Add picture of platform and sections summary

This commit is contained in:
Thomas Dehaeze 2020-11-06 11:59:09 +01:00
parent 33b8583f62
commit ff0e0bf73e
12 changed files with 28936 additions and 620 deletions

BIN
figs/SP_assembly.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 106 KiB

View File

@ -0,0 +1,411 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: cairo 1.17.3 (https://cairographics.org)
%%CreationDate: Fri Nov 6 11:30:10 2020
%%Pages: 1
%%DocumentData: Clean7Bit
%%LanguageLevel: 2
%%BoundingBox: 0 0 152 91
%%EndComments
%%BeginProlog
50 dict begin
/q { gsave } bind def
/Q { grestore } bind def
/cm { 6 array astore concat } bind def
/w { setlinewidth } bind def
/J { setlinecap } bind def
/j { setlinejoin } bind def
/M { setmiterlimit } bind def
/d { setdash } bind def
/m { moveto } bind def
/l { lineto } bind def
/c { curveto } bind def
/h { closepath } bind def
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
0 exch rlineto 0 rlineto closepath } bind def
/S { stroke } bind def
/f { fill } bind def
/f* { eofill } bind def
/n { newpath } bind def
/W { clip } bind def
/W* { eoclip } bind def
/BT { } bind def
/ET { } bind def
/BDC { mark 3 1 roll /BDC pdfmark } bind def
/EMC { mark /EMC pdfmark } bind def
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
/Tj { show currentpoint cairo_store_point } bind def
/TJ {
{
dup
type /stringtype eq
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
} forall
currentpoint cairo_store_point
} bind def
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
/Tf { pop /cairo_font exch def /cairo_font_matrix where
{ pop cairo_selectfont } if } bind def
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
/cairo_font where { pop cairo_selectfont } if } bind def
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
/g { setgray } bind def
/rg { setrgbcolor } bind def
/d1 { setcachedevice } bind def
/cairo_data_source {
CairoDataIndex CairoData length lt
{ CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
{ () } ifelse
} def
/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
/cairo_image { image cairo_flush_ascii85_file } def
/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
%%EndProlog
%%BeginSetup
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
%%PageBoundingBox: 0 0 152 91
%%EndPageSetup
q 0 0 152 91 rectclip
1 0 0 -1 0 91 cm q
1 g
38.617 1.727 56.355 42.266 re f
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
38.617 -1.727 56.355 -42.266 re S Q
70.039 23.652 m 70.039 23.574 69.992 23.543 69.914 23.543 c 69.68 23.543
69.102 23.574 68.867 23.574 c 67.492 23.543 l 67.398 23.543 67.273 23.543
67.273 23.746 c 67.273 23.855 67.352 23.855 67.57 23.855 c 67.57 23.855
67.867 23.855 68.102 23.871 c 68.352 23.902 68.414 23.934 68.414 24.059
c 68.414 24.152 68.305 24.59 68.195 24.965 c 67.914 26.043 66.633 26.152
66.289 26.152 c 65.336 26.152 64.289 25.59 64.289 24.074 c 64.289 23.762
64.398 22.137 65.43 20.84 c 65.977 20.168 66.93 19.574 67.914 19.574 c
68.914 19.574 69.508 20.34 69.508 21.48 c 69.508 21.871 69.477 21.887 69.477
21.98 c 69.477 22.09 69.586 22.09 69.617 22.09 c 69.758 22.09 69.758 22.059
69.805 21.887 c 70.43 19.355 l 70.43 19.324 70.414 19.262 70.32 19.262
c 70.289 19.262 70.273 19.277 70.164 19.387 c 69.477 20.137 l 69.383 20.012
68.93 19.262 67.836 19.262 c 65.617 19.262 63.398 21.449 63.398 23.746
c 63.398 25.324 64.492 26.465 66.102 26.465 c 66.539 26.465 66.977 26.371
67.336 26.23 c 67.836 26.027 68.023 25.824 68.195 25.621 c 68.289 25.871
68.539 26.23 68.648 26.23 c 68.695 26.23 68.711 26.199 68.711 26.199 c
68.727 26.184 68.836 25.793 68.883 25.59 c 69.07 24.824 l 69.117 24.668
69.164 24.496 69.195 24.324 c 69.305 23.871 69.32 23.855 69.883 23.855 c
69.93 23.855 70.039 23.84 70.039 23.652 c h
70.039 23.652 m f
1 g
81.871 61.891 33.816 28.18 re f
Q q
80.434 61.199 36 29.801 re W n
q
80 61 37 30 re W n
[ 1 0 0 1 0 0 ] concat
q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
81.871 -61.891 33.816 -28.18 re S Q
Q
Q
0 g
99.883 78.418 m 99.883 78.309 99.773 78.309 99.68 78.309 c 99.273 78.309
99.148 78.215 99.008 77.871 c 97.602 74.621 l 97.586 74.59 97.555 74.512
97.555 74.48 c 97.555 74.48 97.727 74.324 97.836 74.246 c 99.57 72.918
l 100.492 72.23 100.883 72.199 101.18 72.168 c 101.258 72.152 101.367 72.137
101.367 71.965 c 101.367 71.918 101.336 71.855 101.258 71.855 c 101.039
71.855 100.789 71.887 100.555 71.887 c 100.195 71.887 99.805 71.855 99.445
71.855 c 99.383 71.855 99.258 71.855 99.258 72.059 c 99.258 72.121 99.305
72.152 99.383 72.168 c 99.602 72.184 99.68 72.23 99.68 72.371 c 99.68 72.543
99.383 72.777 99.336 72.824 c 95.461 75.793 l 96.258 72.621 l 96.352 72.262
96.367 72.168 97.086 72.168 c 97.336 72.168 97.43 72.168 97.43 71.965 c
97.43 71.871 97.352 71.855 97.289 71.855 c 96.023 71.887 l 94.742 71.855
l 94.68 71.855 94.539 71.855 94.539 72.043 c 94.539 72.168 94.633 72.168
94.836 72.168 c 94.961 72.168 95.133 72.168 95.258 72.184 c 95.414 72.199
95.477 72.23 95.477 72.34 c 95.477 72.387 95.461 72.402 95.43 72.527 c
94.117 77.855 l 94.008 78.23 93.992 78.309 93.211 78.309 c 93.039 78.309
92.93 78.309 92.93 78.496 c 92.93 78.621 93.055 78.621 93.086 78.621 c
94.336 78.59 l 94.977 78.605 l 95.195 78.605 95.414 78.621 95.617 78.621
c 95.68 78.621 95.82 78.621 95.82 78.418 c 95.82 78.309 95.727 78.309 95.539
78.309 c 95.164 78.309 94.898 78.309 94.898 78.137 c 94.898 78.059 94.945
77.855 94.977 77.699 c 95.383 76.137 l 96.852 74.996 l 98.008 77.668 l
98.117 77.934 98.117 77.949 98.117 78.012 c 98.117 78.309 97.695 78.309
97.602 78.309 c 97.492 78.309 97.383 78.309 97.383 78.512 c 97.383 78.621
97.523 78.621 97.523 78.621 c 97.93 78.621 98.336 78.59 98.742 78.59 c
98.961 78.59 99.492 78.621 99.711 78.621 c 99.758 78.621 99.883 78.621 99.883
78.418 c h
99.883 78.418 m f
104.406 79.391 m 104.406 79.359 104.344 79.281 104.281 79.281 c 104.25
79.281 104.234 79.297 104.172 79.344 c 103.625 79.984 102.828 79.984 102.703
79.984 c 102.203 79.984 101.969 79.641 101.969 79.219 c 101.969 79.016
102.078 78.25 102.438 77.781 c 102.703 77.438 103.062 77.25 103.406 77.25
c 103.5 77.25 103.828 77.266 104 77.453 c 103.75 77.5 103.656 77.688 103.656
77.844 c 103.656 78.031 103.797 78.094 103.922 78.094 c 104.078 78.094
104.312 77.984 104.312 77.656 c 104.312 77.188 103.781 77.047 103.406 77.047
c 102.359 77.047 101.406 78 101.406 78.969 c 101.406 79.562 101.812 80.172
102.688 80.172 c 103.859 80.172 104.406 79.484 104.406 79.391 c h
104.406 79.391 m f
Q q
1 g
17.898 61.891 33.816 28.18 re f
Q q
16.434 61.199 36 29.801 re W n
q
16 61 37 30 re W n
[ 1 0 0 1 0 0 ] concat
q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
17.898 -61.891 33.816 -28.18 re S Q
Q
Q
0 g
31.637 73.508 m 31.637 73.414 31.59 73.383 31.496 73.383 c 31.262 73.383
30.652 73.414 30.402 73.414 c 28.949 73.383 l 28.855 73.383 28.746 73.383
28.746 73.586 c 28.746 73.695 28.824 73.695 29.074 73.695 c 29.309 73.695
29.402 73.695 29.652 73.711 c 29.887 73.742 29.965 73.773 29.965 73.914
c 29.965 73.961 29.934 74.039 29.918 74.117 c 28.777 78.664 l 28.543 79.617
27.871 80.148 27.355 80.148 c 27.09 80.148 26.574 80.055 26.418 79.539
c 26.434 79.539 26.527 79.539 26.527 79.539 c 26.918 79.539 27.168 79.211
27.168 78.914 c 27.168 78.586 26.902 78.492 26.73 78.492 c 26.559 78.492
26.074 78.617 26.074 79.289 c 26.074 79.898 26.605 80.367 27.387 80.367
c 28.293 80.367 29.324 79.711 29.574 78.727 c 30.73 74.102 l 30.809 73.773
30.824 73.695 31.371 73.695 c 31.527 73.695 31.637 73.695 31.637 73.508
c h
31.637 73.508 m f
37.254 74.82 m 37.254 74.648 37.098 74.648 37.004 74.648 c 32.816 74.648
l 32.723 74.648 32.566 74.648 32.566 74.82 c 32.566 74.992 32.738 74.992
32.816 74.992 c 37.004 74.992 l 37.082 74.992 37.254 74.992 37.254 74.82
c h
37.254 74.82 m f
43.301 73.289 m 43.488 71.961 l 43.488 71.867 43.395 71.867 43.27 71.867
c 39.004 71.867 l 38.832 71.867 38.816 71.867 38.77 72.008 c 38.332 73.242
l 38.332 73.273 38.301 73.336 38.301 73.367 c 38.301 73.398 38.316 73.461
38.426 73.461 c 38.504 73.461 38.52 73.43 38.566 73.289 c 38.973 72.18
39.191 72.117 40.254 72.117 c 40.551 72.117 l 40.754 72.117 40.754 72.117
40.754 72.18 c 40.754 72.18 40.754 72.227 40.723 72.336 c 39.816 75.977
l 39.754 76.242 39.738 76.305 39.004 76.305 c 38.754 76.305 38.691 76.305
38.691 76.461 c 38.691 76.477 38.707 76.555 38.816 76.555 c 39.004 76.555
39.207 76.539 39.41 76.539 c 40.004 76.523 l 40.629 76.539 l 40.816 76.539
41.02 76.555 41.207 76.555 c 41.27 76.555 41.363 76.555 41.363 76.398 c
41.363 76.305 41.301 76.305 41.082 76.305 c 40.957 76.305 40.816 76.305
40.676 76.289 c 40.441 76.273 40.426 76.242 40.426 76.164 c 40.426 76.117
40.426 76.102 40.457 75.992 c 41.379 72.352 l 41.426 72.164 41.441 72.133
41.598 72.117 c 41.629 72.117 41.863 72.117 42.004 72.117 c 42.426 72.117
42.613 72.117 42.785 72.164 c 43.098 72.273 43.113 72.461 43.113 72.711
c 43.113 72.836 43.113 72.914 43.066 73.273 c 43.051 73.352 l 43.051 73.43
43.098 73.461 43.16 73.461 c 43.27 73.461 43.285 73.398 43.301 73.289 c
h
43.301 73.289 m f
Q q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
33.516 -12.047 m 15.578 -12.047 l S Q
36.711 12.047 m 32.293 10.371 l 33.762 12.047 l 32.293 13.719 l h
36.711 12.047 m f
q 1 0 0 -1 0 0 cm
36.711 -12.047 m 32.293 -10.371 l 33.762 -12.047 l 32.293 -13.719 l h
36.711 -12.047 m S Q
27.344 2.5 m 27.344 1.109 26.5 0 25.016 0 c 21.688 0 l 21.5 0 21.391 0
21.391 0.188 c 21.391 0.312 21.469 0.312 21.672 0.312 c 21.797 0.312 21.984
0.312 22.094 0.328 c 22.25 0.344 22.312 0.375 22.312 0.484 c 22.312 0.531
22.312 0.547 22.281 0.672 c 20.953 6 l 20.844 6.375 20.828 6.453 20.047
6.453 c 19.875 6.453 19.766 6.453 19.766 6.641 c 19.766 6.766 19.859 6.766
20.047 6.766 c 23.328 6.766 l 25.391 6.766 27.344 4.672 27.344 2.5 c h
26.484 2.141 m 26.484 2.625 26.281 4.25 25.438 5.344 c 25.156 5.703 24.375
6.453 23.156 6.453 c 22.031 6.453 l 21.891 6.453 21.875 6.453 21.812 6.453
c 21.719 6.438 21.688 6.422 21.688 6.344 c 21.688 6.312 21.688 6.297 21.734
6.125 c 23.094 0.688 l 23.172 0.344 23.203 0.312 23.625 0.312 c 24.688
0.312 l 25.656 0.312 26.484 0.828 26.484 2.141 c h
26.484 2.141 m f
32.98 5.734 m 32.98 5.219 32.684 5.188 32.637 5.188 c 32.465 5.188 32.262
5.375 32.262 5.547 c 32.262 5.672 32.34 5.719 32.387 5.766 c 32.543 5.906
32.637 6.094 32.637 6.328 c 32.637 6.406 32.34 8.125 31.465 8.125 c 30.902
8.125 30.902 7.625 30.902 7.5 c 30.902 7.328 30.934 7.203 31.027 6.812
c 31.23 6.031 l 31.277 5.844 31.355 5.516 31.355 5.484 c 31.355 5.344 31.246
5.266 31.121 5.266 c 30.996 5.266 30.871 5.344 30.824 5.469 c 30.809 5.516
30.73 5.812 30.684 5.984 c 30.59 6.375 30.59 6.391 30.48 6.781 c 30.402
7.156 30.387 7.219 30.371 7.422 c 30.402 7.562 30.355 7.688 30.184 7.891
c 30.09 8 29.949 8.125 29.715 8.125 c 29.449 8.125 29.09 8.031 29.09 7.484
c 29.09 7.141 29.293 6.625 29.434 6.266 c 29.543 5.953 29.574 5.891 29.574
5.781 c 29.574 5.453 29.293 5.188 28.918 5.188 c 28.215 5.188 27.902 6.141
27.902 6.25 c 27.902 6.344 27.996 6.344 28.012 6.344 c 28.121 6.344 28.121
6.312 28.137 6.234 c 28.324 5.656 28.621 5.391 28.887 5.391 c 29.012 5.391
29.059 5.469 29.059 5.625 c 29.059 5.781 28.996 5.938 28.965 6.031 c 28.574
7.047 28.574 7.188 28.574 7.391 c 28.574 8.219 29.309 8.312 29.684 8.312
c 29.824 8.312 30.168 8.312 30.48 7.859 c 30.637 8.172 31.012 8.312 31.434
8.312 c 32.059 8.312 32.355 7.781 32.496 7.5 c 32.793 6.922 32.98 6.047
32.98 5.734 c h
32.98 5.734 m f
q 1 0 0 -1 0 0 cm
95.469 -22.859 m 147.219 -22.859 l S Q
150.414 22.859 m 145.996 21.188 l 147.465 22.859 l 145.996 24.531 l h
150.414 22.859 m f
Q q
131.434 6.199 20.566 33 re W n
q
131 6 21 34 re W n
[ 1 0 0 1 0 0 ] concat
q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
150.414 -22.859 m 145.996 -21.188 l 147.465 -22.859 l 145.996 -24.531 l
h
150.414 -22.859 m S Q
Q
Q
0 g
147.727 17.645 m 147.727 17.551 147.633 17.551 147.602 17.551 c 147.508
17.551 147.492 17.598 147.461 17.723 c 147.289 18.379 147.117 18.957 146.711
18.957 c 146.445 18.957 146.414 18.707 146.414 18.504 c 146.414 18.285
146.43 18.207 146.539 17.77 c 146.758 16.879 l 147.117 15.488 l 147.18 15.207
147.18 15.191 147.18 15.16 c 147.18 14.988 147.07 14.879 146.898 14.879
c 146.664 14.879 146.508 15.098 146.477 15.316 c 146.305 14.957 146.023
14.691 145.57 14.691 c 144.414 14.691 143.18 16.145 143.18 17.598 c 143.18
18.52 143.727 19.176 144.508 19.176 c 144.695 19.176 145.195 19.129 145.789
18.426 c 145.867 18.848 146.211 19.176 146.695 19.176 c 147.039 19.176
147.273 18.941 147.43 18.629 c 147.586 18.27 147.727 17.645 147.727 17.645
c h
146.336 15.941 m 145.836 17.895 l 145.789 18.066 145.789 18.082 145.648
18.254 c 145.211 18.801 144.805 18.957 144.523 18.957 c 144.023 18.957
143.883 18.41 143.883 18.02 c 143.883 17.535 144.211 16.316 144.43 15.863
c 144.742 15.27 145.18 14.91 145.586 14.91 c 146.227 14.91 146.367 15.723
146.367 15.785 c 146.367 15.832 146.352 15.895 146.336 15.941 c h
146.336 15.941 m f
Q q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
134.918 -22.859 m 134.918 -75.98 l 120.789 -75.98 l S Q
117.594 75.98 m 122.012 77.652 l 120.539 75.98 l 122.012 74.309 l h
117.594 75.98 m f
Q q
103.434 60.199 33 30.801 re W n
q
103 60 34 31 re W n
[ 1 0 0 1 0 0 ] concat
q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q -1 0 0 1 0 0 cm
-117.594 75.98 m -122.012 77.652 l -120.539 75.98 l -122.012 74.309 l h
-117.594 75.98 m S Q
Q
Q
Q q
0 g
136.898 22.859 m 136.898 21.766 136.012 20.879 134.918 20.879 c 133.82
20.879 132.934 21.766 132.934 22.859 c 132.934 23.953 133.82 24.84 134.918
24.84 c 136.012 24.84 136.898 23.953 136.898 22.859 c h
136.898 22.859 m f
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
81.379 -75.98 m 56.816 -75.98 l S Q
53.621 75.98 m 58.039 77.652 l 56.566 75.98 l 58.039 74.309 l h
53.621 75.98 m f
Q q
39.434 60.199 33 30.801 re W n
q
39 60 34 31 re W n
[ 1 0 0 1 0 0 ] concat
q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q -1 0 0 1 0 0 cm
-53.621 75.98 m -58.039 77.652 l -56.566 75.98 l -58.039 74.309 l h
-53.621 75.98 m S Q
Q
Q
0 g
64.191 65.902 m 64.301 65.465 63.738 65.402 63.223 65.402 c 59.426 65.402
l 59.082 65.434 l 58.816 65.48 58.566 65.574 58.332 65.73 c 58.223 65.793
58.113 65.871 58.02 65.965 c 57.957 66.043 57.91 66.121 57.879 66.215 c
57.879 66.277 57.91 66.293 57.973 66.293 c 58.082 66.293 58.238 66.246
58.379 66.152 c 58.488 66.09 58.566 66.027 58.629 65.965 c 59.02 65.949
l 60.145 65.949 l 59.957 66.84 l 59.77 67.59 59.535 68.34 59.27 69.09 c
58.941 69.996 58.551 70.887 58.098 71.762 c 58.082 71.84 58.035 71.902 57.988
71.965 c 57.504 71.965 57.145 71.684 57.02 71.277 c 57.004 71.246 56.957
71.23 56.91 71.23 c 56.816 71.23 56.66 71.293 56.504 71.371 c 56.316 71.496
56.16 71.637 56.16 71.73 c 56.316 72.23 56.77 72.527 57.348 72.527 c 57.395
72.527 57.441 72.512 57.504 72.496 c 57.816 72.449 58.129 72.293 58.395
72.074 c 58.613 71.902 58.801 71.684 58.926 71.449 c 59.301 70.715 59.645
69.949 59.941 69.184 c 61.832 69.184 l 61.832 69.262 61.863 69.277 61.926
69.277 c 62.02 69.277 62.191 69.215 62.332 69.137 c 62.52 69.027 62.66
68.902 62.676 68.809 c 62.707 68.715 l 62.707 68.652 62.676 68.637 62.613
68.637 c 60.145 68.637 l 60.395 67.918 60.613 67.184 60.801 66.465 c 60.91
65.949 l 62.566 65.949 l 62.973 65.949 63.441 65.949 63.348 66.277 c 63.348
66.355 63.379 66.371 63.441 66.371 c 63.535 66.371 63.707 66.309 63.848
66.215 c 64.035 66.105 64.176 65.98 64.191 65.902 c h
64.191 65.902 m f
Q q
0 32.199 34.434 45 re W n
q
0 32 35 46 re W n
[ 1 0 0 1 0 0 ] concat
q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
17.406 -75.98 m 0.496 -75.98 l 0.496 -33.676 l 33.516 -33.676 l S Q
Q
Q
Q q
0 g
36.711 33.676 m 32.293 32 l 33.762 33.676 l 32.293 35.348 l h
36.711 33.676 m f
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
36.711 -33.676 m 32.293 -32 l 33.762 -33.676 l 32.293 -35.348 l h
36.711 -33.676 m S Q
33.938 25.848 m 33.938 25.613 33.734 25.613 33.547 25.613 c 30.766 25.613
l 30.562 25.613 30.188 25.613 29.75 26.082 c 29.422 26.426 29.141 26.91
29.141 26.973 c 29.141 26.973 29.141 27.066 29.266 27.066 c 29.344 27.066
29.359 27.02 29.422 26.941 c 29.906 26.191 30.469 26.191 30.672 26.191
c 31.5 26.191 l 30.531 29.363 l 30.484 29.488 30.438 29.691 30.438 29.723
c 30.438 29.832 30.5 30.004 30.719 30.004 c 31.047 30.004 31.094 29.723
31.125 29.566 c 31.781 26.191 l 33.453 26.191 l 33.578 26.191 33.938 26.191
33.938 25.848 c h
33.938 25.848 m f
Q Q
showpage
%%Trailer
end
%%EOF

Binary file not shown.

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 89 KiB

After

Width:  |  Height:  |  Size: 127 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 112 KiB

After

Width:  |  Height:  |  Size: 124 KiB

492
figs/svd_control.eps Normal file
View File

@ -0,0 +1,492 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: cairo 1.17.3 (https://cairographics.org)
%%CreationDate: Fri Nov 6 11:30:27 2020
%%Pages: 1
%%DocumentData: Clean7Bit
%%LanguageLevel: 2
%%BoundingBox: 0 0 180 91
%%EndComments
%%BeginProlog
50 dict begin
/q { gsave } bind def
/Q { grestore } bind def
/cm { 6 array astore concat } bind def
/w { setlinewidth } bind def
/J { setlinecap } bind def
/j { setlinejoin } bind def
/M { setmiterlimit } bind def
/d { setdash } bind def
/m { moveto } bind def
/l { lineto } bind def
/c { curveto } bind def
/h { closepath } bind def
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
0 exch rlineto 0 rlineto closepath } bind def
/S { stroke } bind def
/f { fill } bind def
/f* { eofill } bind def
/n { newpath } bind def
/W { clip } bind def
/W* { eoclip } bind def
/BT { } bind def
/ET { } bind def
/BDC { mark 3 1 roll /BDC pdfmark } bind def
/EMC { mark /EMC pdfmark } bind def
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
/Tj { show currentpoint cairo_store_point } bind def
/TJ {
{
dup
type /stringtype eq
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
} forall
currentpoint cairo_store_point
} bind def
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
/Tf { pop /cairo_font exch def /cairo_font_matrix where
{ pop cairo_selectfont } if } bind def
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
/cairo_font where { pop cairo_selectfont } if } bind def
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
/g { setgray } bind def
/rg { setrgbcolor } bind def
/d1 { setcachedevice } bind def
/cairo_data_source {
CairoDataIndex CairoData length lt
{ CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
{ () } ifelse
} def
/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
/cairo_image { image cairo_flush_ascii85_file } def
/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
%%EndProlog
%%BeginSetup
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
%%PageBoundingBox: 0 0 180 91
%%EndPageSetup
q 0 0 180 91 rectclip
1 0 0 -1 0 91 cm q
1 g
52.703 1.727 56.355 42.266 re f
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
52.703 -1.727 56.355 -42.266 re S Q
84.129 23.652 m 84.129 23.574 84.082 23.543 84.004 23.543 c 83.77 23.543
83.191 23.574 82.957 23.574 c 81.582 23.543 l 81.488 23.543 81.363 23.543
81.363 23.746 c 81.363 23.855 81.441 23.855 81.66 23.855 c 81.66 23.855
81.957 23.855 82.191 23.871 c 82.441 23.902 82.504 23.934 82.504 24.059
c 82.504 24.152 82.395 24.59 82.285 24.965 c 82.004 26.043 80.723 26.152
80.379 26.152 c 79.426 26.152 78.379 25.59 78.379 24.074 c 78.379 23.762
78.488 22.137 79.52 20.84 c 80.066 20.168 81.02 19.574 82.004 19.574 c
83.004 19.574 83.598 20.34 83.598 21.48 c 83.598 21.871 83.566 21.887 83.566
21.98 c 83.566 22.09 83.676 22.09 83.707 22.09 c 83.848 22.09 83.848 22.059
83.895 21.887 c 84.52 19.355 l 84.52 19.324 84.504 19.262 84.41 19.262
c 84.379 19.262 84.363 19.277 84.254 19.387 c 83.566 20.137 l 83.473 20.012
83.02 19.262 81.926 19.262 c 79.707 19.262 77.488 21.449 77.488 23.746
c 77.488 25.324 78.582 26.465 80.191 26.465 c 80.629 26.465 81.066 26.371
81.426 26.23 c 81.926 26.027 82.113 25.824 82.285 25.621 c 82.379 25.871
82.629 26.23 82.738 26.23 c 82.785 26.23 82.801 26.199 82.801 26.199 c
82.816 26.184 82.926 25.793 82.973 25.59 c 83.16 24.824 l 83.207 24.668
83.254 24.496 83.285 24.324 c 83.395 23.871 83.41 23.855 83.973 23.855 c
84.02 23.855 84.129 23.84 84.129 23.652 c h
84.129 23.652 m f
1 g
110.051 61.891 33.812 28.18 re f
Q q
109.176 61.199 36 29.801 re W n
q
109 61 37 30 re W n
[ 1 0 0 1 0 0 ] concat
q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
110.051 -61.891 33.812 -28.18 re S Q
Q
Q
0 g
125.25 73.355 m 125.25 73.355 125.25 73.246 125.125 73.246 c 124.797 73.246
124.438 73.277 124.109 73.277 c 123.766 73.277 123.406 73.246 123.078 73.246
c 123.016 73.246 122.906 73.246 122.906 73.449 c 122.906 73.559 123 73.559
123.078 73.559 c 123.641 73.559 123.75 73.777 123.75 73.996 c 123.75 74.012
123.734 74.168 123.719 74.199 c 122.828 77.73 l 122.5 79.059 121.359 79.918
120.359 79.918 c 119.688 79.918 119.156 79.48 119.156 78.637 c 119.156
78.637 119.156 78.293 119.266 77.855 c 120.219 74.012 l 120.312 73.652 120.328
73.559 121.062 73.559 c 121.312 73.559 121.391 73.559 121.391 73.355 c
121.391 73.246 121.281 73.246 121.25 73.246 c 119.984 73.277 l 118.703 73.246
l 118.625 73.246 118.516 73.246 118.516 73.449 c 118.516 73.559 118.609
73.559 118.797 73.559 c 118.797 73.559 119 73.559 119.172 73.574 c 119.359
73.59 119.438 73.605 119.438 73.73 c 119.438 73.793 119.328 74.199 119.281
74.434 c 118.453 77.746 l 118.375 78.027 118.375 78.184 118.375 78.324
c 118.375 79.543 119.281 80.23 120.328 80.23 c 121.578 80.23 122.797 79.105
123.125 77.809 c 124.016 74.293 l 124.109 73.887 124.281 73.59 125.078
73.559 c 125.125 73.559 125.25 73.543 125.25 73.355 c h
125.25 73.355 m f
130.996 74.684 m 130.996 74.512 130.84 74.512 130.746 74.512 c 126.559
74.512 l 126.465 74.512 126.309 74.512 126.309 74.684 c 126.309 74.855 126.48
74.855 126.559 74.855 c 130.746 74.855 l 130.824 74.855 130.996 74.855
130.996 74.684 c h
130.996 74.684 m f
135.031 76.418 m 135.031 76.168 l 134.766 76.168 l 134.078 76.168 134.078
76.074 134.078 75.855 c 134.078 72.012 l 134.078 71.824 134.062 71.809
133.859 71.809 c 133.422 72.246 132.797 72.262 132.5 72.262 c 132.5 72.512
l 132.672 72.512 133.125 72.512 133.516 72.309 c 133.516 75.855 l 133.516
76.074 133.516 76.168 132.812 76.168 c 132.562 76.168 l 132.562 76.418
l 133.797 76.387 l h
135.031 76.418 m f
Q q
1 g
63.977 61.891 33.812 28.18 re f
Q q
63.176 61.199 36 29.801 re W n
q
63 61 37 30 re W n
[ 1 0 0 1 0 0 ] concat
q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
63.977 -61.891 33.813 -28.18 re S Q
Q
Q
0 g
75.664 78.418 m 75.664 78.309 75.555 78.309 75.461 78.309 c 75.055 78.309
74.93 78.215 74.789 77.871 c 73.383 74.621 l 73.367 74.59 73.336 74.512
73.336 74.48 c 73.336 74.48 73.508 74.324 73.617 74.246 c 75.352 72.918
l 76.273 72.23 76.664 72.199 76.961 72.168 c 77.039 72.152 77.148 72.137
77.148 71.965 c 77.148 71.918 77.117 71.855 77.039 71.855 c 76.82 71.855
76.57 71.887 76.336 71.887 c 75.977 71.887 75.586 71.855 75.227 71.855
c 75.164 71.855 75.039 71.855 75.039 72.059 c 75.039 72.121 75.086 72.152
75.164 72.168 c 75.383 72.184 75.461 72.23 75.461 72.371 c 75.461 72.543
75.164 72.777 75.117 72.824 c 71.242 75.793 l 72.039 72.621 l 72.133 72.262
72.148 72.168 72.867 72.168 c 73.117 72.168 73.211 72.168 73.211 71.965
c 73.211 71.871 73.133 71.855 73.07 71.855 c 71.805 71.887 l 70.523 71.855
l 70.461 71.855 70.32 71.855 70.32 72.043 c 70.32 72.168 70.414 72.168
70.617 72.168 c 70.742 72.168 70.914 72.168 71.039 72.184 c 71.195 72.199
71.258 72.23 71.258 72.34 c 71.258 72.387 71.242 72.402 71.211 72.527 c
69.898 77.855 l 69.789 78.23 69.773 78.309 68.992 78.309 c 68.82 78.309
68.711 78.309 68.711 78.496 c 68.711 78.621 68.836 78.621 68.867 78.621
c 70.117 78.59 l 70.758 78.605 l 70.977 78.605 71.195 78.621 71.398 78.621
c 71.461 78.621 71.602 78.621 71.602 78.418 c 71.602 78.309 71.508 78.309
71.32 78.309 c 70.945 78.309 70.68 78.309 70.68 78.137 c 70.68 78.059 70.727
77.855 70.758 77.699 c 71.164 76.137 l 72.633 74.996 l 73.789 77.668 l
73.898 77.934 73.898 77.949 73.898 78.012 c 73.898 78.309 73.477 78.309
73.383 78.309 c 73.273 78.309 73.164 78.309 73.164 78.512 c 73.164 78.621
73.305 78.621 73.305 78.621 c 73.711 78.621 74.117 78.59 74.523 78.59 c
74.742 78.59 75.273 78.621 75.492 78.621 c 75.539 78.621 75.664 78.621
75.664 78.418 c h
75.664 78.418 m f
80.637 78.828 m 80.637 78.203 80.199 77.609 79.496 77.453 c 78.48 77.219
l 77.855 77.078 77.668 76.641 77.668 76.344 c 77.668 75.891 78.105 75.453
78.73 75.453 c 79.668 75.453 80.074 76.078 80.184 76.812 c 80.199 76.906
80.199 76.953 80.309 76.953 c 80.418 76.953 80.418 76.891 80.418 76.766
c 80.418 75.406 l 80.418 75.297 80.418 75.234 80.324 75.234 c 80.277 75.234
80.262 75.25 80.215 75.328 c 79.965 75.719 l 79.496 75.25 78.918 75.234
78.73 75.234 c 77.855 75.234 77.23 75.859 77.23 76.562 c 77.23 76.953 77.402
77.25 77.652 77.484 c 77.934 77.75 78.168 77.797 78.918 77.969 c 79.543
78.109 79.684 78.125 79.887 78.328 c 80.043 78.484 80.184 78.703 80.184
79.016 c 80.184 79.5 79.777 80 79.121 80 c 78.449 80 77.512 79.734 77.465
78.688 c 77.465 78.578 77.465 78.531 77.355 78.531 c 77.23 78.531 77.23
78.578 77.23 78.719 c 77.23 80.062 l 77.23 80.188 77.23 80.25 77.324 80.25
c 77.387 80.25 77.402 80.234 77.434 80.172 c 77.496 80.078 77.637 79.859
77.699 79.766 c 78.137 80.156 78.668 80.25 79.121 80.25 c 80.027 80.25
80.637 79.562 80.637 78.828 c h
80.637 78.828 m f
86.746 75.625 m 86.746 75.375 l 86.543 75.391 86.277 75.406 86.074 75.406
c 85.793 75.406 85.277 75.375 85.246 75.375 c 85.246 75.625 l 85.496 75.625
85.715 75.734 85.715 75.953 c 85.715 76 85.699 76.047 85.684 76.094 c 84.246
79.438 l 82.746 75.922 l 82.715 75.844 82.715 75.828 82.715 75.812 c 82.715
75.625 83.074 75.625 83.262 75.625 c 83.262 75.375 l 82.23 75.406 l 81.871
75.406 81.355 75.375 81.34 75.375 c 81.34 75.625 l 81.449 75.625 l 81.824
75.625 81.949 75.656 82.043 75.875 c 83.84 80.094 l 83.887 80.203 83.902
80.25 84.043 80.25 c 84.105 80.25 84.184 80.25 84.246 80.109 c 85.965 76.078
l 86.059 75.859 86.215 75.625 86.746 75.625 c h
86.746 75.625 m f
92.434 77.781 m 92.434 76.453 91.387 75.375 90.105 75.375 c 87.371 75.375
l 87.371 75.625 l 87.527 75.625 l 88.074 75.625 88.074 75.688 88.074 75.938
c 88.074 79.547 l 88.074 79.781 88.074 79.859 87.527 79.859 c 87.371 79.859
l 87.371 80.109 l 90.105 80.109 l 91.371 80.109 92.434 79.078 92.434 77.781
c h
91.73 77.781 m 91.73 78.578 91.527 79 91.277 79.297 c 90.965 79.641 90.465
79.859 89.918 79.859 c 89.043 79.859 l 88.715 79.859 88.715 79.797 88.715
79.594 c 88.715 75.891 l 88.715 75.672 88.715 75.625 89.043 75.625 c 89.902
75.625 l 90.496 75.625 91.012 75.859 91.324 76.266 c 91.605 76.641 91.73
77.172 91.73 77.781 c h
91.73 77.781 m f
Q q
1 g
17.898 61.891 33.816 28.18 re f
Q q
17.176 61.199 36 29.801 re W n
q
17 61 37 30 re W n
[ 1 0 0 1 0 0 ] concat
q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
17.898 -61.891 33.816 -28.18 re S Q
Q
Q
0 g
32.227 73.508 m 32.227 73.43 32.164 73.383 32.086 73.383 c 31.836 73.383
31.539 73.414 31.273 73.414 c 30.945 73.414 30.617 73.383 30.305 73.383
c 30.242 73.383 30.117 73.383 30.117 73.57 c 30.117 73.68 30.195 73.695
30.273 73.695 c 30.539 73.711 30.727 73.805 30.727 74.023 c 30.727 74.164
30.57 74.398 30.57 74.398 c 27.539 79.227 l 26.867 73.992 l 26.867 73.82
27.086 73.695 27.539 73.695 c 27.68 73.695 27.789 73.695 27.789 73.492
c 27.789 73.398 27.711 73.383 27.648 73.383 c 27.258 73.383 26.836 73.414
26.43 73.414 c 26.242 73.414 26.055 73.398 25.883 73.398 c 25.695 73.398
25.508 73.383 25.352 73.383 c 25.273 73.383 25.164 73.383 25.164 73.57
c 25.164 73.695 25.242 73.695 25.398 73.695 c 25.961 73.695 25.961 73.773
25.992 74.023 c 26.773 80.133 l 26.805 80.336 26.852 80.367 26.977 80.367
c 27.133 80.367 27.18 80.32 27.258 80.195 c 30.82 74.508 l 31.305 73.742
31.727 73.711 32.086 73.695 c 32.211 73.68 32.227 73.508 32.227 73.508
c h
32.227 73.508 m f
38.016 74.82 m 38.016 74.648 37.859 74.648 37.766 74.648 c 33.578 74.648
l 33.484 74.648 33.328 74.648 33.328 74.82 c 33.328 74.992 33.5 74.992
33.578 74.992 c 37.766 74.992 l 37.844 74.992 38.016 74.992 38.016 74.82
c h
38.016 74.82 m f
44.066 73.289 m 44.254 71.961 l 44.254 71.867 44.16 71.867 44.035 71.867
c 39.77 71.867 l 39.598 71.867 39.582 71.867 39.535 72.008 c 39.098 73.242
l 39.098 73.273 39.066 73.336 39.066 73.367 c 39.066 73.398 39.082 73.461
39.191 73.461 c 39.27 73.461 39.285 73.43 39.332 73.289 c 39.738 72.18
39.957 72.117 41.02 72.117 c 41.316 72.117 l 41.52 72.117 41.52 72.117 41.52
72.18 c 41.52 72.18 41.52 72.227 41.488 72.336 c 40.582 75.977 l 40.52
76.242 40.504 76.305 39.77 76.305 c 39.52 76.305 39.457 76.305 39.457 76.461
c 39.457 76.477 39.473 76.555 39.582 76.555 c 39.77 76.555 39.973 76.539
40.176 76.539 c 40.77 76.523 l 41.395 76.539 l 41.582 76.539 41.785 76.555
41.973 76.555 c 42.035 76.555 42.129 76.555 42.129 76.398 c 42.129 76.305
42.066 76.305 41.848 76.305 c 41.723 76.305 41.582 76.305 41.441 76.289
c 41.207 76.273 41.191 76.242 41.191 76.164 c 41.191 76.117 41.191 76.102
41.223 75.992 c 42.145 72.352 l 42.191 72.164 42.207 72.133 42.363 72.117
c 42.395 72.117 42.629 72.117 42.77 72.117 c 43.191 72.117 43.379 72.117
43.551 72.164 c 43.863 72.273 43.879 72.461 43.879 72.711 c 43.879 72.836
43.879 72.914 43.832 73.273 c 43.816 73.352 l 43.816 73.43 43.863 73.461
43.926 73.461 c 44.035 73.461 44.051 73.398 44.066 73.289 c h
44.066 73.289 m f
Q q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
47.602 -12.047 m 29.664 -12.047 l S Q
50.797 12.047 m 46.379 10.371 l 47.852 12.047 l 46.379 13.719 l h
50.797 12.047 m f
q 1 0 0 -1 0 0 cm
50.797 -12.047 m 46.379 -10.371 l 47.852 -12.047 l 46.379 -13.719 l h
50.797 -12.047 m S Q
41.43 2.5 m 41.43 1.109 40.586 0 39.102 0 c 35.773 0 l 35.586 0 35.477
0 35.477 0.188 c 35.477 0.312 35.555 0.312 35.758 0.312 c 35.883 0.312 36.07
0.312 36.18 0.328 c 36.336 0.344 36.398 0.375 36.398 0.484 c 36.398 0.531
36.398 0.547 36.367 0.672 c 35.039 6 l 34.93 6.375 34.914 6.453 34.133
6.453 c 33.961 6.453 33.852 6.453 33.852 6.641 c 33.852 6.766 33.945 6.766
34.133 6.766 c 37.414 6.766 l 39.477 6.766 41.43 4.672 41.43 2.5 c h
40.57 2.141 m 40.57 2.625 40.367 4.25 39.523 5.344 c 39.242 5.703 38.461
6.453 37.242 6.453 c 36.117 6.453 l 35.977 6.453 35.961 6.453 35.898 6.453
c 35.805 6.438 35.773 6.422 35.773 6.344 c 35.773 6.312 35.773 6.297 35.82
6.125 c 37.18 0.688 l 37.258 0.344 37.289 0.312 37.711 0.312 c 38.773 0.312
l 39.742 0.312 40.57 0.828 40.57 2.141 c h
40.57 2.141 m f
47.066 5.734 m 47.066 5.219 46.77 5.188 46.723 5.188 c 46.551 5.188 46.348
5.375 46.348 5.547 c 46.348 5.672 46.426 5.719 46.473 5.766 c 46.629 5.906
46.723 6.094 46.723 6.328 c 46.723 6.406 46.426 8.125 45.551 8.125 c 44.988
8.125 44.988 7.625 44.988 7.5 c 44.988 7.328 45.02 7.203 45.113 6.812 c
45.316 6.031 l 45.363 5.844 45.441 5.516 45.441 5.484 c 45.441 5.344 45.332
5.266 45.207 5.266 c 45.082 5.266 44.957 5.344 44.91 5.469 c 44.895 5.516
44.816 5.812 44.77 5.984 c 44.676 6.375 44.676 6.391 44.566 6.781 c 44.488
7.156 44.473 7.219 44.457 7.422 c 44.488 7.562 44.441 7.688 44.27 7.891
c 44.176 8 44.035 8.125 43.801 8.125 c 43.535 8.125 43.176 8.031 43.176
7.484 c 43.176 7.141 43.379 6.625 43.52 6.266 c 43.629 5.953 43.66 5.891
43.66 5.781 c 43.66 5.453 43.379 5.188 43.004 5.188 c 42.301 5.188 41.988
6.141 41.988 6.25 c 41.988 6.344 42.082 6.344 42.098 6.344 c 42.207 6.344
42.207 6.312 42.223 6.234 c 42.41 5.656 42.707 5.391 42.973 5.391 c 43.098
5.391 43.145 5.469 43.145 5.625 c 43.145 5.781 43.082 5.938 43.051 6.031
c 42.66 7.047 42.66 7.188 42.66 7.391 c 42.66 8.219 43.395 8.312 43.77
8.312 c 43.91 8.312 44.254 8.312 44.566 7.859 c 44.723 8.172 45.098 8.312
45.52 8.312 c 46.145 8.312 46.441 7.781 46.582 7.5 c 46.879 6.922 47.066
6.047 47.066 5.734 c h
47.066 5.734 m f
q 1 0 0 -1 0 0 cm
109.555 -22.859 m 175.395 -22.859 l S Q
178.59 22.859 m 174.172 21.188 l 175.641 22.859 l 174.172 24.531 l h
178.59 22.859 m f
Q q
159.176 6.199 20.824 33 re W n
q
159 6 21 34 re W n
[ 1 0 0 1 0 0 ] concat
q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
178.59 -22.859 m 174.172 -21.188 l 175.641 -22.859 l 174.172 -24.531 l
h
178.59 -22.859 m S Q
Q
Q
0 g
175.906 17.645 m 175.906 17.551 175.812 17.551 175.781 17.551 c 175.688
17.551 175.672 17.598 175.641 17.723 c 175.469 18.379 175.297 18.957 174.891
18.957 c 174.625 18.957 174.594 18.707 174.594 18.504 c 174.594 18.285
174.609 18.207 174.719 17.77 c 174.938 16.879 l 175.297 15.488 l 175.359
15.207 175.359 15.191 175.359 15.16 c 175.359 14.988 175.25 14.879 175.078
14.879 c 174.844 14.879 174.688 15.098 174.656 15.316 c 174.484 14.957
174.203 14.691 173.75 14.691 c 172.594 14.691 171.359 16.145 171.359 17.598
c 171.359 18.52 171.906 19.176 172.688 19.176 c 172.875 19.176 173.375
19.129 173.969 18.426 c 174.047 18.848 174.391 19.176 174.875 19.176 c 175.219
19.176 175.453 18.941 175.609 18.629 c 175.766 18.27 175.906 17.645 175.906
17.645 c h
174.516 15.941 m 174.016 17.895 l 173.969 18.066 173.969 18.082 173.828
18.254 c 173.391 18.801 172.984 18.957 172.703 18.957 c 172.203 18.957
172.062 18.41 172.062 18.02 c 172.062 17.535 172.391 16.316 172.609 15.863
c 172.922 15.27 173.359 14.91 173.766 14.91 c 174.406 14.91 174.547 15.723
174.547 15.785 c 174.547 15.832 174.531 15.895 174.516 15.941 c h
174.516 15.941 m f
Q q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
165.91 -22.859 m 165.91 -75.98 l 148.965 -75.98 l S Q
145.77 75.98 m 150.188 77.652 l 148.719 75.98 l 150.188 74.309 l h
145.77 75.98 m f
Q q
131.176 60.199 34 30.801 re W n
q
131 60 35 31 re W n
[ 1 0 0 1 0 0 ] concat
q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q -1 0 0 1 0 0 cm
-145.77 75.98 m -150.188 77.652 l -148.719 75.98 l -150.188 74.309 l h
-145.77 75.98 m S Q
Q
Q
Q q
0 g
167.891 22.859 m 167.891 21.766 167.004 20.879 165.91 20.879 c 164.816
20.879 163.93 21.766 163.93 22.859 c 163.93 23.953 164.816 24.84 165.91
24.84 c 167.004 24.84 167.891 23.953 167.891 22.859 c h
167.891 22.859 m f
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
109.555 -75.98 m 102.891 -75.98 l S Q
99.695 75.98 m 104.113 77.652 l 102.641 75.98 l 104.113 74.309 l h
99.695 75.98 m f
Q q
85.176 60.199 33 30.801 re W n
q
85 60 34 31 re W n
[ 1 0 0 1 0 0 ] concat
q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q -1 0 0 1 0 0 cm
-99.695 75.98 m -104.113 77.652 l -102.641 75.98 l -104.113 74.309 l h
-99.695 75.98 m S Q
Q
Q
Q q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
63.48 -75.98 m 56.813 -75.98 l S Q
53.617 75.98 m 58.035 77.652 l 56.566 75.98 l 58.035 74.309 l h
53.617 75.98 m f
Q q
39.176 60.199 33 30.801 re W n
q
39 60 34 31 re W n
[ 1 0 0 1 0 0 ] concat
q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q -1 0 0 1 0 0 cm
-53.617 75.98 m -58.035 77.652 l -56.566 75.98 l -58.035 74.309 l h
-53.617 75.98 m S Q
Q
Q
Q q
0 32.199 48.176 45 re W n
q
0 32 49 46 re W n
[ 1 0 0 1 0 0 ] concat
q
0 g
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
17.402 -75.98 m 0.496 -75.98 l 0.496 -33.676 l 47.602 -33.676 l S Q
Q
Q
Q q
0 g
50.797 33.676 m 46.379 32 l 47.852 33.676 l 46.379 35.348 l h
50.797 33.676 m f
0.990354 w
0 J
0 j
[] 0.0 d
10 M q 1 0 0 -1 0 0 cm
50.797 -33.676 m 46.379 -32 l 47.852 -33.676 l 46.379 -35.348 l h
50.797 -33.676 m S Q
48.023 25.848 m 48.023 25.613 47.82 25.613 47.633 25.613 c 44.852 25.613
l 44.648 25.613 44.273 25.613 43.836 26.082 c 43.508 26.426 43.227 26.91
43.227 26.973 c 43.227 26.973 43.227 27.066 43.352 27.066 c 43.43 27.066
43.445 27.02 43.508 26.941 c 43.992 26.191 44.555 26.191 44.758 26.191
c 45.586 26.191 l 44.617 29.363 l 44.57 29.488 44.523 29.691 44.523 29.723
c 44.523 29.832 44.586 30.004 44.805 30.004 c 45.133 30.004 45.18 29.723
45.211 29.566 c 45.867 26.191 l 47.539 26.191 l 47.664 26.191 48.023 26.191
48.023 25.848 c h
48.023 25.848 m f
Q Q
showpage
%%Trailer
end
%%EOF

File diff suppressed because it is too large Load Diff

220
index.org
View File

@ -689,6 +689,24 @@ This Matlab function is accessible [[file:gravimeter/pzmap_testCL.m][here]].
:PROPERTIES:
:header-args:matlab+: :tangle stewart_platform/simscape_model.m
:END:
** Introduction :ignore:
In this analysis, we wish to applied SVD control to the Stewart Platform shown in Figure [[fig:SP_assembly]].
#+name: fig:SP_assembly
#+caption: Stewart Platform CAD View
[[file:figs/SP_assembly.png]]
The analysis of the SVD control applied to the Stewart platform is performed in the following sections:
- Section [[sec:stewart_simscape]]: The parameters of the Simscape model of the Stewart platform are defined
- Section [[sec:stewart_identification]]: The plant is identified from the Simscape model and the centralized plant is computed thanks to the Jacobian
- Section [[sec:stewart_dynamics]]: The identified Dynamics is shown
- Section [[sec:stewart_real_approx]]: A real approximation of the plant is computed for further decoupling using the Singular Value Decomposition (SVD)
- Section [[sec:stewart_svd_decoupling]]: The decoupling is performed thanks to the SVD. The effectiveness of the decoupling is verified using the Gershorin Radii
- Section [[sec:stewart_decoupled_plant]]: The dynamics of the decoupled plant is shown
- Section [[sec:stewart_diagonal_control]]: A diagonal controller is defined to control the decoupled plant
- Section [[sec:stewart_closed_loop_results]]: Finally, the closed loop system properties are studied
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
@ -707,7 +725,7 @@ This Matlab function is accessible [[file:gravimeter/pzmap_testCL.m][here]].
addpath('STEP');
#+end_src
** Jacobian
** Jacobian :noexport:
First, the position of the "joints" (points of force application) are estimated and the Jacobian computed.
#+begin_src matlab
open('drone_platform_jacobian.slx');
@ -741,7 +759,8 @@ First, the position of the "joints" (points of force application) are estimated
save('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
#+end_src
** Simscape Model
** Simscape Model - Parameters
<<sec:stewart_simscape>>
#+begin_src matlab
open('drone_platform.slx');
#+end_src
@ -757,16 +776,19 @@ Definition of spring parameters
cz = 0.025;
#+end_src
Gravity:
#+begin_src matlab
g = 0;
#+end_src
We load the Jacobian.
We load the Jacobian (previously computed from the geometry).
#+begin_src matlab
load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
#+end_src
** Identification of the plant
<<sec:stewart_identification>>
The dynamics is identified from forces applied by each legs to the measured acceleration of the top platform.
#+begin_src matlab
%% Name of the Simulink File
@ -792,39 +814,41 @@ There are 24 states (6dof for the bottom platform + 6dof for the top platform).
#+RESULTS:
: State-space model with 6 outputs, 12 inputs, and 24 states.
#+begin_src matlab
% G = G*blkdiag(inv(J), eye(6));
% G.InputName = {'Dw1', 'Dw2', 'Dw3', 'Dw4', 'Dw5', 'Dw6', ...
% 'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
#+end_src
The "centralized" plant $\bm{G}_x$ is now computed (Figure [[fig:centralized_control]]).
Thanks to the Jacobian, we compute the transfer functions in the frame of the legs and in an inertial frame.
#+name: fig:centralized_control
#+caption: Centralized control architecture
[[file:figs/centralized_control.png]]
Thanks to the Jacobian, we compute the transfer functions in the inertial frame (transfer function from forces and torques applied to the top platform to the absolute acceleration of the top platform).
#+begin_src matlab
Gx = G*blkdiag(eye(6), inv(J'));
Gx.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
% Gl = J*G;
% Gl.OutputName = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'};
#+end_src
** Obtained Dynamics
<<sec:stewart_dynamics>>
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = subplot(2, 1, 1);
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))), 'DisplayName', '$A_x/F_x$');
plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))), 'DisplayName', '$A_y/F_y$');
plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))), 'DisplayName', '$A_z/F_z$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ylabel('Magnitude [m/N]'); set(gca, 'XTickLabel',[]);
legend('location', 'southeast');
ax2 = subplot(2, 1, 2);
% Phase
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))));
@ -839,7 +863,7 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/stewart_platform_translations.pdf', 'width', 'full', 'height', 'full');
exportFig('figs/stewart_platform_translations.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:stewart_platform_translations
@ -851,18 +875,21 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = subplot(2, 1, 1);
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))), 'DisplayName', '$A_{R_x}/M_x$');
plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))), 'DisplayName', '$A_{R_y}/M_y$');
plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))), 'DisplayName', '$A_{R_z}/M_z$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [rad/(Nm)]'); set(gca, 'XTickLabel',[]);
ylabel('Magnitude [rad/(Nm)]'); set(gca, 'XTickLabel',[]);
legend('location', 'southeast');
ax2 = subplot(2, 1, 2);
% Phase
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))));
@ -877,7 +904,7 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/stewart_platform_rotations.pdf', 'width', 'full', 'height', 'full');
exportFig('figs/stewart_platform_rotations.pdf', 'eps', true, 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:stewart_platform_rotations
@ -885,94 +912,9 @@ Thanks to the Jacobian, we compute the transfer functions in the frame of the le
#+RESULTS:
[[file:figs/stewart_platform_rotations.png]]
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for out_i = 1:5
for in_i = i+1:6
plot(freqs, abs(squeeze(freqresp(Gl(sprintf('A%i', out_i), sprintf('F%i', in_i)), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
end
for ch_i = 1:6
plot(freqs, abs(squeeze(freqresp(Gl(sprintf('A%i', ch_i), sprintf('F%i', ch_i)), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for ch_i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(sprintf('A%i', ch_i), sprintf('F%i', ch_i)), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/stewart_platform_legs.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:stewart_platform_legs
#+caption: Stewart Platform Plant from forces applied by the legs to displacement of the legs
#+RESULTS:
[[file:figs/stewart_platform_legs.png]]
#+begin_src matlab :exports none
freqs = logspace(-1, 2, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_x/D_{w,x}$');
plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_y/D_{w,y}$');
plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Dwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_z/D_{w,z}$');
% set(gca,'ColorOrderIndex',1)
% plot(freqs, abs(squeeze(freqresp(TR(1,1), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
% plot(freqs, abs(squeeze(freqresp(TR(2,2), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
% plot(freqs, abs(squeeze(freqresp(TR(3,3), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - Translations'); xlabel('Frequency [Hz]');
legend('location', 'northeast');
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Rwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_x/R_{w,x}$');
plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'Rwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_y/R_{w,y}$');
plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Rwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_z/R_{w,z}$');
% set(gca,'ColorOrderIndex',1)
% plot(freqs, abs(squeeze(freqresp(TR(4,4), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
% plot(freqs, abs(squeeze(freqresp(TR(5,5), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
% plot(freqs, abs(squeeze(freqresp(TR(6,6), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - Rotations'); xlabel('Frequency [Hz]');
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/stewart_platform_transmissibility.pdf', 'width', 'full', 'height', 'full');
#+end_src
#+name: fig:stewart_platform_transmissibility
#+caption: Transmissibility
#+RESULTS:
[[file:figs/stewart_platform_transmissibility.png]]
** Real Approximation of $G$ at the decoupling frequency
<<sec:stewart_real_approx>>
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_c(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
#+begin_src matlab
wc = 2*pi*30; % Decoupling frequency [rad/s]
@ -989,7 +931,39 @@ The real approximation is computed as follows:
H1 = inv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
#+end_src
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(H1, {}, {}, ' %.1f ');
#+end_src
#+caption: Real approximate of $G$ at the decoupling frequency $\omega_c$
#+RESULTS:
| 4.4 | -2.1 | -2.1 | 4.4 | -2.4 | -2.4 |
| -0.2 | -3.9 | 3.9 | 0.2 | -3.8 | 3.8 |
| 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 |
| -367.1 | -323.8 | 323.8 | 367.1 | 43.3 | -43.3 |
| -162.0 | -237.0 | -237.0 | -162.0 | 398.9 | 398.9 |
| 220.6 | -220.6 | 220.6 | -220.6 | 220.6 | -220.6 |
Please not that the plant $G$ at $\omega_c$ is already an almost real matrix.
This can be seen on the Bode plots where the phase is close to 1.
This can be verified below where only the real value of $G(\omega_c)$ is shown
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(real(evalfr(Gc, j*wc)), {}, {}, ' %.1f ');
#+end_src
#+RESULTS:
| 4.4 | -2.1 | -2.1 | 4.4 | -2.4 | -2.4 |
| -0.2 | -3.9 | 3.9 | 0.2 | -3.8 | 3.8 |
| 3.4 | 3.4 | 3.4 | 3.4 | 3.4 | 3.4 |
| -367.1 | -323.8 | 323.8 | 367.1 | 43.3 | -43.3 |
| -162.0 | -237.0 | -237.0 | -162.0 | 398.9 | 398.9 |
| 220.6 | -220.6 | 220.6 | -220.6 | 220.6 | -220.6 |
** Verification of the decoupling using the "Gershgorin Radii"
<<sec:stewart_svd_decoupling>>
First, the Singular Value Decomposition of $H_1$ is performed:
\[ H_1 = U \Sigma V^H \]
@ -1069,6 +1043,8 @@ Gershgorin Radii for the decoupled plant using the Jacobian:
[[file:figs/simscape_model_gershgorin_radii.png]]
** Decoupled Plant
<<sec:stewart_decoupled_plant>>
Let's see the bode plot of the decoupled plant $G_d(s)$.
\[ G_d(s) = U^T G_c(s) V \]
@ -1089,7 +1065,7 @@ Let's see the bode plot of the decoupled plant $G_d(s)$.
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude'); xlabel('Frequency [Hz]');
ylabel('Magnitude'); xlabel('Frequency [Hz]');
legend('location', 'southeast');
#+end_src
@ -1119,7 +1095,7 @@ Let's see the bode plot of the decoupled plant $G_d(s)$.
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude'); xlabel('Frequency [Hz]');
ylabel('Magnitude'); xlabel('Frequency [Hz]');
legend('location', 'southeast');
#+end_src
@ -1133,6 +1109,8 @@ Let's see the bode plot of the decoupled plant $G_d(s)$.
[[file:figs/simscape_model_decoupled_plant_jacobian.png]]
** Diagonal Controller
<<sec:stewart_diagonal_control>>
The controller $K$ is a diagonal controller consisting a low pass filters with a crossover frequency $\omega_c$ and a DC gain $C_g$.
#+begin_src matlab
@ -1142,13 +1120,12 @@ The controller $K$ is a diagonal controller consisting a low pass filters with a
K = eye(6)*C_g/(s+wc);
#+end_src
** Centralized Control
The control diagram for the centralized control is shown below.
The control diagram for the centralized control is shown in Figure [[fig:centralized_control]].
The controller $K_c$ is "working" in an cartesian frame.
The Jacobian is used to convert forces in the cartesian frame to forces applied by the actuators.
#+begin_src latex :file centralized_control.pdf :tangle no
#+begin_src latex :file centralized_control.pdf :tangle no :exports results
\begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$G$};
\node[block, below right=0.6 and -0.5 of G] (K) {$K_c$};
@ -1167,18 +1144,19 @@ The Jacobian is used to convert forces in the cartesian frame to forces applied
\end{tikzpicture}
#+end_src
#+name: fig:centralized_control
#+caption: Control Diagram for the Centralized control
#+RESULTS:
[[file:figs/centralized_control.png]]
The feedback system is computed as shown below.
#+begin_src matlab
G_cen = feedback(G, inv(J')*K, [7:12], [1:6]);
#+end_src
** SVD Control
The SVD control architecture is shown below.
The SVD control architecture is shown in Figure [[fig:svd_control]].
The matrices $U$ and $V$ are used to decoupled the plant $G$.
#+begin_src latex :file svd_control.pdf :tangle no
#+begin_src latex :file svd_control.pdf :tangle no :exports results
\begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$G$};
\node[block, below right=0.6 and 0 of G] (U) {$U^{-1}$};
@ -1199,15 +1177,19 @@ The matrices $U$ and $V$ are used to decoupled the plant $G$.
\end{tikzpicture}
#+end_src
#+name: fig:svd_control
#+caption: Control Diagram for the SVD control
#+RESULTS:
[[file:figs/svd_control.png]]
SVD Control
The feedback system is computed as shown below.
#+begin_src matlab
G_svd = feedback(G, pinv(V')*K*pinv(U), [7:12], [1:6]);
#+end_src
** Results
** Closed-Loop system Performances
<<sec:stewart_closed_loop_results>>
Let's first verify the stability of the closed-loop systems:
#+begin_src matlab :results output replace text
isstable(G_cen)
@ -1302,7 +1284,7 @@ The obtained transmissibility in Open-loop, for the centralized control as well
#+RESULTS:
[[file:figs/stewart_platform_simscape_cl_transmissibility.png]]
* Stewart Platform - Analytical Model
* Stewart Platform - Analytical Model :noexport:
:PROPERTIES:
:header-args:matlab+: :tangle stewart_platform/analytical_model.m
:END: