6éû Q0ñJQ ëM2D‡cÂÊçMZ
Z Ý7õ\<5C>´ànusǶã0®L0²"§ExÀZ[™8`l-û‰<!ŽJEìëp˜<CB9C>(Î1YBË>ç¥ÈR‰÷`¿)ä£÷‡òŠaañ<61>ÓHmY&M­<45>åµä07M>Øð¤9 B—Û27±ƒìÁ¶•ж)<29>Ýí°­Ñ©ýéP©O޹Ê26µ¬<C2B5>8HŽz½³Ó¸RqÀªå>¦ÀZZ©8`±Ñø¯ÇÒG‰Á­‘Á]\©8`bê•Øœ+LZÞú<C39E>·XW&Ðô…=0y-+€3Ø•YaÅNºR_™8`æ5¸ß`ûGsp8™Í¹2,‘ã»8Dˆ“§>8ÖËÊÄÓšYö}d²Vl´æQa°Öž2q†tYð™8ãOœ¼Ì<C2BC>žËØŒ•†ãüÈÄX3ýj`e>2qÀÆÃ° õ‰ÃI=y žÔÕ=aEpHwɶÕq¼mY)¦²(ǰmÝÁ³ý—˜¾#Åa<C385>+¦òöX<C3B6>V&X~Ä ê¿q A¸ˆäµäÙ.aläW˜öƒ(FYZ 8¼®¶Bj^i8`+Õ1-Y+~3ž³\; ‰e¥á6ê²Âb$¾Û9š¿—ØKÝ gÐÞÝ:Ouy0k+PS‡„¿=Ž™ñ}Eí&ÞâÊÄ1Lýå~ß”ŠÍHÄ͵ºqÀd}š›2?÷•‡c<E280A1><63><63>±é0ÝâL¢¸(•A8+
Ç [VÆJÃ+¾Ÿcül¤H霻ÙòŠà<C5A0>†óµòL21÷ÁÓLèîà*›¶Á!ï!»Óìû½¹GæœÆJºíveÊiÌ+
L }E¶„ÉP­É&¶Ô<C2B6>MNc]i8`DMö¾0Q˜Â㨯¹$Zu8ºB8œMʶbVÓJÃ1ìAõÁæ
–‚‰¿ÈÆì%NI­<0E>%¬§Àæ¶²pÀD%7k¡ú㉽V—j
Ùá=F6¬…,$Ÿ±¯$ÃØ´ˆ/' ¸p ‹ò‘`õ+Êo;JmO<6D>‰Å®˜Ùs³ñE%ø<>åà¡§À¤Ï+„¦¦øÍζõ
á€Íµó
VÆÊÂ¥­÷ðœßÉ5ÑÜÀ³^!2Z¥¹áŒ¢CæŸðAK`šî<1B>Éæ®Žm™9ÛEçó# ¬šã˜Ÿj-)0­%!;ØY/<2F>$œi·™Dò°ƒ+¶C¯Id«ú
ÆæFŠï ÌóÇ©.þn‰=p ª+38šÛ×¹+ËîÝl‡ÌÕ.Ì
¹
rËü½bwM”en "× Ó—Ï 8`C³`ZóäÒ¬œfYæúls…ÁäÀ¯˜¢ì¯qœj¥àÔãŒ><3E>qEp-mvâØ°þå;:•ì…uuŽc²tCìPöÁzœF+ëæÃ|;ba²+f´Ò‡m~<7E>úrŒÝ3&b¾"8`s<>êäøp¢h<C2A2>™*M2§%°¾îÎqìq8™òviÝ<69>ã˜ÝP“kKÛËA)s[!œiûÀZ†G`u>
'¬«9¼¾îÎqŒÄ÷mV×Ý9ŽÍÒ|l®»s óÜbƒ8˰2p òpU`c¬ Ãì
S¢ö_¾X7»ø×û‡¤ö¿þÅ®~Þê/=Ñâ7Û?ýš¨åÔÿõoÿãoÿüfÿñ¿þwé×_ÿò?ÿ¶±Z¬K«44_G±ÒéÞ*®­âDÞªÛ·ª??úìþ*¦¿-Ì$¹w¥·¹0‡Gï Õ+«Š{óüè0ó}aHåXÇB˜çGŸ 3·÷…!v±jº‡0Ï<30>.³¿/ ×aˆæùÑaÒûÂ<C3BB>ó¹*¼‡0Ï<30>.“ßf¯Bï!Ìó£ ”·…<C2B7> •Z#xxvAœú<C593>8ܳ<C39C>¸Â ïqžŸ]ç}+,š“¿Žæ-qžŸ]ç};¼9S…½P×v‰sxvAœ÷-1Q˯rìKœçgÄyßËw&r•pûCœçg“·÷­±šž<C5A1>
íi桌û‡Â¼o<C2BC>÷<EFBFBD>ƒ5~±E}Hóüì8ïÛãÍú·gšõQãËþн<âþí>Ð/>u…Fɉz³aõôþuçg„©ï
³sˆ‡+ì¼xèÃó³ Â|`gMNu|¨kå{Lš̬Ks¬çcÒ\*ãcÒ|`eMšS]¤¹VÎǤùÀÈš4§ú>Hs­¬ÒìØX—æXç§Ì«å}LšŒ¬Ks¨÷cÂ\)óc²|jaOuʼZîǤyŸò†4Çú?e^-ûcÒ|Ày]šUÈäø°ü<C2B0>ÍEs= 2i>´¾çº@Hs­<1C>Ió¡õ=Õ*óbY “åCÛ{®TæñчÒ|h{ÏõLšKe<65>&}h{OuƒÊüëZ¹ “åCË{®TæÕ²A&͇¶÷\GȤ¹T>ȤùÐöžëú ͵r>&͇¶÷\ßi®•õ1i>µÃ§:?&Í¥ò>&ͧvøTïi®•ù1i>µÃ§º?&Í¥r?&ͧøXÿa.•ý1Y>µÃ§:@&Ì¥ò?H“?µÃ§z@&Í¥2@&ͧøQÈäø°<1C>Ið¡õ=×ÂÕ¿VȤùÐúžë!͵ò@&͇Ö÷\/Ȥ¹T&ȤùÐúžë!͵rA&͇Ö÷\?Ȥ¹T6ȤùÐúžêY¼êJù “åCÛ{®'dÂ\*#dÒ|h}Ïu…LšKå„<C3A5>¦,ëû‡Ñ¾â˜+®øaËû'-?ªD¹ü¬8¤µž>i=ª*}EýG 8½ÚœÿŶü³.„¥ßþ.ÿ×Îi{6qòïµùs ú&9~ ?ß#Ç×xû¿ÈdÙ6®t¹k BÛNÏnã[¸ÿûÀrœçÁS¶ßkó‡ìš{¤ø)­æ&)~ȧ¹IŠinâ‡ š›¤ø!uæ&)~È™¹IŠâY7ïã§l<C2A7>»äø)Mç.9~ÊϹIŽã§Œœ»äø)ç69þnÎ]Rü”|s—?³î[ä8eÿÜÄùN\Ÿã®…—wñÌhüøè)¾åjKß¾EŠsö·¼í[¤8ggKؾEŠsZö·Lí[¤8çcKѾEŠs"ö·Üì[¤8g`KʾCŠ$6p<36>ç ðïYá÷ÈqNýþž~<7E>çœïïyà·Èñ-Ùû{ø=rœ³¼¿g~ß#Ç9½û{Ê÷Mr»¿åzß#Å9¡û{’÷=rüY¼Eޝ]Šøç-œïß!ÁüC"}×~…Ý\qá_ß<5F>ylr=·úén×û¾Âs«·
æn÷6ÄîǯöðañØî/÷ñóì<´{sWݶÅßmót¸áÐøµSoIq<Ôp”âÒé†w¤8f8HqíTÃ;Rœ1¤¸všá-)އŽR\:Åð–‡C G!®œ^xG†Óa…ƒ×N-¼%Åñ<C385>ÂQŠK§ÞbN8¶ÿá)…wVÛÓ¡„çö/žNxGŠÓa„ƒ×N%¼%ÅáÂQˆÞátøà ĵSoIq<tp”âÒ郷¤868
qåÔÁ[lôxÈà ĵÓoIq<\p”âÒ)ƒ<>˜ù¡ù_gæçà ‡æ¯<C3A6>jxGŠÓ!†ƒ×N3¼%ÅñðÂQŠK§Þâthá ÅµÓ oIq<¬p”âÒ©…w¤8R8´Â[2'¸tJá-)އŽR\:<3A>ðë0±ýO%¼A8Bxnÿâi„w¤8>8HqíÂ[R¥¸túà)N‡
R\;uðÇCG).<2E>6x+¾u8\pâÒ)ƒ·d8*8
qétÁ[R¥¸tªàƒxã¡ñÛâ<C39B>ã+ã÷ã<C3B7>§`Ø©ù[¢a¯îø8ËqG<ìÕí'9n‰ˆ½º×ã$Ç-1±W7zœå¸#*öâ.<2E>³7ÄÅ^Ýâqã–ÈØ«û;ÎrÜ;ÞÜqàw£c¯îì8JpO|ìÕm'9n‰<6E>½¸§ã,Æ
1²W7tœÄ¸%Jöên޳wÄÉ^ÜÊqã†HÙ«û8NbÜ+{uÇYŽ;¢eç]Öƒ¿¿Ëz
˜<EFBFBD>¸%böêÞ<C3AA>·ÄÌ^Ýøq㎨٫»>NrÜ7{uËÇYŽ;"g/î÷8‰qGììÕÍg1½ºÓã,Çñ³ãmg ~7öê<1E>£÷ÄÐ^Ýàqã(Ú«»;ÎrÜG{ukÇIŽ["i¯îë8ËqG,íÅM'1½º£ã,Æñ´W·sœå¸#¢vÌ.;4ÿYL<59>Ú}×ÿ³âµÿí ĺ&£PÍiäü8T@
pO³3Á"ÔÛú7ÃÚŒòæEc³w*×XÎÅPÁÒÊcÙé¨É[
¨íQݼXWîÆÔ_ÛÅ䢺¹] <>a¤À¢|6>}
•ÍZ_Øœ[ÿR7Qýheóæ¨j$ñ©6¬P„j£Ìa`ÓŠÕH˜?ÍË9ùKYó.ª—BµÏ\(R˜l¶•Æ*Ô¨­ê²^ý÷ÊŸ4¢¼¹ºÉ
¦'/ÿ
Öó¨£qò¸P <Y<>8Ã(iåͥݨ„3Úè<C39A>Q±ÅŠc}gÛ÷]Ÿïíµ?VÌ«Øe5‰:–Ý Á€QâÄŠcYD2íT¦uŒFQÞ\®ÔŸBç#GI£¾5;MGÝåÞ%XÈÙ)¸e…‰GŒB…Aï2
bFyóBÙè^kë-&A¼8VÉR²ºQqØe¡¬QÔ7/™
Õ¾°¾êsk4¤¹VÖÚ£®þ0i‡E:Û¨Ô»¬Í¨o.c¡±=ŠüMêàÖ¨o^ÄØ)qU¼ZXÛ¢¾yIM²|<7C>…p[Ô7/©¢ƒâ<C692><C3A2>Õõ͉v
êÅÏiRR;¼ÁLb«CcX¦â IÓ·ÃÚE†æú†LÅ-/<2F>U8˜Ðeù¼<C3B9>ì¤n<>çzFŨ9¼Î/ØØ£ÀyÙ­„sÑGê~&
œ«•c”¹´çŪ'e<>­ë5¥pgT8WçȲhÚ;g“ˆ^<>¢Lªþ
dîG…s-êTL½ùØR ·y…ó²iöå]¶ùOZ_—¬lkdµÃ@ASŽ$ð T“MˆÚî`ÒÌ-™ÑÙ(ب¿,Ñ<>Ô7ZEέ Fl/-0õ`TÈ¢p\šy©®Ù6ªnE…¬i5- ÞW<C39E>ó™¨:×"œÔÂM«Æ9<06>æµÀ¬nW
ëÑrq#FÜ²ŠœY M¿ª©˜ÔÙ+dQSTmÏn)ƒÛVó^­²å³«šØ2a²ZT¢8W֤ܶ>sˆHi£eÎ¥²ÿúR7H”Á<E2809D>«Ì¹ ™¸Õûlä(ƒ[W™s)4Çð4)öÀ(`é5²4<C2B2>žtˆ*¸Ô‡ÆædJ¯ò¼/¬§Uå\Ê­ÁÖÿ3ÞΉCÙùU#ey,;ÆiÄò(sÞ(*؇ëV³yû*%õ•Ä>—­Jí*sÞ5yeµ$˜AB”
ÀäÐÓTA”ò,¬È<U«Ç×­œ·´(÷À¤MQå\£×¤${²2kÓïªr>¨m%xe•9·B¢™\6•ûNÝ­¨5Š-ÌšA-0Ùl é<>2Å-
ž‚%ªŒE<C592>¬A‰k¦D´'%«ÌùÐ1dIGüf¦\uÔÈƺ)u<1F>i0£FÖ ®/†aíkÉÔ<ßÄ#}‰¢.ux“}ÃD­FT<46>ÓwŒÍ*òM­ö”¸Þ|¢P7­ÛÜ´”í>´Ä«ÌùT'és¦×Ä-Qæ\<5C>ì~íc,Hs>ÊœO3õN>êáÊ0ÏÓÊeó/0>ÇË€NVnY¡î=M¡îUçœ<12>ZÈjþn•„£ÎùÔ ï1
6®:ç”ïÓl)F<>©¿êœszOÚµÓçØ¤<C398>TܵO`â7ã:<3A>yu1­þm”ÃM«È9XÔ]6L½7¢Ê¹•
_HþmTÃ-«Ê9Xó
>ÃÔCÄ‹€fÞ¦µ#ªœƒ‰.^E5Ü}U9óšº k}U971÷UµwR
7¯*çöy<C3B6>ºo905eÎéV5/Ì7©†<E280A0>4£3)3hFnæ½ß {¥ufÛ{{Û5*ÔN7¬ý¡8­We\¥úQž íU@ч©ÏÙÝ
P
7¯2çÂôáVœ9°®q2¢&£#B}-¿ ®2ç¨&ëwwâA9Ü}•9ŸÔX÷Zð†±ºÊœSv6ªS&{‘½ èd­ÚXq­Ï¨‡;V™sJÙjî"M`ê÷jDl:a˜x½Œ½Ÿ±Ò<C2B1>í<EFBFBD>Q…Øë€NœƒN·¤ÀfZuÎ…‰lÖ¸ÌkÚL\uÎL%PÓ¢uÎù F,wÿÍlFv,«“©Ù=]—L%W<>óA[+pmP¡d”9ÇÈuÍædw»<77>QhÐË€²‡æÕfýódS”9Çn¦/'‰¸c•9VEZ¼ë¤$®¬½Ñ I1S^PÕ·ËÁ‚÷¸cspƒB §ðš}U9'îĸ†úQ·¯*çTõ¦Ô±aúœ¼ªœª”mí¾VRWc,Gk³¼92Þ•ÔQô¥I&óÅ\)»ø 8øNÒQ√Vª(s.C<>C'‚žÖÒªs>àZŨ«ƒÒ®±
<EFBFBD>T>lÜ<>gϳUøö˜ ÔGç9²…8oäv0ý1WÎŒŽÀ¤u¹yédeX¢Ú9kz¢œ¼UÊaÓL”;ÇžïüON y<×B ŸÖü
aq WÁsÖ/k Ǩx.<2E>ú¿¹-†ÍX‰S§;,t£iQ±™i`[âBiOYV$`]Yv¥"êÁ¼Àªu)(<28>¤{+…uHUÊ“9Z/¬ì ÔFÝsˆE—íY½®iPWÝsiMk×ý
€Vayïi<EFBFBD>ò¢ò¹è‘>WŽÖˆŸÕ\¶ŠÜ«¼©ºy8u3°<33>§Úçšõ[Ôƒfpþ¤ò(~ne•Ö5õ<>ê <C3AA>r´7¤Åái<C3A1>òç>s4éÒ½Z¨-„Öu<C396>E2´Â8ùiDH4“jm T9©Éø¸…û, ÄD tS#~)¤eVôÊtóʦ ”{íUÐq¤4\«ðøÚª‚.ߌ‰(ì\ ”Î#=¸ZbEÍJ|¥4o¬Jè„<C3A8>vJíîu<C3AE>¢=ì±<C3AC>Bi<42>t7~·rÕB—ÏN¬dzhÃÀXe¥]…¢à"Âs<C382>éT™Žjèv>\#SZ l™G|dB©4¾:gÄä(1/ù•…ˆ{F)ô¢…&à¥òxÍH2†)Ë­ î´×P¼ÚU
=âV<>v<EFBFBD>š¢Q=KU¨~^²OJ*ç¦Ýƒ>zƒJ¶Z±¼r+ z)J¢S×9Òüã)<29>WItu“ -œAÅ·¢&:.·VÈ”w8ÅskE—ÿ¡×o´­/<2F>…Ъ¢§Á"#ÿ¼Æ$ pAÁZ “,”~6jˆ(à¡ñ{<7B>V”ºcFßÌñˆB ݲ*££á[ f”7œIç”w­Hé~ÔF§¢®­^û\ ˜VGOLvÙ§¹…@<40>XJçöq
K˜ma=¯êè9S\Æ¢EtŠVqjFS³@š-ÕhÜÇ,“”¤Â¶¼¾°@üÍé1 LHUëÙžVïÉálQ"<22>Ø(þy1ÔP<C394>U#]:»Að¶0‰ÑEײ;âúÃêç
“Yˆ"é…hN³ †<>ŸÓ­†MYæj±ÓG]eÒ }¥ [â+Õ_šQ'<27>y§·r<C2B7>!@§ñ;&¶@)dóæC¥¨£R:aØæÐ
Tï¶¹N0TBÄ]K'"hëj,3Eà=„ Ñ'FÅAq<41>¶*¦“ªÎ“Ú<E2809C>Ö´|¼)ÊM)îÝ@s=Z¬¦ ΖÊ ¦ˆ,¨uDËíÝ®9-_¢e¹®²éD¾Æi Û,p˜iÂJÊöhž Ó [/Ûèg“ºóm<19>ñ?£rº°!$ƒ%­Mª^ýE9 «Œ¶<C592>­¬ÚéÕ¼¾Ï¥ “É¡!@ýj_…Xr[ÕÓ“:¡Å\àá«~:н·Eð
Aû¾ã±úgJA$о@8€s&:G´¨ÕéãQ¤w3G€¨š/#+QÚG]UÔMàžƒþ¼ÑUF<55>d­î³/<2F>îécX½aF¥UI<55>ˆ²UMÅ´@¹ÊRIl“@ùÎu $ßuÕR·í b<> ³&ãU
:[¼)CVW5õÕê¾°?5Ã#TTJ4µB ®M[LY”ŸkYÕ %îõ¨‡~ 4Å8•òå6°OÙÌ81œÒô1ÊÂÆ¶Jª¸üËÀA=ôjWØ`òdÂä=å¼@ýRŒ¤ÂEÿ•â=$˜ßئl±«/;ZpMWUõ =Ï+À éø#/5"F²Z ôIÁCÖê<C396>c[.ÄX´J†)ÐÈûÒ†mbYíè9ˆ»P2ùÍl“ˆÐ®uPf¶-ÐÃRØ&qeIÝz¶aJÜ#n„#±‰+/p¨{v³MüJl}fŸ Õ‚¿:i“  ‡ýnéf´,ʴˉÚ]£+^êŒàkÞ4c ¤kXzzoì,á?ˆÕíþKžP•¾¼JÙÝnCéˆüT­L!<21>ÜjÕËá¯T8Äôøt·Wо/ÌÇÊlÓv\¡É¬“Цeô=cäÐH<C390>!UâÍaŽ7µÖkéjnÔ¦ÈXì(A$¨±¬ˆ8t îj£%kDwá»V5#5BL2Â%ÈqÃ
)<05>D¿ Ò²[Y&Õr¼R ×A<C397>ˆDI Qú¤Ž\`<60>m8stŠ M4ïX9šŸ¸°ZYKôO3çx:kÂ+“ÝÔ ÏŠsÖ„¯W±+<2B>Ò:fgM¸<4D>ò<EFBFBD>¤»m<C2BB>#OŸÂî™Vͦ˜Ïòm“ÕÝýÝ®%yÄ4hìD³ÝǘÈ<CB9C>Îkô ÔTÔO:m¦Õs<@Íõˆ(
s¸EÛÂÀ4ÜVd†d˜Á­<1¬šá´@ve·Þgš<67>87ðuT\Â5ÐÂ4!"¦4¸Ïpûâ¤á¶}:m X3l¾á¶NÝ9“Z É/PÌ0ÂJƼ5ì<Õœ<C395>ÄxœN ‡¨G]`SsÚdÁ`Íà/ösä¢9kš\)7·Gì+hW6ØLô_í»©¢³&n®eÓ Œp\ñݰÁRâ#"G^Î\Ä—¦XÜ./1ÇœîÄ&mÞÛbû
g Ë2ÎT¶ÍŒ<C38D>xÂ\ œø<C593>™bÛŽý+6 Õ8SÙà }a`¸F¯WÛYÜ"ØmÏe†vcLú¥ã;R8©1„‰­EÕÑB£:¾êLÆ—8
.í{‰Š ë <0B>/±_©Õ„u.Pt6îÑÞÔ-riÚ_MY\gÂlÊÅÑz*.PÈcLeW¿ÀîG<C3AE>©Ž»ê~ÛZEÁ{,…ÂÊt*l[²U}-?+/pB¬lŸˆ€ɽ¦xS±,ŸÑ%6zÙaÞÊÁñ<07>ÉËþ
tIœŽÏ.bžص¾]bß™ëacE \Vq£KlXë3-V´Àîì)Û<19>ìÚÁÛàõyêÔŠ•<C5A0>.Ùþ9ÃFià²<0E>2œÛ ±}Œ»ò2^ ße<C39F>Ae|;Ÿ`о\Dœ5y”‰<€ÁÆáŒµ€ø(êÀ <C380>?`± X}±CÚéúZµAÔ}<7D>bq³4ä…„“±š$Ó¢z<C2A2>‰T™-<11>ýª›Ýþ“#QÉc™A<E284A2>eÂŒìv=/}¬`æ­ÆÆ™ô‡Ç¶æ÷ÜÅ<C39C>ìŽiѰÄdóÖ^=ÆDHeÿr„HÔ\ÄÍøù#JŨñ(I)²u¾8ËÊ'"EËxŸÁoÙ„ga•Š¥ûôk\ º$RŠDÍ\ÉHå(Š”, b·„<C2B7>-—Ê ìc%‘è“´´‡Õ–-/IE³HY˜VîÝèÉHñÖ6†M¡jiEx#¢þ)—‚Ž]"-JKèàB¿jæ·øÍ§\«»²½´öÛI“¼._N÷²[:Éó´ RP<ìgººl~…A
³Ï¶Ý3ŸÝ'åKTʲ¾ØJdfx‡í¢¨úmk
àó2a<>È“Aªÿ/qï³+K¯cùÍïS|/ЧB¡ÿ€aÀmw7`À“îšžVõ kÔïxýH*vfìôÝ73j‡? êžëDŠ!QI-‰Å»Zÿ1ÒæûB ë2ì9|H09>ˆ&6¿¦»$€æë:YìKy¥ZEå0Ûà ”¶qñÛÓY ™¬xp¢È±Òlò…EJ¦Ù)·Ô—[@ygˆê+<2B>„mJåË/âyžd<C5BE>
»=<>#+ãÁÃ,
Óz ½ é<E28093>Oqžšï˜F¯Ê¥oÁÓ”y“ϼ@Åèˆ'¡ÃÇ›Ðq†êÔæ<01>ðj«(ƒ*<2A>Îʸx N£%×q@ù-ÉIg†iÍñ8L+<2B>´/ÇHNbd<62>ñªÕ¶·Êè{¨ÏRÿxÅE°2hî;»Êýem=ÇNMYVÅÌ»ƒxõÓãp@ÅàYa[ Ô6_XȆÈÍÙí±>é<>oëuSÞš|êÖ¨ùaq8vsHa4|ca
<lÕÙâÔO<C394>õL %ˆfŽg&=ŸYØÇl±°È£à3Ê<33>i [¬+ƒuĄ̊ƒÕ¶ÊbaÁšGž°õU¼ ®©g7÷ÀÌ”ƒ¼(k?àˆ-P!Ðv,,“5fƯʧ¯Aßc˜5Ðe<C390>5P.<2E>ìMi Ô’ãÑ ü,¿‡Ø@9Y{P85
o„ 4él]±#HI.m<>><3E>S_ÄÁIŽ@ŠÙ8$<24>-,™å[:<3A>bÆky— kë”¶Än º¼ûª+½ÌlÚ:Â~»§²œ™9³œ¤F`ËNäÓÊú„mSàìl“ÀMÅÊÖT¼X”ŠB\úàrvEêÕ¹À"õ°@PŸ$_³ ‥³Y™BX©Ý¶- \?è†}<7D>R&YáڡèRªw<‡‚*Ëä[žr$&(€ƒ<q‘Ì!¦ì8˜TKïnñ";óÁélþC2UVÍýZ=ìIÈY1w~ ‘ì–Úë´À ]!/h®TÐ.Ç_ö8Zd~­PæD“-Œ´t<C2B4> ¤ó¸öAì0gÐóls<6C>r<EFBFBD>=2œŠoüC°ŽÕ¤7Lv<4C>íâ¾0Y;<3B>ÃH— u7Ã
 ‘Û&÷;
à°#âHñx'7LF¡U´í¡-`-A¡°÷eÖÉnnAïtv¯»€šÊ¨²Múg
 Á¥†::¯Â’ö@PŸ![”ªêôféØÚWMÅ&ªÇájlä§vßúqb4„v¤uÇ~UL±—çÞÊ~€Zö<7p3^N+³º×PÌ|×{ ž-?ߨtL~½†Ã}¦¼?£`þu²”<C2B2>hm=•9ÜÜ_Ê$CÛ"‰±y+SëdÃvä¨ ’Óq8ûFM«a¯*”¾àz¸z!@9K‡g6;þ¶@Üùq¸™=Oë.ÐtÑMÀbûíj¼Ùò7wIÆ”œæ6êÂ8ÁæÞXnº;„}¬L#P Ûi(5‰8î±@÷<>Ì"¤DHe Lfuꚃ¾<C692>ˆKèÞøAìňÃmY<6D>V;ØÀá,Õìä4a£M)ܲ‡<C2B2>ÅØ™c<E284A2>¶º¹Qb“å ¿
TذÛPáDY±?`;*LÂÍ<C382>ärª“{2"ÏéS 0‰³rîe´âͶDm0ýÂ,=¦2ÇÇg<C387>= d÷¥äœG…'@È3Ëmnv eÅᬸN[ Xq¸ÏcÏ,5Óð‡ã"VçŒ(K·q<>¹±3¤ì+·˜æË+è‰h³JÛ×<46>Øÿ± ƒ.ˆ@÷hS¼‰_Sà 4¶ÓƒîHŠÃ*™hæÌÍ1”sPAÀ4‡ƒ©<C692>FæŒÓ{“aýa§0Rá~mM—Á'öt°ËŠûµaldív5O0„»d»çÒíš4ÏÒ†(>×ØÍ…(øˆ80ëc#ްÓ= Ûœ•°°fûß5îî
SJ|>„¤t¿|§°ÞÕÊõ<C38A>3>€’½–2°³…»´ÁE)‘Í+#è†5éc|Éÿ»vøG^Dß9³Nùl¦»[nh‡6Ü4YV>G"4u¯¶Ãà/ʽÁT<C381>öH™8˜K>¢NÖA|¥¾>D:7Ë:éÃ^}ýZízÅZ—p6c\ÏåÀBYKAö00KKx'½.œ¥<C593>ÃÍÐÇÒ+§žÜ2má,Îà\<¥ÕDívîn{ì£<1A>Ã-Û¿CžGØ8}5ØzB./p$g{€Ù­Ë·žÄ’ï`#«©À+©ø‡@xZÌ@b}X°= T¤¶"A´dÃäX¶Kí`Ï;Ȥe@©ÄÜ$ƒìa <20>[s7´FrþÊì±Mdg¶!hŽ {ˆmr Ô×ÉzZÍ»‡c/ëPàÀj¥p3F¶“Nî.«Œò'`ÿYÓˆ<14>÷(æ!¹»ˆæI9&ÀÝv¡ÊÛ²‡<C2B2>pÚ¶˜¶œŸ(NöóÈ5´€Ã=[<5B>=  ƒ¼¹ûv)zîk<ºí¸Ë¨ J¦¯,P]ã)&0)ÃÖB; dåàz¨1†œº@
˜¶cÕ‡]ƒëÈQ¹íèûàH1Êܵ•~ÌÒàzXÄñ¾@ýÛH1’Ž,±úÀÁõ00“Cr¶ ùAwš“íÊø§°?¶×ÃÀðI(õˆ“@™­†÷Ÿ-öiT×o@ÿïÁõ0<C3B5>„Øî´@öPÝiÚíÆÔ/…@R»\å}Ž•Û„«Áõ0pg­X`å˜5d
Öæc”O AÔÁÆžéN,0Và4°<>àz¨Ïœ±²M…«%¨†i&ÉÅO à)&0_V¢­Ö z¨>îA¿N¾X¬¤.XvòÂȹ˨<>,+´žüãàz˜l¦,ÐŽþ.Ó¤dG ýÊ9že[Bþz?CžþúW;‰­^“ÿõoSÐhúö§âgRÖþûßþåÍßÿ§ÿòß´0þõ¯ÿóo,û:ó<>þÊ_9øýtì<Ç„&l8 .ØÓ#çÝ<C3A7>5aÊûÂt6cwg„0<E2809E><30>.†ó%<25>ƒ?ZôB˜ÇG„io #­ÕF>¢ÖýæéÑaúûÂpÊWfDs~éÌÓ£ ÂŒ÷…!ÛZìà뾄y|tA˜ù¾00.[ÝqŽ0<E28093><30>>¦nï c´À8ùÂ<>º Lz_˜ ë¯ø‰ƒæñÑaö·…É;ÇûÌÕ^SûéÑaÞ·À刬¯azztA˜÷-°]2ǺBþ%Ì㣠¼o<C2BC>9SCR?+n^Â<>º ÌûØÎ\ÉǹYÂ<>º Ìû6$QÖ„,O.ˆò¾ý…ε“Cëå<C3AB>åñÑaÞ·¿¥<zWŸ7ݵկ¼d2|/†í^²«-½ÙìnòJZ`,«úøè‚(û›¢@ŠãT_‡#ùôè‚(ïÛTÓ]á8OO>”å}“j²<6A>Äüº6{žž|(ËûÕd!Ëýu•ã<=ùP÷
ªËR¯Ïž§'Êò¾=uY¶Ç+´çéɇ²¼oPM˜aǵŽóùÁ‡|hMK¶Û²mã,Dyxò™,ý}gÖe±<65>Œ<EFBFBD>m¢%ËÓeyß—5YŒ„RøŸ?lÿ}÷ÕÚ‡g³?Y·Ç'Êò¡¥Måñjíyzò¡,­ÛÚÖíñɇ²|hi9³¿?Y·Ç'Êò™¥­s<^´=OO>”å3K[g}¸l{>?øPÏìlµ[´­ÛÓ“eùÌÒVrßåѺ==ùLñ™¥­œ»xò<78>žž|(Ëg¶rߨ“ïôôäCY>³ºÕ.Ÿ{´.OO>”å3«[¹<ðÉwzzò¡,ŸYÝ
èÉwzzò¡,ŸYÝJŽëÑwz|ð¡$Ú\¨jO¾ÓÓ“eùÐæBñ{ò<>žž|(ˇVúc]R´ÏîĶö?´´ûöxEö<=ùLù¡¥Méñšìyzò¡,ZZvž|§§'Êò¡¥Ý¶Çë²çéɇ²|fiËl<C38B>WfÏÓ“eùÌÒ¹?\|(Égv¶Ø¡Óãêìyzò¡,ŸYÚÂ}v_Kæéɇ²,Kû§ÀÊCзv?jw|Ðn…ɱܯþQ}k{~Ð6©½ ™Ïð~òç¿×ÒçIäw¿‰?p6ü÷šú)UüËÍÿ”þåæç“–ŽÛ:Ú==úÕæ¿%Ý¿åáµùg<C3B9>¿[ïäîʯ·ÿ×Ûÿ<C39B>¡òÛíÿDJùõöà¡üzû?PO~½ýØ&¿Þþ“_oÿÇ%í—Ûÿ<C39B>ÓòÛíÿDcùõö`®üzû?<3F>U~½ýø)¿Þþ””_oÿï²P~½õˆ'¿ÝþÏí/·ÿÄuùíÖžèöÙ~ç'~<7E>·zzôËíŸ9ÇßhÈ¿Üþ™fü<66>yü»íc#ÿrûg2ñ7~ñ/·æÿrûgÊð7ñ/·f #ÿrû?FпÜþ™˜ü<CB9C>«ü»íã"£'ÿrûgúñ7Fò/·f#!ÿrûgñ7Þñ/·æÿrû'.ñ™]üË­ŸÙÃßÅ¿ÛþÏ ´_n¿<§Ÿ·µëÄå<C384>ÜÕ{²ê‰û;}¯`m½xkŸî¾¼ë‡{k·
YýíŽ|ÜÄòæ~¹'çYýí®|PI.øu<C3B8><ßW«×ðo4ÿÌw_Í_㼿Ñü3Å}5<35>æþNóO¬ö£ùKÌöwšÍ_"³¿Ñüw}µ~‰¿þNãOtõ£õK”õwšÍ_b©¿Ñü"¥¯†?%¦¿Ñä3}5|<7C>þFóÏÔóÕü5úùÍ?³ÍWó×çï4¿?Ì<>æ÷+$ó7ŸgNy4WþNó<4E>4ò£õ+Tòw­_b<5F>¿ãs>ÅWó×㟸¼Ñîoû¼'Búj÷<>æŸ9è«ùk<ô7š¦<7F>¯æ¯QÏßiþ‰i~4‰mþFóÏäòÕü5ù;Í?òÉ<C3B2>Ö¯pÊßiü‰B~´~‰FþFóϬñÕü5æø;ÍQühøC²øM>sÃWÃ×øáo4ÿL_Í_£„¿Ñü3|5<35>þNóO¤ï£ùKÄï7+Ï<ïhþ"×û<C397>æ÷j÷Ñú~<7E>ÞýNRé‰Í½Z¿Æè~§ù'÷Ñü%÷û)µhõ¦œ%X?©vJ­foI½¸û`µK.èÅ}«ý[A/î88Ú¿#ôâ^ƒ£ý;ÒAßï2XÍßzqÁÑü ¡wíß‘zº§`µüË)¡w¬oÉ ½¸<C2BD>KRèÅ«ý[²B/î8Ú¿#-ôâ®<C3A2>hÿž¼Ð÷ûŽæoH ½¸SàhþŽÌÐ{Vû·¤†ž7ñ¢á_ßÅ;%‡V÷$‡^ÜP°Ú¿%;ôâVÕþ-é¡7íß‘zqûÀjÿÑ÷ŽæoȽ¸eàhþŽÑ‹›Vû·äˆžn8ZþÝ$Ñ‹VË·d‰^ܰڿ%Mô⦀Õþ-y¢·íß‘(zq#@´O¦èû-Gó7¤Š^œü_Íß+zqÚÿhÿŽdÑ#k(š]¶æŸþsâÕ]~f«ýó¿¨y~ðÿ[„]õ
ö}îíVžú ½gú<>ÿ,xã?$ Ëuýuæ¿Úªiöò×?ÿÛ_ÿ÷ÿ²m[ú_ÿúþúçÿóoÿéŸíƒÿÝZ¤N ¥"_4¹?6i_Ýÿ¢ ¦úýß÷«wŠÆmUñê°
ô§±‘»ò<C2BB> {P1°¾Žö:¶òsÆFžóJÒwknÌÀZYé@†éÊôŽæüaï}ßrVÛJ2ŒcQcý#¼ºøðØê L†dr°2ƒ\×{3GB<47>AâÀ#š8×+ÃNÏV#{ lÔº&¬VU}ÄçGø¡%°nì<>‡+s-ΰ]”>?‚Àä#x:4X<1B>„ 0&†ñ Ù<>ÏìhÃFâ¸`LËxŽVµ~Yž×à¨GŽíŽ5»Ò$ž×´‚À|qlöH2Èòèý59<35>¹}ž<>©˜«]Í<>GÓ¥.vFYç‘"ìØ°-¡m½' |Qòj+!¨yÆûðð)˜4t…rÀð(ã½öaÉOËà$ËäŠöˆÉåÊ!Æ$‡/uïJ¢LæÅ{)=&+·ö¬}#"ãzɉæu£<75>•u¡<75>ááÌaǧóŠä€A÷Ì»žûŠä˜A[W€i&­H˜:~·¼,é·üªÊîX_ú8VVâ)U÷ÒºÑÇ1NÏ€8˜–¹á"Œð åQK1·É™ìë?,p Vç#¬XJŒaìO­tÃgÅÁêºÑÇ1­ã`sÝèc˜ßHàrr²b¥ãV6?]4ÆÊÆ1¨­{mñûO¬¯lµWS¶ö?ÿj—[itâ>uýÒ÷¨Û?ýòªEÞÿý/ÿö—<79>¿ÿ‡"Ñö_ÿó/ ƺJKCó™N·iq™§W5ù¸ëýùÑ{·j™0ýeadm>Ê»0‡G¯ Ã=0«¶|óüè0óuaHéX'!B˜çGï ×…!†±*͇0Ï<30>.³¿. ×¹ŒæùÑaÒë îMŠºó!Ìó£ Âä×…™å³ü|óüè0åeaàÈŸàÞ]§¾!@8YÚâ<?» ÎëVXD'ž\â<?» Îëv^MmøBµÝ%ÎáÙq^·ÄD/?‹Ä/qžŸ]çu[,—„ø•X¥ÈÜCœçgo#âøŽ8óQ7þ!Í<S˜×­ñ¾sÌg³³Põ!Íó³ â¼n<C2BC>4ë?žiÖ[<5B>/û+NômÂý—[J?ùÔE¤þµ†Éø<LºlÉó³ ÂÔW…Ù9RÄfv~=ôáùÙaÞ°³¦§êB Ôµ¢B&ÍfÖ¥9V2i.2iÞ°²&Í©ÚÒ\+2dÒ¼adMšSÕ!¤¹Vliö7l¬Ks¬>dÒ\*:dÒ¼ad]šC"æJñ!“å] {ªFTæÕ"D&Íë”7¤9V%*ój1"“æ
hµ·×ß]ÿ+BPv4uÁ !>ÿ$m”õè3ïéžñÿû-Þ3þ_†Æÿï ñ÷Æ¿ü;Ž¿Wñ¥ŽKÝ¿<C39D>FýCYÖþ]àï6I•×DÅ¡D>ïû¿+ÃßëûWBPå<í_BüÊñŸÆõ?<Šð%Üã?¡Ê>;5¥¨Vi÷»`TÛÙºB;„ÜFáú%Zý>$¿&ɨ”<C2A8>Qû¯i7
Ò¬Üa{%F¿Q K,Ë y%ǸQê¦nÓøB<C3B8>y§ I3GnñKMýßnd§ŽÚÖÛKù<>wªÈŸFý¶úJŽÿý>9Ôø˜e/äø?š¬cSðòJŽÿtŸÔ'oÉVûÿ_-™–'uÇH/gî¾OŽÞ©…Ö_
KÚ}ší¥š¦“óñN¸µQ¼W­ü¡â_ÿõ)úZ·<5A>ÉÿÛ·óq2:SvnלI¶sþ‡š<E280A1>Viðß Ózœ­ÚWS0ÚG§Bœð²Zó-íiß
+Ùrá#°FA:ÚÛÆF¡C«
@@ -6027,37 +6097,37 @@ xref
0000013836 00000 n
0000013890 00000 n
0000013944 00000 n
0000011454 00000 n
0000011508 00000 n
0000011562 00000 n
0000011616 00000 n
0000011670 00000 n
0000011724 00000 n
0000011778 00000 n
0000011832 00000 n
0000011886 00000 n
0000011940 00000 n
0000011994 00000 n
0000012048 00000 n
0000012102 00000 n
0000012156 00000 n
0000012210 00000 n
0000012265 00000 n
0000012320 00000 n
0000012375 00000 n
0000012429 00000 n
0000012483 00000 n
0000012537 00000 n
0000012591 00000 n
0000012645 00000 n
0000012699 00000 n
0000013998 00000 n
0000014052 00000 n
0000014106 00000 n
0000014160 00000 n
0000014214 00000 n
0000014268 00000 n
0000014322 00000 n
0000014376 00000 n
0000014430 00000 n
0000014484 00000 n
0000014538 00000 n
0000014592 00000 n
0000014646 00000 n
0000014700 00000 n
0000014754 00000 n
0000014808 00000 n
0000014862 00000 n
0000014916 00000 n
0000014970 00000 n
0000015024 00000 n
0000015078 00000 n
0000015132 00000 n
0000015186 00000 n
0000015240 00000 n
0000015294 00000 n
0000015349 00000 n
0000015404 00000 n
0000015459 00000 n
0000012969 00000 n
0000015513 00000 n
0000015567 00000 n
0000015621 00000 n
0000015675 00000 n
0000013185 00000 n
0000015729 00000 n
0000015783 00000 n

Binary file not shown.

Before

Width:  |  Height:  |  Size: 312 KiB

After

Width:  |  Height:  |  Size: 308 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

View File

@@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-11-23 lun. 18:00 -->
<!-- 2020-11-25 mer. 09:16 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>SVD Control</title>
<meta name="generator" content="Org mode" />
@@ -30,63 +30,61 @@
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#orgf2587b5">1. Gravimeter - Simscape Model</a>
<li><a href="#org3a856a2">1. Gravimeter - Simscape Model</a>
<ul>
<li><a href="#org008a0a5">1.1. Introduction</a></li>
<li><a href="#org433ef4e">1.2. Simscape Model - Parameters</a></li>
<li><a href="#orge6c3f27">1.3. System Identification - Without Gravity</a></li>
<li><a href="#org34b5cef">1.4. Physical Decoupling using the Jacobian</a></li>
<li><a href="#orgf6c4a25">1.5. Real Approximation of \(G\) at the decoupling frequency</a></li>
<li><a href="#org850bcb9">1.6. SVD Decoupling</a></li>
<li><a href="#orgb4036b5">1.7. Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</a></li>
<li><a href="#org54e1362">1.8. Obtained Decoupled Plants</a></li>
<li><a href="#org26917c3">1.9. Diagonal Controller</a></li>
<li><a href="#orge573ff6">1.10. Closed-Loop system Performances</a></li>
<li><a href="#org7cee37e">1.1. Introduction</a></li>
<li><a href="#orgec45da7">1.2. Simscape Model - Parameters</a></li>
<li><a href="#org30962d3">1.3. System Identification - Without Gravity</a></li>
<li><a href="#org5b19440">1.4. Physical Decoupling using the Jacobian</a></li>
<li><a href="#orgc8cb89d">1.5. SVD Decoupling</a></li>
<li><a href="#orgd2f1c19">1.6. Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</a></li>
<li><a href="#orgc761edd">1.7. Obtained Decoupled Plants</a></li>
<li><a href="#org669229d">1.8. Diagonal Controller</a></li>
<li><a href="#org582b3be">1.9. Closed-Loop system Performances</a></li>
</ul>
</li>
<li><a href="#orgb4d9d19">2. Stewart Platform - Simscape Model</a>
<li><a href="#org71d7b34">2. Stewart Platform - Simscape Model</a>
<ul>
<li><a href="#org1066cea">2.1. Simscape Model - Parameters</a></li>
<li><a href="#org57d9045">2.2. Identification of the plant</a></li>
<li><a href="#org81abdfe">2.3. Physical Decoupling using the Jacobian</a></li>
<li><a href="#org1a7fde2">2.4. Real Approximation of \(G\) at the decoupling frequency</a></li>
<li><a href="#org8b0f922">2.5. SVD Decoupling</a></li>
<li><a href="#orga02b880">2.6. Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</a></li>
<li><a href="#org4813b1f">2.7. Verification of the decoupling using the &ldquo;Relative Gain Array&rdquo;</a></li>
<li><a href="#org82cfc11">2.8. Obtained Decoupled Plants</a></li>
<li><a href="#org75580ea">2.9. Diagonal Controller</a></li>
<li><a href="#org9f0f788">2.10. Closed-Loop system Performances</a></li>
<li><a href="#orga629e4c">2.11. Small error on the sensor location&#xa0;&#xa0;&#xa0;<span class="tag"><span class="no_export">no_export</span></span></a></li>
<li><a href="#orgf9cb366">2.1. Simscape Model - Parameters</a></li>
<li><a href="#orga72c2be">2.2. Identification of the plant</a></li>
<li><a href="#orga9ba8e1">2.3. Physical Decoupling using the Jacobian</a></li>
<li><a href="#org4b07807">2.4. Real Approximation of \(G\) at the decoupling frequency</a></li>
<li><a href="#org87a2d2f">2.5. SVD Decoupling</a></li>
<li><a href="#org4b81d86">2.6. Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</a></li>
<li><a href="#org2845b5e">2.7. Verification of the decoupling using the &ldquo;Relative Gain Array&rdquo;</a></li>
<li><a href="#orgdb7f2df">2.8. Obtained Decoupled Plants</a></li>
<li><a href="#org0143a9d">2.9. Diagonal Controller</a></li>
<li><a href="#org7f0526e">2.10. Closed-Loop system Performances</a></li>
<li><a href="#org456839a">2.11. Small error on the sensor location&#xa0;&#xa0;&#xa0;<span class="tag"><span class="no_export">no_export</span></span></a></li>
</ul>
</li>
</ul>
</div>
</div>
<div id="outline-container-orgf2587b5" class="outline-2">
<h2 id="orgf2587b5"><span class="section-number-2">1</span> Gravimeter - Simscape Model</h2>
<div id="outline-container-org3a856a2" class="outline-2">
<h2 id="org3a856a2"><span class="section-number-2">1</span> Gravimeter - Simscape Model</h2>
<div class="outline-text-2" id="text-1">
</div>
<div id="outline-container-org008a0a5" class="outline-3">
<h3 id="org008a0a5"><span class="section-number-3">1.1</span> Introduction</h3>
<div class="outline-text-3" id="text-1-1">
<div id="org7c9ba62" class="figure">
<p><img src="figs/gravimeter_model.png" alt="gravimeter_model.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Model of the gravimeter</p>
</div>
</div>
<div id="outline-container-org7cee37e" class="outline-3">
<h3 id="org7cee37e"><span class="section-number-3">1.1</span> Introduction</h3>
</div>
<div id="outline-container-org433ef4e" class="outline-3">
<h3 id="org433ef4e"><span class="section-number-3">1.2</span> Simscape Model - Parameters</h3>
<div id="outline-container-orgec45da7" class="outline-3">
<h3 id="orgec45da7"><span class="section-number-3">1.2</span> Simscape Model - Parameters</h3>
<div class="outline-text-3" id="text-1-2">
<div class="org-src-container">
<pre class="src src-matlab">open(<span class="org-string">'gravimeter.slx'</span>)
</pre>
</div>
<div id="org57b14c6" class="figure">
<p><img src="figs/gravimeter_model.png" alt="gravimeter_model.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Model of the gravimeter</p>
</div>
<p>
Parameters
</p>
@@ -101,7 +99,7 @@ m = 400; <span class="org-comment">% Mass [kg]</span>
I = 115; <span class="org-comment">% Inertia [kg m^2]</span>
k = 15e3; <span class="org-comment">% Actuator Stiffness [N/m]</span>
c = 0.03; <span class="org-comment">% Actuator Damping [N/(m/s)]</span>
c = 2e1; <span class="org-comment">% Actuator Damping [N/(m/s)]</span>
deq = 0.2; <span class="org-comment">% Length of the actuators [m]</span>
@@ -111,8 +109,8 @@ g = 0; <span class="org-comment">% Gravity [m/s2]</span>
</div>
</div>
<div id="outline-container-orge6c3f27" class="outline-3">
<h3 id="orge6c3f27"><span class="section-number-3">1.3</span> System Identification - Without Gravity</h3>
<div id="outline-container-org30962d3" class="outline-3">
<h3 id="org30962d3"><span class="section-number-3">1.3</span> System Identification - Without Gravity</h3>
<div class="outline-text-3" id="text-1-3">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
@@ -135,39 +133,67 @@ G.OutputName = {<span class="org-string">'Ax1'</span>, <span class="org-string">
</div>
<p>
The inputs and outputs of the plant are shown in Figure <a href="#orgda64392">2</a>.
The inputs and outputs of the plant are shown in Figure <a href="#orgb8af3e7">2</a>.
</p>
<p>
More precisely there are three inputs (the three actuator forces):
</p>
\begin{equation}
\bm{\tau} = \begin{bmatrix}\tau_1 \\ \tau_2 \\ \tau_2 \end{bmatrix}
\end{equation}
<p>
And 4 outputs (the two 2-DoF accelerometers):
</p>
\begin{equation}
\bm{a} = \begin{bmatrix} a_{1x} \\ a_{1z} \\ a_{2x} \\ a_{2z} \end{bmatrix}
\end{equation}
<div id="orgda64392" class="figure">
<div id="orgb8af3e7" class="figure">
<p><img src="figs/gravimeter_plant_schematic.png" alt="gravimeter_plant_schematic.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Schematic of the gravimeter plant</p>
</div>
\begin{equation}
\bm{a} = \begin{bmatrix} a_{1x} \\ a_{1z} \\ a_{2x} \\ a_{2z} \end{bmatrix}
\end{equation}
\begin{equation}
\bm{\tau} = \begin{bmatrix}\tau_1 \\ \tau_2 \\ \tau_2 \end{bmatrix}
\end{equation}
<p>
We can check the poles of the plant:
</p>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<pre class="example" id="org39bce68">
-0.000183495485977108 + 13.546056874877i
-0.000183495485977108 - 13.546056874877i
-7.49842878906757e-05 + 8.65934902322567i
-7.49842878906757e-05 - 8.65934902322567i
-1.33171230256362e-05 + 3.64924169037897i
-1.33171230256362e-05 - 3.64924169037897i
</pre>
<colgroup>
<col class="org-left" />
</colgroup>
<tbody>
<tr>
<td class="org-left">-0.12243+13.551i</td>
</tr>
<tr>
<td class="org-left">-0.12243-13.551i</td>
</tr>
<tr>
<td class="org-left">-0.05+8.6601i</td>
</tr>
<tr>
<td class="org-left">-0.05-8.6601i</td>
</tr>
<tr>
<td class="org-left">-0.0088785+3.6493i</td>
</tr>
<tr>
<td class="org-left">-0.0088785-3.6493i</td>
</tr>
</tbody>
</table>
<p>
The plant as 6 states as expected (2 translations + 1 rotation)
As expected, the plant as 6 states (2 translations + 1 rotation)
</p>
<div class="org-src-container">
<pre class="src src-matlab">size(G)
@@ -180,11 +206,11 @@ State-space model with 4 outputs, 3 inputs, and 6 states.
<p>
The bode plot of all elements of the plant are shown in Figure <a href="#orgdd01904">3</a>.
The bode plot of all elements of the plant are shown in Figure <a href="#org64e7053">3</a>.
</p>
<div id="orgdd01904" class="figure">
<div id="org64e7053" class="figure">
<p><img src="figs/open_loop_tf.png" alt="open_loop_tf.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Open Loop Transfer Function from 3 Actuators to 4 Accelerometers</p>
@@ -192,40 +218,49 @@ The bode plot of all elements of the plant are shown in Figure <a href="#orgdd01
</div>
</div>
<div id="outline-container-org34b5cef" class="outline-3">
<h3 id="org34b5cef"><span class="section-number-3">1.4</span> Physical Decoupling using the Jacobian</h3>
<div id="outline-container-org5b19440" class="outline-3">
<h3 id="org5b19440"><span class="section-number-3">1.4</span> Physical Decoupling using the Jacobian</h3>
<div class="outline-text-3" id="text-1-4">
<p>
<a id="org6fa0ce5"></a>
<a id="org5c9e033"></a>
</p>
<p>
Consider the control architecture shown in Figure <a href="#org08a3c55">4</a>.
Consider the control architecture shown in Figure <a href="#org056bfbe">4</a>.
</p>
<p>
The Jacobian matrix \(J_{\tau}\) is used to transform forces applied by the three actuators into forces/torques applied on the gravimeter at its center of mass.
The Jacobian matrix \(J_{a}\) is used to compute the vertical acceleration, horizontal acceleration and rotational acceleration of the mass with respect to its center of mass.
The Jacobian matrix \(J_{\tau}\) is used to transform forces applied by the three actuators into forces/torques applied on the gravimeter at its center of mass:
</p>
\begin{equation}
\begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} = J_{\tau}^{-T} \begin{bmatrix} F_x \\ F_z \\ M_y \end{bmatrix}
\end{equation}
<p>
The Jacobian matrix \(J_{a}\) is used to compute the vertical acceleration, horizontal acceleration and rotational acceleration of the mass with respect to its center of mass:
</p>
\begin{equation}
\begin{bmatrix} a_x \\ a_z \\ a_{R_y} \end{bmatrix} = J_{a}^{-1} \begin{bmatrix} a_{x1} \\ a_{z1} \\ a_{x2} \\ a_{z2} \end{bmatrix}
\end{equation}
<p>
We thus define a new plant as defined in Figure <a href="#org056bfbe">4</a>.
\[ \bm{G}_x(s) = J_a^{-1} \bm{G}(s) J_{\tau}^{-T} \]
</p>
<p>
We thus define a new plant as defined in Figure <a href="#org08a3c55">4</a>.
\[ G_x(s) = J_a G(s) J_{\tau}^{-T} \]
</p>
<p>
\(G_x(s)\) correspond to the transfer function from forces and torques applied to the gravimeter at its center of mass to the absolute acceleration of the gravimeter&rsquo;s center of mass.
\(\bm{G}_x(s)\) correspond to the $3 &times; 3$transfer function matrix from forces and torques applied to the gravimeter at its center of mass to the absolute acceleration of the gravimeter&rsquo;s center of mass (Figure <a href="#org056bfbe">4</a>).
</p>
<div id="org08a3c55" class="figure">
<div id="org056bfbe" class="figure">
<p><img src="figs/gravimeter_decouple_jacobian.png" alt="gravimeter_decouple_jacobian.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Decoupled plant \(\bm{G}_x\) using the Jacobian matrix \(J\)</p>
</div>
<p>
The jacobian corresponding to the sensors and actuators are defined below.
The Jacobian corresponding to the sensors and actuators are defined below:
</p>
<div class="org-src-container">
<pre class="src src-matlab">Ja = [1 0 h<span class="org-type">/</span>2
@@ -239,6 +274,9 @@ Jt = [1 0 ha
</pre>
</div>
<p>
And the plant \(\bm{G}_x\) is computed:
</p>
<div class="org-src-container">
<pre class="src src-matlab">Gx = pinv(Ja)<span class="org-type">*</span>G<span class="org-type">*</span>pinv(Jt<span class="org-type">'</span>);
Gx.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'My'</span>};
@@ -246,12 +284,18 @@ Gx.OutputName = {<span class="org-string">'Dx'</span>, <span class="org-string"
</pre>
</div>
<pre class="example">
size(Gx)
State-space model with 3 outputs, 3 inputs, and 6 states.
</pre>
<p>
The diagonal and off-diagonal elements of \(G_x\) are shown in Figure <a href="#org0177a74">5</a>.
The diagonal and off-diagonal elements of \(G_x\) are shown in Figure <a href="#org71d3d59">5</a>.
</p>
<div id="org0177a74" class="figure">
<div id="org71d3d59" class="figure">
<p><img src="figs/gravimeter_jacobian_plant.png" alt="gravimeter_jacobian_plant.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Diagonal and off-diagonal elements of \(G_x\)</p>
@@ -259,15 +303,20 @@ The diagonal and off-diagonal elements of \(G_x\) are shown in Figure <a href="#
</div>
</div>
<div id="outline-container-orgf6c4a25" class="outline-3">
<h3 id="orgf6c4a25"><span class="section-number-3">1.5</span> Real Approximation of \(G\) at the decoupling frequency</h3>
<div id="outline-container-orgc8cb89d" class="outline-3">
<h3 id="orgc8cb89d"><span class="section-number-3">1.5</span> SVD Decoupling</h3>
<div class="outline-text-3" id="text-1-5">
<p>
<a id="org00aca6c"></a>
<a id="org6daebae"></a>
</p>
<p>
Let&rsquo;s compute a real approximation of the complex matrix \(H_1\) which corresponds to the the transfer function \(G_u(j\omega_c)\) from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency \(\omega_c\).
In order to decouple the plant using the SVD, first a real approximation of the plant transfer function matrix as the crossover frequency is required.
</p>
<p>
Let&rsquo;s compute a real approximation of the complex matrix \(H_1\) which corresponds to the the transfer function \(G(j\omega_c)\) from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency \(\omega_c\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>10; <span class="org-comment">% Decoupling frequency [rad/s]</span>
@@ -281,7 +330,7 @@ The real approximation is computed as follows:
</p>
<div class="org-src-container">
<pre class="src src-matlab">D = pinv(real(H1<span class="org-type">'*</span>H1));
H1 = inv(D<span class="org-type">*</span>real(H1<span class="org-type">'*</span>diag(exp(<span class="org-constant">j</span><span class="org-type">*</span>angle(diag(H1<span class="org-type">*</span>D<span class="org-type">*</span>H1<span class="org-type">.'</span>))<span class="org-type">/</span>2))));
H1 = pinv(D<span class="org-type">*</span>real(H1<span class="org-type">'*</span>diag(exp(<span class="org-constant">j</span><span class="org-type">*</span>angle(diag(H1<span class="org-type">*</span>D<span class="org-type">*</span>H1<span class="org-type">.'</span>))<span class="org-type">/</span>2))));
</pre>
</div>
@@ -297,50 +346,48 @@ H1 = inv(D<span class="org-type">*</span>real(H1<span class="org-type">'*</span>
</colgroup>
<tbody>
<tr>
<td class="org-right">0.0026</td>
<td class="org-right">-3.7e-05</td>
<td class="org-right">3.7e-05</td>
<td class="org-right">0.0092</td>
<td class="org-right">-0.0039</td>
<td class="org-right">0.0039</td>
</tr>
<tr>
<td class="org-right">1.9e-10</td>
<td class="org-right">0.0025</td>
<td class="org-right">0.0025</td>
<td class="org-right">-0.0039</td>
<td class="org-right">0.0048</td>
<td class="org-right">0.00028</td>
</tr>
<tr>
<td class="org-right">-0.0078</td>
<td class="org-right">0.0045</td>
<td class="org-right">-0.0045</td>
<td class="org-right">-0.004</td>
<td class="org-right">0.0038</td>
<td class="org-right">-0.0038</td>
</tr>
<tr>
<td class="org-right">8.4e-09</td>
<td class="org-right">0.0025</td>
<td class="org-right">0.0025</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="outline-container-org850bcb9" class="outline-3">
<h3 id="org850bcb9"><span class="section-number-3">1.6</span> SVD Decoupling</h3>
<div class="outline-text-3" id="text-1-6">
<p>
<a id="org85886da"></a>
</p>
<p>
First, the Singular Value Decomposition of \(H_1\) is performed:
Now, the Singular Value Decomposition of \(H_1\) is performed:
\[ H_1 = U \Sigma V^H \]
</p>
<div class="org-src-container">
<pre class="src src-matlab">[U,<span class="org-type">~</span>,V] = svd(H1);
<pre class="src src-matlab">[U,S,V] = svd(H1);
</pre>
</div>
<p>
The obtained matrices \(U\) and \(V\) are used to decouple the system as shown in Figure <a href="#org55bc905">6</a>.
The obtained matrices \(U\) and \(V\) are used to decouple the system as shown in Figure <a href="#org05538bc">6</a>.
</p>
<div id="org55bc905" class="figure">
<div id="org05538bc" class="figure">
<p><img src="figs/gravimeter_decouple_svd.png" alt="gravimeter_decouple_svd.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Decoupled plant \(\bm{G}_{SVD}\) using the Singular Value Decomposition</p>
@@ -348,7 +395,7 @@ The obtained matrices \(U\) and \(V\) are used to decouple the system as shown i
<p>
The decoupled plant is then:
\[ G_{SVD}(s) = U^{-1} G_u(s) V^{-H} \]
\[ \bm{G}_{SVD}(s) = U^{-1} \bm{G}(s) V^{-H} \]
</p>
<div class="org-src-container">
@@ -356,12 +403,25 @@ The decoupled plant is then:
</pre>
</div>
<pre class="example">
size(Gsvd)
State-space model with 4 outputs, 3 inputs, and 6 states.
</pre>
<p>
The diagonal and off-diagonal elements of the &ldquo;SVD&rdquo; plant are shown in Figure <a href="#orgfeb8a07">7</a>.
The 4th output (corresponding to the null singular value) is discarded, and we only keep the \(3 \times 3\) plant:
</p>
<div class="org-src-container">
<pre class="src src-matlab">Gsvd = Gsvd(1<span class="org-type">:</span>3, 1<span class="org-type">:</span>3);
</pre>
</div>
<p>
The diagonal and off-diagonal elements of the &ldquo;SVD&rdquo; plant are shown in Figure <a href="#orgcf0d284">7</a>.
</p>
<div id="orgfeb8a07" class="figure">
<div id="orgcf0d284" class="figure">
<p><img src="figs/gravimeter_svd_plant.png" alt="gravimeter_svd_plant.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Diagonal and off-diagonal elements of \(G_{svd}\)</p>
@@ -369,11 +429,11 @@ The diagonal and off-diagonal elements of the &ldquo;SVD&rdquo; plant are shown
</div>
</div>
<div id="outline-container-orgb4036b5" class="outline-3">
<h3 id="orgb4036b5"><span class="section-number-3">1.7</span> Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</h3>
<div class="outline-text-3" id="text-1-7">
<div id="outline-container-orgd2f1c19" class="outline-3">
<h3 id="orgd2f1c19"><span class="section-number-3">1.6</span> Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</h3>
<div class="outline-text-3" id="text-1-6">
<p>
<a id="orgcd062a0"></a>
<a id="org72fd0a9"></a>
</p>
<p>
@@ -394,51 +454,51 @@ This is computed over the following frequencies.
</div>
<div id="org0314de2" class="figure">
<p><img src="figs/simscape_model_gershgorin_radii.png" alt="simscape_model_gershgorin_radii.png" />
<div id="orgdc7adbb" class="figure">
<p><img src="figs/gravimeter_gershgorin_radii.png" alt="gravimeter_gershgorin_radii.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Gershgorin Radii of the Coupled and Decoupled plants</p>
</div>
</div>
</div>
<div id="outline-container-org54e1362" class="outline-3">
<h3 id="org54e1362"><span class="section-number-3">1.8</span> Obtained Decoupled Plants</h3>
<div class="outline-text-3" id="text-1-8">
<div id="outline-container-orgc761edd" class="outline-3">
<h3 id="orgc761edd"><span class="section-number-3">1.7</span> Obtained Decoupled Plants</h3>
<div class="outline-text-3" id="text-1-7">
<p>
<a id="orgf879bb8"></a>
<a id="org871fe90"></a>
</p>
<p>
The bode plot of the diagonal and off-diagonal elements of \(G_{SVD}\) are shown in Figure <a href="#org8050d23">9</a>.
The bode plot of the diagonal and off-diagonal elements of \(G_{SVD}\) are shown in Figure <a href="#org85343af">9</a>.
</p>
<div id="org8050d23" class="figure">
<p><img src="figs/simscape_model_decoupled_plant_svd.png" alt="simscape_model_decoupled_plant_svd.png" />
<div id="org85343af" class="figure">
<p><img src="figs/gravimeter_decoupled_plant_svd.png" alt="gravimeter_decoupled_plant_svd.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Decoupled Plant using SVD</p>
</div>
<p>
Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant \(G_x(s)\) using the Jacobian are shown in Figure <a href="#orge87ae5f">10</a>.
Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant \(G_x(s)\) using the Jacobian are shown in Figure <a href="#org5d69920">10</a>.
</p>
<div id="orge87ae5f" class="figure">
<p><img src="figs/simscape_model_decoupled_plant_jacobian.png" alt="simscape_model_decoupled_plant_jacobian.png" />
<div id="org5d69920" class="figure">
<p><img src="figs/gravimeter_decoupled_plant_jacobian.png" alt="gravimeter_decoupled_plant_jacobian.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Gravimeter Platform Plant from forces (resp. torques) applied by the legs to the acceleration (resp. angular acceleration) of the platform as well as all the coupling terms between the two (non-diagonal terms of the transfer function matrix)</p>
</div>
</div>
</div>
<div id="outline-container-org26917c3" class="outline-3">
<h3 id="org26917c3"><span class="section-number-3">1.9</span> Diagonal Controller</h3>
<div class="outline-text-3" id="text-1-9">
<div id="outline-container-org669229d" class="outline-3">
<h3 id="org669229d"><span class="section-number-3">1.8</span> Diagonal Controller</h3>
<div class="outline-text-3" id="text-1-8">
<p>
<a id="org244fb34"></a>
The control diagram for the centralized control is shown in Figure <a href="#orgccd3480">11</a>.
<a id="org14b50b3"></a>
The control diagram for the centralized control is shown in Figure <a href="#orga8cccea">11</a>.
</p>
<p>
@@ -447,20 +507,20 @@ The Jacobian is used to convert forces in the cartesian frame to forces applied
</p>
<div id="orgccd3480" class="figure">
<p><img src="figs/centralized_control.png" alt="centralized_control.png" />
<div id="orga8cccea" class="figure">
<p><img src="figs/centralized_control_gravimeter.png" alt="centralized_control_gravimeter.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Control Diagram for the Centralized control</p>
</div>
<p>
The SVD control architecture is shown in Figure <a href="#org6576aea">12</a>.
The SVD control architecture is shown in Figure <a href="#orgd9e0c5f">12</a>.
The matrices \(U\) and \(V\) are used to decoupled the plant \(G\).
</p>
<div id="org6576aea" class="figure">
<p><img src="figs/svd_control.png" alt="svd_control.png" />
<div id="orgd9e0c5f" class="figure">
<p><img src="figs/svd_control_gravimeter.png" alt="svd_control_gravimeter.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Control Diagram for the SVD control</p>
</div>
@@ -476,7 +536,7 @@ We choose the controller to be a low pass filter:
</p>
<div class="org-src-container">
<pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>80; <span class="org-comment">% Crossover Frequency [rad/s]</span>
<pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>10; <span class="org-comment">% Crossover Frequency [rad/s]</span>
w0 = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>0.1; <span class="org-comment">% Controller Pole [rad/s]</span>
</pre>
</div>
@@ -484,23 +544,24 @@ w0 = 2<span class="org-type">*</span><span class="org-constant">pi</span><span c
<div class="org-src-container">
<pre class="src src-matlab">K_cen = diag(1<span class="org-type">./</span>diag(abs(evalfr(Gx, <span class="org-constant">j</span><span class="org-type">*</span>wc))))<span class="org-type">*</span>(1<span class="org-type">/</span>abs(evalfr(1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0), <span class="org-constant">j</span><span class="org-type">*</span>wc)))<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0);
L_cen = K_cen<span class="org-type">*</span>Gx;
G_cen = feedback(G, pinv(J<span class="org-type">'</span>)<span class="org-type">*</span>K_cen, [7<span class="org-type">:</span>12], [1<span class="org-type">:</span>6]);
G_cen = feedback(G, pinv(Jt<span class="org-type">'</span>)<span class="org-type">*</span>K_cen<span class="org-type">*</span>pinv(Ja));
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">K_svd = diag(1<span class="org-type">./</span>diag(abs(evalfr(Gsvd, <span class="org-constant">j</span><span class="org-type">*</span>wc))))<span class="org-type">*</span>(1<span class="org-type">/</span>abs(evalfr(1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0), <span class="org-constant">j</span><span class="org-type">*</span>wc)))<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0);
L_svd = K_svd<span class="org-type">*</span>Gsvd;
G_svd = feedback(G, inv(V<span class="org-type">'</span>)<span class="org-type">*</span>K_svd<span class="org-type">*</span>inv(U), [7<span class="org-type">:</span>12], [1<span class="org-type">:</span>6]);
U_inv = inv(U);
G_svd = feedback(G, inv(V<span class="org-type">'</span>)<span class="org-type">*</span>K_svd<span class="org-type">*</span>U_inv(1<span class="org-type">:</span>3, <span class="org-type">:</span>));
</pre>
</div>
<p>
The obtained diagonal elements of the loop gains are shown in Figure <a href="#orgb2b6eea">13</a>.
The obtained diagonal elements of the loop gains are shown in Figure <a href="#org7417f1d">13</a>.
</p>
<div id="orgb2b6eea" class="figure">
<div id="org7417f1d" class="figure">
<p><img src="figs/gravimeter_comp_loop_gain_diagonal.png" alt="gravimeter_comp_loop_gain_diagonal.png" />
</p>
<p><span class="figure-number">Figure 13: </span>Comparison of the diagonal elements of the loop gains for the SVD control architecture and the Jacobian one</p>
@@ -508,11 +569,11 @@ The obtained diagonal elements of the loop gains are shown in Figure <a href="#o
</div>
</div>
<div id="outline-container-orge573ff6" class="outline-3">
<h3 id="orge573ff6"><span class="section-number-3">1.10</span> Closed-Loop system Performances</h3>
<div class="outline-text-3" id="text-1-10">
<div id="outline-container-org582b3be" class="outline-3">
<h3 id="org582b3be"><span class="section-number-3">1.9</span> Closed-Loop system Performances</h3>
<div class="outline-text-3" id="text-1-9">
<p>
<a id="org18928c3"></a>
<a id="orgfc06310"></a>
</p>
<p>
@@ -543,11 +604,11 @@ ans =
<p>
The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure <a href="#org25d5c08">14</a>.
The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure <a href="#org614b48b">14</a>.
</p>
<div id="org25d5c08" class="figure">
<div id="org614b48b" class="figure">
<p><img src="figs/gravimeter_platform_simscape_cl_transmissibility.png" alt="gravimeter_platform_simscape_cl_transmissibility.png" />
</p>
<p><span class="figure-number">Figure 14: </span>Obtained Transmissibility</p>
@@ -556,11 +617,11 @@ The obtained transmissibility in Open-loop, for the centralized control as well
</div>
</div>
<div id="outline-container-orgb4d9d19" class="outline-2">
<h2 id="orgb4d9d19"><span class="section-number-2">2</span> Stewart Platform - Simscape Model</h2>
<div id="outline-container-org71d7b34" class="outline-2">
<h2 id="org71d7b34"><span class="section-number-2">2</span> Stewart Platform - Simscape Model</h2>
<div class="outline-text-2" id="text-2">
<p>
In this analysis, we wish to applied SVD control to the Stewart Platform shown in Figure <a href="#org6082884">15</a>.
In this analysis, we wish to applied SVD control to the Stewart Platform shown in Figure <a href="#org0b6cb48">15</a>.
</p>
<p>
@@ -573,7 +634,7 @@ Some notes about the system:
</ul>
<div id="org6082884" class="figure">
<div id="org0b6cb48" class="figure">
<p><img src="figs/SP_assembly.png" alt="SP_assembly.png" />
</p>
<p><span class="figure-number">Figure 15: </span>Stewart Platform CAD View</p>
@@ -583,22 +644,22 @@ Some notes about the system:
The analysis of the SVD control applied to the Stewart platform is performed in the following sections:
</p>
<ul class="org-ul">
<li>Section <a href="#orgc34b644">2.1</a>: The parameters of the Simscape model of the Stewart platform are defined</li>
<li>Section <a href="#org4dd4aa8">2.2</a>: The plant is identified from the Simscape model and the system coupling is shown</li>
<li>Section <a href="#org958ba75">2.3</a>: The plant is first decoupled using the Jacobian</li>
<li>Section <a href="#org2cabea8">2.4</a>: A real approximation of the plant is computed for further decoupling using the Singular Value Decomposition (SVD)</li>
<li>Section <a href="#orga695d46">2.5</a>: The decoupling is performed thanks to the SVD</li>
<li>Section <a href="#orgcd062a0">1.7</a>: The effectiveness of the decoupling with the Jacobian and SVD are compared using the Gershorin Radii</li>
<li>Section <a href="#org2c91af2">2.8</a>: The dynamics of the decoupled plants are shown</li>
<li>Section <a href="#orgb78ff99">2.9</a>: A diagonal controller is defined to control the decoupled plant</li>
<li>Section <a href="#org5abf7ce">2.10</a>: Finally, the closed loop system properties are studied</li>
<li>Section <a href="#orgf1d35e2">2.1</a>: The parameters of the Simscape model of the Stewart platform are defined</li>
<li>Section <a href="#orgd1816b3">2.2</a>: The plant is identified from the Simscape model and the system coupling is shown</li>
<li>Section <a href="#org7c9242b">2.3</a>: The plant is first decoupled using the Jacobian</li>
<li>Section <a href="#orgd1b3ee0">2.4</a>: A real approximation of the plant is computed for further decoupling using the Singular Value Decomposition (SVD)</li>
<li>Section <a href="#orgaa48d31">2.5</a>: The decoupling is performed thanks to the SVD</li>
<li>Section <a href="#org72fd0a9">1.6</a>: The effectiveness of the decoupling with the Jacobian and SVD are compared using the Gershorin Radii</li>
<li>Section <a href="#orgf6dad38">2.8</a>: The dynamics of the decoupled plants are shown</li>
<li>Section <a href="#orga082064">2.9</a>: A diagonal controller is defined to control the decoupled plant</li>
<li>Section <a href="#org7c48c81">2.10</a>: Finally, the closed loop system properties are studied</li>
</ul>
</div>
<div id="outline-container-org1066cea" class="outline-3">
<h3 id="org1066cea"><span class="section-number-3">2.1</span> Simscape Model - Parameters</h3>
<div id="outline-container-orgf9cb366" class="outline-3">
<h3 id="orgf9cb366"><span class="section-number-3">2.1</span> Simscape Model - Parameters</h3>
<div class="outline-text-3" id="text-2-1">
<p>
<a id="orgc34b644"></a>
<a id="orgf1d35e2"></a>
</p>
<div class="org-src-container">
<pre class="src src-matlab">open(<span class="org-string">'drone_platform.slx'</span>);
@@ -654,14 +715,14 @@ Kc = tf(zeros(6));
</div>
<div id="orgd582e26" class="figure">
<div id="orgb09e537" class="figure">
<p><img src="figs/stewart_simscape.png" alt="stewart_simscape.png" />
</p>
<p><span class="figure-number">Figure 16: </span>General view of the Simscape Model</p>
</div>
<div id="orga3a63d0" class="figure">
<div id="org4946596" class="figure">
<p><img src="figs/stewart_platform_details.png" alt="stewart_platform_details.png" />
</p>
<p><span class="figure-number">Figure 17: </span>Simscape model of the Stewart platform</p>
@@ -669,15 +730,15 @@ Kc = tf(zeros(6));
</div>
</div>
<div id="outline-container-org57d9045" class="outline-3">
<h3 id="org57d9045"><span class="section-number-3">2.2</span> Identification of the plant</h3>
<div id="outline-container-orga72c2be" class="outline-3">
<h3 id="orga72c2be"><span class="section-number-3">2.2</span> Identification of the plant</h3>
<div class="outline-text-3" id="text-2-2">
<p>
<a id="org4dd4aa8"></a>
<a id="orgd1816b3"></a>
</p>
<p>
The plant shown in Figure <a href="#orgcd356a6">18</a> is identified from the Simscape model.
The plant shown in Figure <a href="#orge94f83d">18</a> is identified from the Simscape model.
</p>
<p>
@@ -693,7 +754,7 @@ The outputs are the 6 accelerations measured by the inertial unit.
</p>
<div id="orgcd356a6" class="figure">
<div id="orge94f83d" class="figure">
<p><img src="figs/stewart_platform_plant.png" alt="stewart_platform_plant.png" />
</p>
<p><span class="figure-number">Figure 18: </span>Considered plant \(\bm{G} = \begin{bmatrix}G_d\\G_u\end{bmatrix}\). \(D_w\) is the translation/rotation of the support, \(\tau\) the actuator forces, \(a\) the acceleration/angular acceleration of the top platform</p>
@@ -735,7 +796,7 @@ State-space model with 6 outputs, 12 inputs, and 24 states.
<p>
The elements of the transfer matrix \(\bm{G}\) corresponding to the transfer function from actuator forces \(\tau\) to the measured acceleration \(a\) are shown in Figure <a href="#orgec39a5e">19</a>.
The elements of the transfer matrix \(\bm{G}\) corresponding to the transfer function from actuator forces \(\tau\) to the measured acceleration \(a\) are shown in Figure <a href="#orgaa55beb">19</a>.
</p>
<p>
@@ -743,7 +804,7 @@ One can easily see that the system is strongly coupled.
</p>
<div id="orgec39a5e" class="figure">
<div id="orgaa55beb" class="figure">
<p><img src="figs/stewart_platform_coupled_plant.png" alt="stewart_platform_coupled_plant.png" />
</p>
<p><span class="figure-number">Figure 19: </span>Magnitude of all 36 elements of the transfer function matrix \(G_u\)</p>
@@ -751,12 +812,12 @@ One can easily see that the system is strongly coupled.
</div>
</div>
<div id="outline-container-org81abdfe" class="outline-3">
<h3 id="org81abdfe"><span class="section-number-3">2.3</span> Physical Decoupling using the Jacobian</h3>
<div id="outline-container-orga9ba8e1" class="outline-3">
<h3 id="orga9ba8e1"><span class="section-number-3">2.3</span> Physical Decoupling using the Jacobian</h3>
<div class="outline-text-3" id="text-2-3">
<p>
<a id="org958ba75"></a>
Consider the control architecture shown in Figure <a href="#org6474419">20</a>.
<a id="org7c9242b"></a>
Consider the control architecture shown in Figure <a href="#org89c1f08">20</a>.
The Jacobian matrix is used to transform forces/torques applied on the top platform to the equivalent forces applied by each actuator.
</p>
@@ -838,7 +899,7 @@ The Jacobian matrix is computed from the geometry of the platform (position and
</table>
<div id="org6474419" class="figure">
<div id="org89c1f08" class="figure">
<p><img src="figs/plant_decouple_jacobian.png" alt="plant_decouple_jacobian.png" />
</p>
<p><span class="figure-number">Figure 20: </span>Decoupled plant \(\bm{G}_x\) using the Jacobian matrix \(J\)</p>
@@ -861,11 +922,11 @@ Gx.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">
</div>
</div>
<div id="outline-container-org1a7fde2" class="outline-3">
<h3 id="org1a7fde2"><span class="section-number-3">2.4</span> Real Approximation of \(G\) at the decoupling frequency</h3>
<div id="outline-container-org4b07807" class="outline-3">
<h3 id="org4b07807"><span class="section-number-3">2.4</span> Real Approximation of \(G\) at the decoupling frequency</h3>
<div class="outline-text-3" id="text-2-4">
<p>
<a id="org2cabea8"></a>
<a id="orgd1b3ee0"></a>
</p>
<p>
@@ -1042,11 +1103,11 @@ This can be verified below where only the real value of \(G_u(\omega_c)\) is sho
</div>
</div>
<div id="outline-container-org8b0f922" class="outline-3">
<h3 id="org8b0f922"><span class="section-number-3">2.5</span> SVD Decoupling</h3>
<div id="outline-container-org87a2d2f" class="outline-3">
<h3 id="org87a2d2f"><span class="section-number-3">2.5</span> SVD Decoupling</h3>
<div class="outline-text-3" id="text-2-5">
<p>
<a id="orga695d46"></a>
<a id="orgaa48d31"></a>
</p>
<p>
@@ -1206,11 +1267,11 @@ First, the Singular Value Decomposition of \(H_1\) is performed:
</table>
<p>
The obtained matrices \(U\) and \(V\) are used to decouple the system as shown in Figure <a href="#org29c0d28">21</a>.
The obtained matrices \(U\) and \(V\) are used to decouple the system as shown in Figure <a href="#orgad6c96b">21</a>.
</p>
<div id="org29c0d28" class="figure">
<div id="orgad6c96b" class="figure">
<p><img src="figs/plant_decouple_svd.png" alt="plant_decouple_svd.png" />
</p>
<p><span class="figure-number">Figure 21: </span>Decoupled plant \(\bm{G}_{SVD}\) using the Singular Value Decomposition</p>
@@ -1228,11 +1289,11 @@ The decoupled plant is then:
</div>
</div>
<div id="outline-container-orga02b880" class="outline-3">
<h3 id="orga02b880"><span class="section-number-3">2.6</span> Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</h3>
<div id="outline-container-org4b81d86" class="outline-3">
<h3 id="org4b81d86"><span class="section-number-3">2.6</span> Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</h3>
<div class="outline-text-3" id="text-2-6">
<p>
<a id="org7913d80"></a>
<a id="org9102f7f"></a>
</p>
<p>
@@ -1248,7 +1309,7 @@ The &ldquo;Gershgorin Radii&rdquo; of a matrix \(S\) is defined by:
This is computed over the following frequencies.
</p>
<div id="org12751c9" class="figure">
<div id="org1169672" class="figure">
<p><img src="figs/simscape_model_gershgorin_radii.png" alt="simscape_model_gershgorin_radii.png" />
</p>
<p><span class="figure-number">Figure 22: </span>Gershgorin Radii of the Coupled and Decoupled plants</p>
@@ -1256,8 +1317,8 @@ This is computed over the following frequencies.
</div>
</div>
<div id="outline-container-org4813b1f" class="outline-3">
<h3 id="org4813b1f"><span class="section-number-3">2.7</span> Verification of the decoupling using the &ldquo;Relative Gain Array&rdquo;</h3>
<div id="outline-container-org2845b5e" class="outline-3">
<h3 id="org2845b5e"><span class="section-number-3">2.7</span> Verification of the decoupling using the &ldquo;Relative Gain Array&rdquo;</h3>
<div class="outline-text-3" id="text-2-7">
<p>
The relative gain array (RGA) is defined as:
@@ -1270,11 +1331,11 @@ where \(\times\) denotes an element by element multiplication and \(G(s)\) is an
</p>
<p>
The obtained RGA elements are shown in Figure <a href="#org533cc25">23</a>.
The obtained RGA elements are shown in Figure <a href="#orga76f805">23</a>.
</p>
<div id="org533cc25" class="figure">
<div id="orga76f805" class="figure">
<p><img src="figs/simscape_model_rga.png" alt="simscape_model_rga.png" />
</p>
<p><span class="figure-number">Figure 23: </span>Obtained norm of RGA elements for the SVD decoupled plant and the Jacobian decoupled plant</p>
@@ -1282,30 +1343,30 @@ The obtained RGA elements are shown in Figure <a href="#org533cc25">23</a>.
</div>
</div>
<div id="outline-container-org82cfc11" class="outline-3">
<h3 id="org82cfc11"><span class="section-number-3">2.8</span> Obtained Decoupled Plants</h3>
<div id="outline-container-orgdb7f2df" class="outline-3">
<h3 id="orgdb7f2df"><span class="section-number-3">2.8</span> Obtained Decoupled Plants</h3>
<div class="outline-text-3" id="text-2-8">
<p>
<a id="org2c91af2"></a>
<a id="orgf6dad38"></a>
</p>
<p>
The bode plot of the diagonal and off-diagonal elements of \(G_{SVD}\) are shown in Figure <a href="#org8050d23">9</a>.
The bode plot of the diagonal and off-diagonal elements of \(G_{SVD}\) are shown in Figure <a href="#org1707d8c">24</a>.
</p>
<div id="orgdd63a35" class="figure">
<div id="org1707d8c" class="figure">
<p><img src="figs/simscape_model_decoupled_plant_svd.png" alt="simscape_model_decoupled_plant_svd.png" />
</p>
<p><span class="figure-number">Figure 24: </span>Decoupled Plant using SVD</p>
</div>
<p>
Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant \(G_x(s)\) using the Jacobian are shown in Figure <a href="#orge87ae5f">10</a>.
Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant \(G_x(s)\) using the Jacobian are shown in Figure <a href="#orga1bf560">25</a>.
</p>
<div id="org7ff32b4" class="figure">
<div id="orga1bf560" class="figure">
<p><img src="figs/simscape_model_decoupled_plant_jacobian.png" alt="simscape_model_decoupled_plant_jacobian.png" />
</p>
<p><span class="figure-number">Figure 25: </span>Stewart Platform Plant from forces (resp. torques) applied by the legs to the acceleration (resp. angular acceleration) of the platform as well as all the coupling terms between the two (non-diagonal terms of the transfer function matrix)</p>
@@ -1313,12 +1374,12 @@ Similarly, the bode plots of the diagonal elements and off-diagonal elements of
</div>
</div>
<div id="outline-container-org75580ea" class="outline-3">
<h3 id="org75580ea"><span class="section-number-3">2.9</span> Diagonal Controller</h3>
<div id="outline-container-org0143a9d" class="outline-3">
<h3 id="org0143a9d"><span class="section-number-3">2.9</span> Diagonal Controller</h3>
<div class="outline-text-3" id="text-2-9">
<p>
<a id="orgb78ff99"></a>
The control diagram for the centralized control is shown in Figure <a href="#orgccd3480">11</a>.
<a id="orga082064"></a>
The control diagram for the centralized control is shown in Figure <a href="#org43eaa56">26</a>.
</p>
<p>
@@ -1327,19 +1388,19 @@ The Jacobian is used to convert forces in the cartesian frame to forces applied
</p>
<div id="org1ac8951" class="figure">
<div id="org43eaa56" class="figure">
<p><img src="figs/centralized_control.png" alt="centralized_control.png" />
</p>
<p><span class="figure-number">Figure 26: </span>Control Diagram for the Centralized control</p>
</div>
<p>
The SVD control architecture is shown in Figure <a href="#org6576aea">12</a>.
The SVD control architecture is shown in Figure <a href="#orgee73430">27</a>.
The matrices \(U\) and \(V\) are used to decoupled the plant \(G\).
</p>
<div id="org1e8300c" class="figure">
<div id="orgee73430" class="figure">
<p><img src="figs/svd_control.png" alt="svd_control.png" />
</p>
<p><span class="figure-number">Figure 27: </span>Control Diagram for the SVD control</p>
@@ -1376,11 +1437,11 @@ G_svd = feedback(G, inv(V<span class="org-type">'</span>)<span class="org-type">
</div>
<p>
The obtained diagonal elements of the loop gains are shown in Figure <a href="#org4998cc4">28</a>.
The obtained diagonal elements of the loop gains are shown in Figure <a href="#orgb699a1c">28</a>.
</p>
<div id="org4998cc4" class="figure">
<div id="orgb699a1c" class="figure">
<p><img src="figs/stewart_comp_loop_gain_diagonal.png" alt="stewart_comp_loop_gain_diagonal.png" />
</p>
<p><span class="figure-number">Figure 28: </span>Comparison of the diagonal elements of the loop gains for the SVD control architecture and the Jacobian one</p>
@@ -1388,11 +1449,11 @@ The obtained diagonal elements of the loop gains are shown in Figure <a href="#o
</div>
</div>
<div id="outline-container-org9f0f788" class="outline-3">
<h3 id="org9f0f788"><span class="section-number-3">2.10</span> Closed-Loop system Performances</h3>
<div id="outline-container-org7f0526e" class="outline-3">
<h3 id="org7f0526e"><span class="section-number-3">2.10</span> Closed-Loop system Performances</h3>
<div class="outline-text-3" id="text-2-10">
<p>
<a id="org5abf7ce"></a>
<a id="org7c48c81"></a>
</p>
<p>
@@ -1423,11 +1484,11 @@ ans =
<p>
The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure <a href="#org15a3692">29</a>.
The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure <a href="#orga97d4c0">29</a>.
</p>
<div id="org15a3692" class="figure">
<div id="orga97d4c0" class="figure">
<p><img src="figs/stewart_platform_simscape_cl_transmissibility.png" alt="stewart_platform_simscape_cl_transmissibility.png" />
</p>
<p><span class="figure-number">Figure 29: </span>Obtained Transmissibility</p>
@@ -1435,8 +1496,8 @@ The obtained transmissibility in Open-loop, for the centralized control as well
</div>
</div>
<div id="outline-container-orga629e4c" class="outline-3">
<h3 id="orga629e4c"><span class="section-number-3">2.11</span> Small error on the sensor location&#xa0;&#xa0;&#xa0;<span class="tag"><span class="no_export">no_export</span></span></h3>
<div id="outline-container-org456839a" class="outline-3">
<h3 id="org456839a"><span class="section-number-3">2.11</span> Small error on the sensor location&#xa0;&#xa0;&#xa0;<span class="tag"><span class="no_export">no_export</span></span></h3>
<div class="outline-text-3" id="text-2-11">
<p>
Let&rsquo;s now consider a small position error of the sensor:
@@ -1487,7 +1548,7 @@ G_svd = feedback(G, inv(V<span class="org-type">'</span>)<span class="org-type">
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-11-23 lun. 18:00</p>
<p class="date">Created: 2020-11-25 mer. 09:16</p>
</div>
</body>
</html>

342
index.org
View File

@@ -44,10 +44,6 @@
:END:
** Introduction
#+name: fig:gravimeter_model
#+caption: Model of the gravimeter
[[file:figs/gravimeter_model.png]]
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
@@ -66,6 +62,10 @@
open('gravimeter.slx')
#+end_src
#+name: fig:gravimeter_model
#+caption: Model of the gravimeter
[[file:figs/gravimeter_model.png]]
Parameters
#+begin_src matlab
l = 1.0; % Length of the mass [m]
@@ -78,7 +78,7 @@ Parameters
I = 115; % Inertia [kg m^2]
k = 15e3; % Actuator Stiffness [N/m]
c = 0.03; % Actuator Damping [N/(m/s)]
c = 2e1; % Actuator Damping [N/(m/s)]
deq = 0.2; % Length of the actuators [m]
@@ -107,9 +107,18 @@ Parameters
The inputs and outputs of the plant are shown in Figure [[fig:gravimeter_plant_schematic]].
More precisely there are three inputs (the three actuator forces):
\begin{equation}
\bm{\tau} = \begin{bmatrix}\tau_1 \\ \tau_2 \\ \tau_2 \end{bmatrix}
\end{equation}
And 4 outputs (the two 2-DoF accelerometers):
\begin{equation}
\bm{a} = \begin{bmatrix} a_{1x} \\ a_{1z} \\ a_{2x} \\ a_{2z} \end{bmatrix}
\end{equation}
#+begin_src latex :file gravimeter_plant_schematic.pdf :tangle no :exports results
\begin{tikzpicture}
\node[block] (G) {$G$};
\node[block] (G) {$\bm{G}$};
% Connections and labels
\draw[<-] (G.west) -- ++(-2.0, 0) node[above right]{$\bm{\tau} = \begin{bmatrix}\tau_1 \\ \tau_2 \\ \tau_2 \end{bmatrix}$};
@@ -122,31 +131,20 @@ The inputs and outputs of the plant are shown in Figure [[fig:gravimeter_plant_s
#+RESULTS:
[[file:figs/gravimeter_plant_schematic.png]]
\begin{equation}
\bm{a} = \begin{bmatrix} a_{1x} \\ a_{1z} \\ a_{2x} \\ a_{2z} \end{bmatrix}
\end{equation}
\begin{equation}
\bm{\tau} = \begin{bmatrix}\tau_1 \\ \tau_2 \\ \tau_2 \end{bmatrix}
\end{equation}
We can check the poles of the plant:
#+begin_src matlab :results output replace :exports results
#+begin_src matlab :results value replace :exports results
pole(G)
#+end_src
#+RESULTS:
#+begin_example
-0.000183495485977108 + 13.546056874877i
-0.000183495485977108 - 13.546056874877i
-7.49842878906757e-05 + 8.65934902322567i
-7.49842878906757e-05 - 8.65934902322567i
-1.33171230256362e-05 + 3.64924169037897i
-1.33171230256362e-05 - 3.64924169037897i
#+end_example
| -0.12243+13.551i |
| -0.12243-13.551i |
| -0.05+8.6601i |
| -0.05-8.6601i |
| -0.0088785+3.6493i |
| -0.0088785-3.6493i |
The plant as 6 states as expected (2 translations + 1 rotation)
As expected, the plant as 6 states (2 translations + 1 rotation)
#+begin_src matlab :results output replace
size(G)
#+end_src
@@ -198,25 +196,32 @@ The bode plot of all elements of the plant are shown in Figure [[fig:open_loop_t
Consider the control architecture shown in Figure [[fig:gravimeter_decouple_jacobian]].
The Jacobian matrix $J_{\tau}$ is used to transform forces applied by the three actuators into forces/torques applied on the gravimeter at its center of mass.
The Jacobian matrix $J_{a}$ is used to compute the vertical acceleration, horizontal acceleration and rotational acceleration of the mass with respect to its center of mass.
The Jacobian matrix $J_{\tau}$ is used to transform forces applied by the three actuators into forces/torques applied on the gravimeter at its center of mass:
\begin{equation}
\begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} = J_{\tau}^{-T} \begin{bmatrix} F_x \\ F_z \\ M_y \end{bmatrix}
\end{equation}
The Jacobian matrix $J_{a}$ is used to compute the vertical acceleration, horizontal acceleration and rotational acceleration of the mass with respect to its center of mass:
\begin{equation}
\begin{bmatrix} a_x \\ a_z \\ a_{R_y} \end{bmatrix} = J_{a}^{-1} \begin{bmatrix} a_{x1} \\ a_{z1} \\ a_{x2} \\ a_{z2} \end{bmatrix}
\end{equation}
We thus define a new plant as defined in Figure [[fig:gravimeter_decouple_jacobian]].
\[ G_x(s) = J_a G(s) J_{\tau}^{-T} \]
\[ \bm{G}_x(s) = J_a^{-1} \bm{G}(s) J_{\tau}^{-T} \]
$G_x(s)$ correspond to the transfer function from forces and torques applied to the gravimeter at its center of mass to the absolute acceleration of the gravimeter's center of mass.
$\bm{G}_x(s)$ correspond to the $3 \times 3$transfer function matrix from forces and torques applied to the gravimeter at its center of mass to the absolute acceleration of the gravimeter's center of mass (Figure [[fig:gravimeter_decouple_jacobian]]).
#+begin_src latex :file gravimeter_decouple_jacobian.pdf :tangle no :exports results
\begin{tikzpicture}
\node[block] (G) {$G$};
\node[block] (G) {$\bm{G}$};
\node[block, left=0.6 of G] (Jt) {$J_{\tau}^{-T}$};
\node[block, right=0.6 of G] (Ja) {$J_{a}$};
\node[block, right=0.6 of G] (Ja) {$J_{a}^{-1}$};
% Connections and labels
\draw[<-] (Jt.west) -- ++(-1.1, 0) node[above right]{$\bm{\mathcal{F}}$};
\draw[<-] (Jt.west) -- ++(-2.5, 0) node[above right]{$\bm{\mathcal{F}} = \begin{bmatrix}F_x \\ F_z \\ M_y \end{bmatrix}$};
\draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$};
\draw[->] (G.east) -- (Ja.west) node[above left]{$\bm{a}$};
\draw[->] (Ja.east) -- ++( 1.1, 0) node[above left]{$\bm{\mathcal{X}}$};
\draw[->] (Ja.east) -- ++( 2.6, 0) node[above left]{$\bm{\mathcal{A}} = \begin{bmatrix}a_x \\ a_z \\ a_{R_y} \end{bmatrix}$};
\begin{scope}[on background layer]
\node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gx) {};
@@ -230,7 +235,7 @@ $G_x(s)$ correspond to the transfer function from forces and torques applied to
#+RESULTS:
[[file:figs/gravimeter_decouple_jacobian.png]]
The jacobian corresponding to the sensors and actuators are defined below.
The Jacobian corresponding to the sensors and actuators are defined below:
#+begin_src matlab
Ja = [1 0 h/2
0 1 -l/2
@@ -242,12 +247,21 @@ The jacobian corresponding to the sensors and actuators are defined below.
0 1 la];
#+end_src
And the plant $\bm{G}_x$ is computed:
#+begin_src matlab
Gx = pinv(Ja)*G*pinv(Jt');
Gx.InputName = {'Fx', 'Fz', 'My'};
Gx.OutputName = {'Dx', 'Dz', 'Ry'};
#+end_src
#+begin_src matlab :results output replace :exports results
size(Gx)
#+end_src
#+RESULTS:
: size(Gx)
: State-space model with 3 outputs, 3 inputs, and 6 states.
The diagonal and off-diagonal elements of $G_x$ are shown in Figure [[fig:gravimeter_jacobian_plant]].
#+begin_src matlab :exports none
@@ -285,10 +299,13 @@ The diagonal and off-diagonal elements of $G_x$ are shown in Figure [[fig:gravim
#+RESULTS:
[[file:figs/gravimeter_jacobian_plant.png]]
** Real Approximation of $G$ at the decoupling frequency
<<sec:gravimeter_real_approx>>
** SVD Decoupling
<<sec:gravimeter_svd_decoupling>>
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_u(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
In order to decouple the plant using the SVD, first a real approximation of the plant transfer function matrix as the crossover frequency is required.
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
#+begin_src matlab
wc = 2*pi*10; % Decoupling frequency [rad/s]
@@ -298,7 +315,7 @@ Let's compute a real approximation of the complex matrix $H_1$ which corresponds
The real approximation is computed as follows:
#+begin_src matlab
D = pinv(real(H1'*H1));
H1 = inv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
#+end_src
#+begin_src matlab :exports results :results value table replace :tangle no
@@ -307,25 +324,24 @@ The real approximation is computed as follows:
#+caption: Real approximate of $G$ at the decoupling frequency $\omega_c$
#+RESULTS:
| 0.0026 | -3.7e-05 | 3.7e-05 |
| 1.9e-10 | 0.0025 | 0.0025 |
| -0.0078 | 0.0045 | -0.0045 |
| 0.0092 | -0.0039 | 0.0039 |
| -0.0039 | 0.0048 | 0.00028 |
| -0.004 | 0.0038 | -0.0038 |
| 8.4e-09 | 0.0025 | 0.0025 |
** SVD Decoupling
<<sec:gravimeter_svd_decoupling>>
First, the Singular Value Decomposition of $H_1$ is performed:
Now, the Singular Value Decomposition of $H_1$ is performed:
\[ H_1 = U \Sigma V^H \]
#+begin_src matlab
[U,~,V] = svd(H1);
[U,S,V] = svd(H1);
#+end_src
The obtained matrices $U$ and $V$ are used to decouple the system as shown in Figure [[fig:gravimeter_decouple_svd]].
#+begin_src latex :file gravimeter_decouple_svd.pdf :tangle no :exports results
\begin{tikzpicture}
\node[block] (G) {$G_u$};
\node[block] (G) {$\bm{G}$};
\node[block, left=0.6 of G.west] (V) {$V^{-T}$};
\node[block, right=0.6 of G.east] (U) {$U^{-1}$};
@@ -349,14 +365,26 @@ The obtained matrices $U$ and $V$ are used to decouple the system as shown in Fi
[[file:figs/gravimeter_decouple_svd.png]]
The decoupled plant is then:
\[ G_{SVD}(s) = U^{-1} G_u(s) V^{-H} \]
\[ \bm{G}_{SVD}(s) = U^{-1} \bm{G}(s) V^{-H} \]
#+begin_src matlab
Gsvd = inv(U)*G*inv(V');
#+end_src
The diagonal and off-diagonal elements of the "SVD" plant are shown in Figure [[fig:gravimeter_svd_plant]].
#+begin_src matlab :results output replace :exports results
size(Gsvd)
#+end_src
#+RESULTS:
: size(Gsvd)
: State-space model with 4 outputs, 3 inputs, and 6 states.
The 4th output (corresponding to the null singular value) is discarded, and we only keep the $3 \times 3$ plant:
#+begin_src matlab
Gsvd = Gsvd(1:3, 1:3);
#+end_src
The diagonal and off-diagonal elements of the "SVD" plant are shown in Figure [[fig:gravimeter_svd_plant]].
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
@@ -379,7 +407,7 @@ The diagonal and off-diagonal elements of the "SVD" plant are shown in Figure [[
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
legend('location', 'southeast', 'FontSize', 8);
legend('location', 'southwest', 'FontSize', 8);
ylim([1e-8, 1e0]);
#+end_src
@@ -392,7 +420,7 @@ The diagonal and off-diagonal elements of the "SVD" plant are shown in Figure [[
#+RESULTS:
[[file:figs/gravimeter_svd_plant.png]]
** TODO Verification of the decoupling using the "Gershgorin Radii"
** Verification of the decoupling using the "Gershgorin Radii"
<<sec:comp_decoupling>>
The "Gershgorin Radii" is computed for the coupled plant $G(s)$, for the "Jacobian plant" $G_x(s)$ and the "SVD Decoupled Plant" $G_{SVD}(s)$:
@@ -407,9 +435,9 @@ This is computed over the following frequencies.
#+begin_src matlab :exports none
% Gershgorin Radii for the coupled plant:
Gr_coupled = zeros(length(freqs), size(Gu,2));
H = abs(squeeze(freqresp(Gu, freqs, 'Hz')));
for out_i = 1:size(Gu,2)
Gr_coupled = zeros(length(freqs), size(G,2));
H = abs(squeeze(freqresp(G, freqs, 'Hz')));
for out_i = 1:size(G,2)
Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
@@ -434,7 +462,7 @@ This is computed over the following frequencies.
plot(freqs, Gr_coupled(:,1), 'DisplayName', 'Coupled');
plot(freqs, Gr_decoupled(:,1), 'DisplayName', 'SVD');
plot(freqs, Gr_jacobian(:,1), 'DisplayName', 'Jacobian');
for in_i = 2:6
for in_i = 2:3
set(gca,'ColorOrderIndex',1)
plot(freqs, Gr_coupled(:,in_i), 'HandleVisibility', 'off');
set(gca,'ColorOrderIndex',2)
@@ -446,22 +474,22 @@ This is computed over the following frequencies.
hold off;
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
legend('location', 'northwest');
ylim([1e-3, 1e3]);
ylim([1e-4, 1e2]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/simscape_model_gershgorin_radii.pdf', 'eps', true, 'width', 'wide', 'height', 'normal');
exportFig('figs/gravimeter_gershgorin_radii.pdf', 'eps', true, 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:simscape_model_gershgorin_radii
#+name: fig:gravimeter_gershgorin_radii
#+caption: Gershgorin Radii of the Coupled and Decoupled plants
#+RESULTS:
[[file:figs/simscape_model_gershgorin_radii.png]]
[[file:figs/gravimeter_gershgorin_radii.png]]
** TODO Obtained Decoupled Plants
** Obtained Decoupled Plants
<<sec:gravimeter_decoupled_plant>>
The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown in Figure [[fig:simscape_model_decoupled_plant_svd]].
The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown in Figure [[fig:gravimeter_decoupled_plant_svd]].
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
@@ -472,8 +500,8 @@ The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown i
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
for i_in = 1:3
for i_out = [1:i_in-1, i_in+1:3]
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
@@ -481,20 +509,20 @@ The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown i
plot(freqs, abs(squeeze(freqresp(Gsvd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
'DisplayName', '$G_{SVD}(i,j),\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for ch_i = 1:6
for ch_i = 1:3
plot(freqs, abs(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))), ...
'DisplayName', sprintf('$G_{SVD}(%i,%i)$', ch_i, ch_i));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
legend('location', 'northwest');
ylim([1e-1, 1e5])
legend('location', 'southwest');
ylim([1e-8, 1e0])
% Phase
ax2 = nexttile;
hold on;
for ch_i = 1:6
for ch_i = 1:3
plot(freqs, 180/pi*angle(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))));
end
hold off;
@@ -507,15 +535,15 @@ The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown i
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/simscape_model_decoupled_plant_svd.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
exportFig('figs/gravimeter_decoupled_plant_svd.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:simscape_model_decoupled_plant_svd
#+name: fig:gravimeter_decoupled_plant_svd
#+caption: Decoupled Plant using SVD
#+RESULTS:
[[file:figs/simscape_model_decoupled_plant_svd.png]]
[[file:figs/gravimeter_decoupled_plant_svd.png]]
Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant $G_x(s)$ using the Jacobian are shown in Figure [[fig:simscape_model_decoupled_plant_jacobian]].
Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant $G_x(s)$ using the Jacobian are shown in Figure [[fig:gravimeter_decoupled_plant_jacobian]].
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
@@ -526,8 +554,8 @@ Similarly, the bode plots of the diagonal elements and off-diagonal elements of
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
for i_in = 1:3
for i_out = [1:i_in-1, i_in+1:3]
plot(freqs, abs(squeeze(freqresp(Gx(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
@@ -535,106 +563,101 @@ Similarly, the bode plots of the diagonal elements and off-diagonal elements of
plot(freqs, abs(squeeze(freqresp(Gx(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
'DisplayName', '$G_x(i,j),\ i \neq j$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))), 'DisplayName', '$G_x(1,1) = A_x/F_x$');
plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))), 'DisplayName', '$G_x(2,2) = A_y/F_y$');
plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))), 'DisplayName', '$G_x(3,3) = A_z/F_z$');
plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))), 'DisplayName', '$G_x(4,4) = A_{R_x}/M_x$');
plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))), 'DisplayName', '$G_x(5,5) = A_{R_y}/M_y$');
plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))), 'DisplayName', '$G_x(6,6) = A_{R_z}/M_z$');
plot(freqs, abs(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))), 'DisplayName', '$G_x(1,1) = A_x/F_x$');
plot(freqs, abs(squeeze(freqresp(Gx(2, 2), freqs, 'Hz'))), 'DisplayName', '$G_x(2,2) = A_y/F_y$');
plot(freqs, abs(squeeze(freqresp(Gx(3, 3), freqs, 'Hz'))), 'DisplayName', '$G_x(3,3) = R_y/M_y$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
legend('location', 'northwest');
ylim([1e-2, 2e6])
legend('location', 'southwest');
ylim([1e-8, 1e0])
% Phase
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(2, 2), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(3, 3), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([0, 180]);
ylim([-180, 180]);
yticks([0:45:360]);
linkaxes([ax1,ax2],'x');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/simscape_model_decoupled_plant_jacobian.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
exportFig('figs/gravimeter_decoupled_plant_jacobian.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:simscape_model_decoupled_plant_jacobian
#+name: fig:gravimeter_decoupled_plant_jacobian
#+caption: Gravimeter Platform Plant from forces (resp. torques) applied by the legs to the acceleration (resp. angular acceleration) of the platform as well as all the coupling terms between the two (non-diagonal terms of the transfer function matrix)
#+RESULTS:
[[file:figs/simscape_model_decoupled_plant_jacobian.png]]
[[file:figs/gravimeter_decoupled_plant_jacobian.png]]
** TODO Diagonal Controller
** Diagonal Controller
<<sec:gravimeter_diagonal_control>>
The control diagram for the centralized control is shown in Figure [[fig:centralized_control]].
The control diagram for the centralized control is shown in Figure [[fig:centralized_control_gravimeter]].
The controller $K_c$ is "working" in an cartesian frame.
The Jacobian is used to convert forces in the cartesian frame to forces applied by the actuators.
#+begin_src latex :file centralized_control.pdf :tangle no :exports results
#+begin_src latex :file centralized_control_gravimeter.pdf :tangle no :exports results
\begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G_u\end{bmatrix}$};
\node[above] at (G.north) {$\bm{G}$};
\node[block, below right=0.6 and -0.5 of G] (K) {$K_c$};
\node[block, below left= 0.6 and -0.5 of G] (J) {$J^{-T}$};
% Inputs of the controllers
\coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
\coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
\node[block] (G) {$\bm{G}$};
\node[block, left=0.6 of G] (Jt) {$J_{\tau}^{-T}$};
\node[block, right=0.6 of G] (Ja) {$J_{a}^{-1}$};
\node[block, left=1.2 of Jt] (K) {$K_c$};
% Connections and labels
\draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$};
\draw[->] (G.east) -- ++(2.0, 0) node[above left]{$a$};
\draw[->] ($(G.east)+(1.4, 0)$)node[branch]{} |- (K.east);
\draw[->] (K.west) -- (J.east) node[above right]{$\mathcal{F}$};
\draw[->] (J.west) -- ++(-0.6, 0) |- (inputu) node[above left]{$\tau$};
\draw[->] (Jt.east) -- (G.west) node[above left]{$\bm{\tau}$};
\draw[->] (G.east) -- (Ja.west) node[above left]{$\bm{a}$};
\draw[->] (Ja.east) -- ++(1.4, 0);
\draw[->] ($(Ja.east) + (0.8, 0)$) node[branch]{} node[above]{$\bm{\mathcal{A}}$} -- ++(0, -1.2) -| ($(K.west) + (-0.6, 0)$) -- (K.west);
\draw[->] (K.east) -- (Jt.west) node[above left]{$\bm{\mathcal{F}}$};
\begin{scope}[on background layer]
\node[fit={(Jt.south west) (Ja.north east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gx) {};
\node[below right] at (Gx.north west) {$\bm{G}_x$};
\end{scope}
\end{tikzpicture}
#+end_src
#+name: fig:centralized_control
#+name: fig:centralized_control_gravimeter
#+caption: Control Diagram for the Centralized control
#+RESULTS:
[[file:figs/centralized_control.png]]
[[file:figs/centralized_control_gravimeter.png]]
The SVD control architecture is shown in Figure [[fig:svd_control]].
The SVD control architecture is shown in Figure [[fig:svd_control_gravimeter]].
The matrices $U$ and $V$ are used to decoupled the plant $G$.
#+begin_src latex :file svd_control.pdf :tangle no :exports results
#+begin_src latex :file svd_control_gravimeter.pdf :tangle no :exports results
\begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G_u\end{bmatrix}$};
\node[above] at (G.north) {$\bm{G}$};
\node[block, below right=0.6 and 0 of G] (U) {$U^{-1}$};
\node[block, below=0.6 of G] (K) {$K_{\text{SVD}}$};
\node[block, below left= 0.6 and 0 of G] (V) {$V^{-T}$};
\node[block] (G) {$\bm{G}$};
% Inputs of the controllers
\coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
\coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
\node[block, left=0.6 of G.west] (V) {$V^{-T}$};
\node[block, right=0.6 of G.east] (U) {$U^{-1}$};
\node[block, left=1.2 of V] (K) {$K_c$};
% Connections and labels
\draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$};
\draw[->] (G.east) -- ++(2.5, 0) node[above left]{$a$};
\draw[->] ($(G.east)+(2.0, 0)$) node[branch]{} |- (U.east);
\draw[->] (U.west) -- (K.east);
\draw[->] (K.west) -- (V.east);
\draw[->] (V.west) -- ++(-0.6, 0) |- (inputu) node[above left]{$\tau$};
\draw[->] (V.east) -- (G.west) node[above left]{$\tau$};
\draw[->] (G.east) -- (U.west) node[above left]{$a$};
\draw[->] (U.east) -- ++( 1.4, 0);
\draw[->] ($(U.east) + (0.8, 0)$) node[branch]{} node[above]{$y$} -- ++(0, -1.2) -| ($(K.west) + (-0.6, 0)$) -- (K.west);
\draw[->] (K.east) -- (V.west) node[above left]{$u$};
\begin{scope}[on background layer]
\node[fit={(V.south west) (G.north-|U.east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gsvd) {};
\node[below right] at (Gsvd.north west) {$\bm{G}_{SVD}$};
\end{scope}
\end{tikzpicture}
#+end_src
#+name: fig:svd_control
#+name: fig:svd_control_gravimeter
#+caption: Control Diagram for the SVD control
#+RESULTS:
[[file:figs/svd_control.png]]
[[file:figs/svd_control_gravimeter.png]]
We choose the controller to be a low pass filter:
@@ -643,20 +666,21 @@ We choose the controller to be a low pass filter:
$G_0$ is tuned such that the crossover frequency corresponding to the diagonal terms of the loop gain is equal to $\omega_c$
#+begin_src matlab
wc = 2*pi*80; % Crossover Frequency [rad/s]
wc = 2*pi*10; % Crossover Frequency [rad/s]
w0 = 2*pi*0.1; % Controller Pole [rad/s]
#+end_src
#+begin_src matlab
K_cen = diag(1./diag(abs(evalfr(Gx, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
L_cen = K_cen*Gx;
G_cen = feedback(G, pinv(J')*K_cen, [7:12], [1:6]);
G_cen = feedback(G, pinv(Jt')*K_cen*pinv(Ja));
#+end_src
#+begin_src matlab
K_svd = diag(1./diag(abs(evalfr(Gsvd, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
L_svd = K_svd*Gsvd;
G_svd = feedback(G, inv(V')*K_svd*inv(U), [7:12], [1:6]);
U_inv = inv(U);
G_svd = feedback(G, inv(V')*K_svd*U_inv(1:3, :));
#+end_src
The obtained diagonal elements of the loop gains are shown in Figure [[fig:gravimeter_comp_loop_gain_diagonal]].
@@ -671,7 +695,7 @@ The obtained diagonal elements of the loop gains are shown in Figure [[fig:gravi
ax1 = nexttile([2, 1]);
hold on;
plot(freqs, abs(squeeze(freqresp(L_svd(1, 1), freqs, 'Hz'))), 'DisplayName', '$L_{SVD}(i,i)$');
for i_in_out = 2:6
for i_in_out = 2:3
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
end
@@ -679,7 +703,7 @@ The obtained diagonal elements of the loop gains are shown in Figure [[fig:gravi
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(L_cen(1, 1), freqs, 'Hz'))), ...
'DisplayName', '$L_{J}(i,i)$');
for i_in_out = 2:6
for i_in_out = 2:3
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
end
@@ -692,12 +716,12 @@ The obtained diagonal elements of the loop gains are shown in Figure [[fig:gravi
% Phase
ax2 = nexttile;
hold on;
for i_in_out = 1:6
for i_in_out = 1:3
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*angle(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))));
end
set(gca,'ColorOrderIndex',2)
for i_in_out = 1:6
for i_in_out = 1:3
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*angle(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))));
end
@@ -719,7 +743,7 @@ The obtained diagonal elements of the loop gains are shown in Figure [[fig:gravi
#+RESULTS:
[[file:figs/gravimeter_comp_loop_gain_diagonal.png]]
** TODO Closed-Loop system Performances
** Closed-Loop system Performances
<<sec:gravimeter_closed_loop_results>>
Let's first verify the stability of the closed-loop systems:
@@ -747,56 +771,42 @@ The obtained transmissibility in Open-loop, for the centralized control as well
freqs = logspace(-2, 2, 1000);
figure;
tiledlayout(2, 2, 'TileSpacing', 'None', 'Padding', 'None');
tiledlayout(1, 3, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G( 'Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G( 1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
plot(freqs, abs(squeeze(freqresp(G_cen(1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
plot(freqs, abs(squeeze(freqresp(G_svd(1,1)/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$D_x/D_{w,x}$, $D_y/D_{w, y}$'); set(gca, 'XTickLabel',[]);
ylabel('Transmissibility'); xlabel('Frequency [Hz]');
title('$D_x/D_{w,x}$');
legend('location', 'southwest');
ax2 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Az', 'Dwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Az', 'Dwz')/s^2, freqs, 'Hz'))), '--');
plot(freqs, abs(squeeze(freqresp(G( 2,2)/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen(2,2)/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd(2,2)/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$D_z/D_{w,z}$'); set(gca, 'XTickLabel',[]);
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
title('$D_z/D_{w,z}$');
ax3 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Arx', 'Rwx')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz'))), '--');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G( 'Ary', 'Rwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz'))), '--');
plot(freqs, abs(squeeze(freqresp(G( 3,3)/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen(3,3)/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd(3,3)/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$R_x/R_{w,x}$, $R_y/R_{w,y}$'); xlabel('Frequency [Hz]');
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
title('$R_y/R_{w,y}$');
ax4 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Arz', 'Rwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Arz', 'Rwz')/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('$R_z/R_{w,z}$'); xlabel('Frequency [Hz]');
linkaxes([ax1,ax2,ax3,ax4],'xy');
linkaxes([ax1,ax2,ax3],'xy');
xlim([freqs(1), freqs(end)]);
ylim([1e-3, 1e2]);
ylim([1e-7, 1e-2]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace