Better Matlab notations

This commit is contained in:
2020-11-09 14:37:04 +01:00
parent 292ba73fb1
commit e97a3d58ab
25 changed files with 1786 additions and 1666 deletions

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.3 KiB

After

Width:  |  Height:  |  Size: 6.6 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.9 KiB

After

Width:  |  Height:  |  Size: 6.9 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

After

Width:  |  Height:  |  Size: 9.6 KiB

View File

@@ -1,7 +1,7 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: (MATLAB, The Mathworks, Inc. Version 9.9.0.1467703 \(R2020b\). Operating System: Linux)
%%Title: figs/simscape_model_decoupled_plant_jacobian.eps
%%CreationDate: 2020-11-09T10:54:36
%%CreationDate: 2020-11-09T14:22:09
%%Pages: (atend)
%%BoundingBox: 1 1 335 299
%%LanguageLevel: 3

View File

@@ -3,7 +3,7 @@
1 0 obj
<<
/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D)
/CreationDate (D:20201109105436+01'00')
/CreationDate (D:20201109142208+01'00')
>>
endobj
2 0 obj
@@ -2044,7 +2044,7 @@ trailer
stream
xœ•Y Tו¾÷ß´’ЈE -,BÈìÈ Ø`ŒYmÀ`À€ÁÆ6Æ[/±c'Ncwq6OêIÜÄuO:M—ñIj»iÒæ4 M“œtšæLÛÔ3é“™“&Ažûÿâ$í,:<½ûÞÿþ÷î»Ûw¯5׿%¯Õe˜³i¶}Ó®–ÖÜÕ§ˆþ)µ_mžž`´ÀKÔÞŸÝ|ôUïN<> õþõ»?n¥÷÷ÑúšHØ(øhü4<C3BC>³G&vì>^¢¼Eã7h|||rS?à)ZËÒpÏDÿî)L€ëé}4¶líŸzgU0—ƘG¦&§wÜ:z€,‹ø|jûÐÔŸÚOÐ8Dã@<><6E>uŦoÍÑÎÓìy~†¿€/Á;ð¼Q¸<08>Á8 gà^¸&` ŒÀh‡Vh†<10>Z¨„rBü<>VYLöGþ=þåÏó{ùV^νÍÉÙ{“Me>a>`þ<>y™`º“…7ñ9<Šwà<>tâÛtætêÏà\ƒçà*|ž<>§á
\¸xÎÃWá~¸NÂ1âf?ÌÂ4LOÄ<>ÈK9ña…0¯
úd<EFBFBD>V“”˜ V)r™Às,ƒà¹Bú«³œ8a¯ÝÜîõ\ɨkÛw‡©´Sê*¤.ªÌëŒb<C592>æsS^<5E>þ¢Lž×ÿÂ<C3BF>(ØkŸBÖQki°ŒôFYõ–(Wgï· >
úd<EFBFBD>V“”˜ V)r™Às,ƒà¹Bú«³œ8a¯ÝÜîõ\ɨkÛw‡©´Sê*¤.ªÌëŒb<C592>æsS^<5E>þ¢Lž×ÿÂ<C3BF>(ØkŸBÖQki°ŒôFYõ–(Wgï· >
<EFBFBD>hë°Òç)°¦w®é Îai‰ÊõýQhé°š£|ݲNsÿ`çÚ{¾ý¯æ|ûM:Ûý÷wïü»+yGmõÍ/¼\ýWiJ«3•z=ÏѵI
"“'ê£l]ÿh_¸¯Öë©·DY{ídøº]uöºvzåìµ)Q•xWÚ-¥~4ê·H|GkÌDd´Á<1C>tvFy{-m<>öÚÑ(c¯<63>ªóR¼KýHØëùh<>¿õl-1qE˃Ø[,O1ì‰Z{ûkH`¡¶Žh¨¯S<Ïë¡GuÚ:b·¼Ÿ×sÃ멎êó¼ÿtP{†ü*B¶žNí<YïYò-²m¾@ <1F>åP» §±üç
Z£\C<>hÕ*jä;ê_$PK$ŸJJ¡ö2€†|L»Œõ:šÓE©}<00>LïéÉ·

View File

@@ -1,7 +1,7 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: (MATLAB, The Mathworks, Inc. Version 9.9.0.1467703 \(R2020b\). Operating System: Linux)
%%Title: figs/simscape_model_decoupled_plant_svd.eps
%%CreationDate: 2020-11-09T10:54:33
%%CreationDate: 2020-11-09T14:22:01
%%Pages: (atend)
%%BoundingBox: 2 1 335 294
%%LanguageLevel: 3

View File

@@ -1,7 +1,7 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: (MATLAB, The Mathworks, Inc. Version 9.9.0.1467703 \(R2020b\). Operating System: Linux)
%%Title: figs/simscape_model_gershgorin_radii.eps
%%CreationDate: 2020-11-09T10:54:30
%%CreationDate: 2020-11-09T14:21:55
%%Pages: (atend)
%%BoundingBox: 5 1 311 174
%%LanguageLevel: 3

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 138 KiB

After

Width:  |  Height:  |  Size: 139 KiB

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.6 KiB

After

Width:  |  Height:  |  Size: 3.8 KiB

View File

@@ -1,7 +1,7 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: (MATLAB, The Mathworks, Inc. Version 9.9.0.1467703 \(R2020b\). Operating System: Linux)
%%Title: figs/stewart_platform_simscape_cl_transmissibility.eps
%%CreationDate: 2020-11-09T10:52:45
%%CreationDate: 2020-11-09T14:25:02
%%Pages: (atend)
%%BoundingBox: 1 1 335 299
%%LanguageLevel: 3

View File

@@ -3,7 +3,7 @@
1 0 obj
<<
/Producer (Apache FOP Version 2.4.0-SNAPSHOT: PDFDocumentGraphics2D)
/CreationDate (D:20201109105244+01'00')
/CreationDate (D:20201109142501+01'00')
>>
endobj
2 0 obj
@@ -2111,27 +2111,32 @@ U
Ó:ÄÄ
ûáš(Å…˜uœî­QK<ÁFËx© ¤ñ<C2A4>î}ScéÏJ@üc\º8,‰£€iÓzï"54ă)Ñ+Kް0<C2B0>;;@:3½XâõÁ; 5 rŒÞUëãœjÅzû‡Øé ,ù9Â@x‡˧¬†VÝ®W`Åâ!Šª‡U©Y«šV[éT#r™<}
çÃm©1A0Tm_¥<C2A5>Ã`Ot3CÞ7“”Oýp¸™Ùþˆ¶ÃÍÛâõ7c‰§žÛ?áfc/âõ7ã᎜‡¶ÀÍ2_þfÊÊ6Ë:6ж³Í2óyÿÌ6Ëôòlƒ‰¶²Íø²ú"l3„ÝU×¶Yjb$cÒÊ6Sc.ý±<C3BD>m6ê^l3%vhád¥«,ôd±*TÓ“m8ž«sàÁ6KzŠ_´<5F>mÆÅ­>ÙftföúmEÕéd!K°)âdq¡Ý\Òë€Ôñû@<E280BA>kyFáO)ªŸç†6ãâ¹€h3Ÿˆñm†+Iæû ÍÀiç:Ðf\Ñèvq;Úl˜å½N´Y`®-/íA6£f-C[ÉfØIL1m%qñjÅz<C385>Íp#{PSâƒlFŸ<46>jW°“ͺHuöë<C3B6>lÆ=`ô¦<C3B4>læy¾[ûäA6ãé<C3A3>¬<EFBFBD>î ›Ñ¸%©wèA6ãªê y€Í4]÷¦­`3Ö•™7ü6s˜°Ôíáþ5³ÑÝÁf|¾ÙÏm`3DJxžÁf“%Ë6C‡DÌ¥.´;ØŒKòÁÆœl¦g Õ«tѳu <0C>;Øì2´<C2B4>`³$Ö÷nh ØŒ£#LÑ6°§z]<5D>8¸f‰GK?¶pÍÊk­áëäšÕ2È ;Ù,1Z²®·³Í¨¹â©l¡iÁ¹ºwï|3ÄYGâpÔÜúqFŠUÔÂërF˦<>&-<2D>3Ì$]×8Æ+nm“ngœñá4C/ìŒ3bU}t<>Œ3õDQ÷Ý<C3B7>qÆsÂvÊ÷`œ!Rj£+ìŒ3Ú1—<31> Ú)eüØ8K<¥ªv<C2AA>;âŒCÙá$]­
mAœ¡ûàÞåAM[g´g‰ä-k:g<ÅVÌ$xgœáY
mAœ¡ûàÞåAM[g´g‰ä-k:g<ÅVÌ$xgœáY
£Ïr¸y¬ÅzåŒF.­‡ñS æ,…`qÓŽ9£ß£ùƒ˜³8ò¸×‰9ãÑ“¢¥»æLÎÚŒ+ß0gég1e<31>œÑB(¯r hRµriÀ¨gfÈYä±Àn0¶
r<16>œfÚ <39>ŽdÒ¨ö,¯¡ZÔ±CÎètc{䌫…-ë·CÎ" ƒ»Ú9c”$n¯rYkÔE|ƒœÑ?®ë²Â9Ã+ª
¯rÆÝ ¾ð¢m<C2A2>3†¤)mƒœÅÛ=à€œÑ`¹iÑê9 ô<>Ý!gËÀ9l”³À
w#&í˜3|®Hƒrèà§Õ䌅öÁ¸G;äŒE{.Ú#ß gá:&u0ÎXLæÇmÞgô ¡¨h+ãLp/iaœ-Wl¦-Œ3ÚŽ jÁÎ8£Ý1¯i ã ?Æ:XoÚÂ8 R¹¥ýggœy¶RcŸƒqÆ.o B㌼Ûù:gžV ú¢ìˆ3.n$­.9gÜQtZ<74>y Î<­¤
̲#Îøöv{
;âŒ%Í9ê­ÞgžËý<03>¶!Î<Å4¤…pFëù nÒz±áŒ>8Ùøºy#œ¹Î0ëòx­¢¼6™cbVtºØ gt°qF/Ú gJ¥ÒÅl!œ9$MMÁÂç-—¬™áŒ.Ÿí)l„3©Ÿ´Ôp#œ¡…zæ÷uÎt%ÂØuáŒÝ5*âbœñ<C593>VâNÊø± p&K4ÍvO6Àm3x_ó„pF#šÌ8'™6ι^tÕ»9ÎhR“éb:(fáŒ[áZzbÚD8cõ1S2ÿ@8c®qG$+á,ȹ‚^ óµÎh`ƒˆº\Ô´‰pFdRZܹÎh`ƒ~gȧ•p&
V<11>ŸgA
V<11>ŸgA
‰Yæ#ÚB8 Ÿº·aß·ÎxBœžë}üÜD8wj¼Ù•pFsã´¼vÂ<19>m¤|í„3îøH-Íá,|ꂱ<06>+áŒG™Jðî‰p>ï1nåÑUÂg+AÝøfRöIüÔßLœÔ“êäµò͸#³weáaÆ Wì¦M|3¸<C2AC>î<EFBFBD>oF{yÝ£iߌyhAqýÜÄ7 b!3<02>™oÆ]úĪ÷bÊÄ7 ²
k&
ßLÎ{Ñ‚çä›±²“pFg߯…¤nÚEª\Ȧ¶ÎÈ[qi0OVÀÏâ”áâ²ÎÂìѺÎh5WY¬3àgàŒö<<3C>ÓÐø¹pÆ}J.èzá
8c…h(ÙßpÆ"¥Z¸.cÚ8 ² ,5º¯pd ?D…M®€3ºü_¥¾àL¾\½8^;àL2>
zº—å³T”™4ÑÍè)k<59>nxvÿêå+Ý,|êÁz7ÈgÝ,ÜÀŽ×Ž7»ÏÙ¿vº+†d'!™6ÑÍè”.BåJ7 â•Ñu£wÃ1ÎðÌÐMšèfAÎWŒé•nF/C¾Ev—'ºÍ…¸|¡ÉùJ7#¸]Nuvq Þ,Èïf0ùoFËRެe`Ñ&¼M‰:mà¦lÂñ¶yµÑ͸h<C2B8>‡_ÉJ7“z׿´¬n£
<EFBFBD>î~Ì&º™—Ù<ëÅ<>nÆyŠGtqyÐj¯_;ÝŒ'"Ù'/*ÚD7ó³ÄF7Ó­Ôl)ËB7cDÊÂÜ Š6Ñ͸ <>5s¡ñ ü<>ðYéfžç‰uJ¦Mt3/Ö–#8ZéfR¬nµ8ÜŒ%<1iAáÆ6óâÄÝÕÄn…Ñ÷ }ŸW¸K£âE]áf\_BwíÚ%W¸ùgŠLàfôYKR7cK3'ö<>nF²Æ<>Þèf<uVœ¡fW¸™Ñ0=ž½ÁͼÅä«_;ÜŒ>,èïp3nÈ. ˜4Á͘×\Ǻ7¸÷¼Tؘ6ÁͼØ<gõÇÜàf^Ø:Ñö÷V¸™—9?ªú7ó²¶:6_V¸Ï”s3ÚØf^ÈÞ–&W¶϶Qv»±Í<<3C>*<2A>
Ú×-l3Φ¸C`Å™mæ?• LšÐf\Ý š}½v´<19>üúpnÝÐfôÑ"Ëe ÚÌ‹•/MßD[Ðf¶ò/6¡ÍmKýìÀžMh³û<äk#ÉYÚk<C39A>q%yV&9½ôÚÉftôêr¬ùµƒÍ¼œsb6ã«<C3A3>»¥L™lÆ\œõ±šã¬`3ž”¾œÌ6°™Ø‡±<)˜6<CB9C>ÍhX…g¬• ØŒµÛÌ^µk­`3Ï}u7|í`3(r»Z©R ØLÜÊXüâMÈfÔ˜y©]ÙJ6ã™ ñh~ ÉòŸí†n`3:24ݼ~í`3jž!ôø¹ lFã´$†à¢-`3Oa.omQ ÉVà6° ÿ'ÒÂ5£„A¥þ*Î\3¯¾v®5Ö{è<>-X3«ñ𾺠­X3j¤ä¡MX3/•'½QkÁš1ÔÆS6"ÁŠ5óò2v£Ä-T3‰ÐC4Ç•jFͺõk§šQc] Z@®T3Ñ.˜ÎJ5
·ÅúB5<13>/§7í¢šIK´FýµcÍÄ-S€}Û5£v<C2A3>íØ°fþ†î¼v¬o4¦2ã“­X³í-X3qUàú<C3A0>¢œ®ßÊiæšQ⾟šV¯\3¾~²¢=Øe׌ZÏE "+ÖŒ/;RÀiÖŒ(^ŠkÆŽ'¶ŽC°fÒaõ(ïkÇš±Ÿ«—¬h ÖŒãCÁ“T_þkÆq¥¨?èkÇšq¨*´Óß¹`ÍdˆëÃò~ÅšqhdÒòlšq¸å©_µC]±f^<16>»Æ[ÖŒÃ;W¥ŠIÕŒó½Pµ+¬T3N3WT¸aÍ8=ñ|Jȳ kæÅ„£å><3E>g7ÖŒó¤¿vª‡W.ÝÖª§åÞݬ-T3Nõ-ëú•jÆiÕÌ*­À<C2AD>Ÿ¨fþFa½vªML/dÄ5ãŽ+«íž,P3FbbS8ÀeÔÌKÝo…iÔŒQ!rÄb@­jæ…šE$®h ÔŒ¦<E28093>e…Þ´ jF3;TWÖjÆ¥Aº<41>_x²jFsULáæMºRÍÑë6§iÕŒYS.5_©f^r%çŒç¶`ͼTo²k&mÆ`a ®´ªùÁyZ±fŒrÅcüÜ<C3BC>5“t‰õ <20>6a͈Öá¹ kæŒ5cJÌ8Ôk Ö,°ÄˆõC°fÌÜ<C38C>¼õÚ±f¬ŠG&êž°f\{ ŸŽ9+ÖŒKÜ@žMX3ÌpyØ(w ÖLVkšù^mX3ÖŸ3iP‡ØkÆ…(:)wnášqS<5õë®×Ù,}yí\3æ¡\—°pÍ<C38D>0SU?õ•kFspÜ¥¦#ÄÊ5“ÅU=ùøÚ¹f²ÐKú߀—Ý\³pW¸½v®™xútŸÜÐ&®™¸æ_“<5F>k&1#ÇÁ.[¸JZôqpÍÒfø¼sÍ<Ï.—Á.[°f<È0p ׌u;V8ypÍX=_ã¥-\³H·>#Ðn\3®¹j-Ù¸f,)Z1qrÍX_¯Ÿ[ÀfÜëkšÈ`3ÜysL[ÀfÈ\¨v£7°‹•«¡}v°RÌ4ÑŽxÊxß×,qÉ·Øñ®<C3B1>k˜ ¶n@ºkFÞYŠ
]±f<£<>§ñˆ5#É´÷C°f<§ŸÔMÿµcÍä9â«Ãà“ÝX³$,_óKÙ°f<ZÎuµÇ^±fIöÍïeÚ%nb¨ËkÇšÑUžóÃ…<°fY¨vÿÎ kFK_>p%U-T3úrÞèk3Ö, ÿ'˜÷Š5ËRД)¿a͘þûËyzÅšeNëÞÛkÇšåO-îUÂÁŠ5£¹p+ÖLÜÕÃnX3Y
/³yíX3<58>tZWÖà5#«·+Ù3_°fôƒìb<C3AC> 0íÆšq<>7ˆ
kVxV<EFBFBD>GN´ ÖŒ&¶ÈüÚ±fìŸ<Ì fð+ÖŒö“É™aÒ†5ã#yÒV­X3öóžèd¿bÍXA¯4|ÁšÉáju<6A>~íX3´ ÅW4´‰kÆ`6ñ|²‰kF«fn&
äÙ„5cÉRÅ6<C385>gÖ¬ÎfÐÖŒ‡<nðn^°f4ÑäÙ6´kƹ}FOËmX³öi¢X3¡Zq³²™6aÍäX¾+æ´ž¬q,æjC¸f ô˜ÊkÇšÑʉ·ZÀ•kÖùê7[<Z¹f<ŠR¬hÚ‰GM—
׎5£C5­ذfòŒyhÐ6a͸îÄÓÈ´k&ÖQú(E±fÄrÑ8hª³`ÍX'À*s¬Y¬Á±äD´ÆwZ%³r͈óãäkåš±¼@J Ý€—]\³"Yø°=^¹f…n¨…ãÇn®Yá«èõÄôkãšñþÅsõƒyvsÍŠ •kFz#wýºkF÷«Ì0í¯ Ö¬Èª6k<36>ƒiÖŒ'ši«î<C2AB>Ñ5cÍŠ,x³xth7Ö¬pQ#¡î<C2A1>¯X³"ÇæxREQU3Ö¬ÈCéÝš9cÍX ᜆ–¯
‰Yæ#ÚB8 Ÿº·aß·ÎxBœžë}üÜD8wj¼Ù•pFsã´¼vÂ<19>m¤|í„3îøH-Íá,|ꂱ<06>+áŒG™Jðî‰p>ï1nåÑUÂg+AÝøfRöIüÔßLœÔ“êäµò͸#³weáaÆ Wì¦M|3¸<C2AC>î<EFBFBD>oF{yÝ£iߌyhAqýÜÄ7 b!3<02>™oÆ]úĪ÷bÊÄ7 ²
k&
ßLÎ{Ñ‚çä›±²“pFg߯…¤nÚEª\Ȧ¶ÎÈ[qi0OVÀÏâ”áâ²ÎÂìѺÎh5WY¬3àgàŒö<<3C>ÓÐø¹pÆ}J.èzá
8c…h(ÙßpÆ"¥Z¸.cÚ8 ² ,5º¯pd ?D…M®€3ºü_¥¾àL¾\½8^;àL2>
zº—å³T”™4ÑÍè)k<59>nxvÿêå+Ý,|êÁz7ÈgÝ,ÜÀŽ×Ž7»ÏÙ¿vº+†d'!™6ÑÍè”.BåJ7 â•Ñu£wÃ1ÎðÌÐMšèfAÎWŒé•nF/C¾Ev—'ºÍ…¸|¡ÉùJ7#¸]Nuvq Þ,Èïf0ùoFËRެe`Ñ&¼M‰:mà¦lÂñ¶yµÑ͸h<C2B8>‡_ÉJ7“z׿´¬n£
<EFBFBD>î~Ì&º™—Ù<ëÅ<>nÆyŠGtqyÐj¯_;ÝŒ'"Ù'/*ÚD7ó³ÄF7Ó­Ôl)ËB7cDÊÂÜ Š6Ñ͸ <>5s¡ñ ü<>ðYéfžç‰uJ¦Mt3/Ö–#8ZéfR¬nµ8ÜŒ%<1iAáÆ6óâÄÝÕÄn…Ñ÷ }ŸW¸K£âE]áf\_BwíÚ%W¸ùgŠLàfôYKR7cK3'ö<>nF²Æ<>Þèf<uVœ¡fW¸™Ñ0=ž½ÁͼÅä«_;ÜŒ>,èïp3nÈ. ˜4Á͘×\Ǻ7¸÷¼Tؘ6ÁͼØ<gõÇÜàf^Ø:Ñö÷V¸™—9?ªú7ó²¶:6_V¸Ï”s3ÚØf^ÈÞ–&W¶϶Qv»±Í<<3C>*<2A>
Ú×-l3Φ¸C`Å™mæ?• LšÐf\Ý š}½v´<19>üúpnÝÐfôÑ"Ëe ÚÌ‹•/MßD[Ðf¶ò/6¡ÍmKýìÀžMh³û<äk#ÉYÚk<C39A>q%yV&9½ôÚÉftôêr¬ùµƒÍ¼œsb6ã«<C3A3>»¥L™lÆ\œõ±šã¬`3ž”¾œÌ6°™Ø‡±<)˜6<CB9C>ÍhX…g¬• ØŒµÛÌ^µk­`3Ï}u7|í`3(r»Z©R ØLÜÊXüâMÈfÔ˜y©]ÙJ6ã™ ñh~ ÉòŸí†n`3:24ݼ~í`3jž!ôø¹ lFã´$†à¢-`3Oa.omQ ÉVà6° ÿ'ÒÂ5£„A¥þ*Î\3¯¾v®5Ö{è<>-X3«ñ𾺠­X3j¤ä¡MX3/•'½QkÁš1ÔÆS6"ÁŠ5óò2v£Ä-T3‰ÐC4Ç•jFͺõk§šQc] Z@®T3Ñ.˜ÎJ5
·ÅúB5<13>/§7í¢šIK´FýµcÍÄ-S€}Û5£v<C2A3>íØ°fþ†î¼v¬o4¦2ã“­X³í-X3qUàú<C3A0>¢œ®ßÊiæšQ⾟šV¯\3¾~²¢=Øe׌ZÏE "+ÖŒ/;RÀiÖŒ(^ŠkÆŽ'¶ŽC°fÒaõ(ïkÇš±Ÿ«—¬h ÖŒãCÁ“T_þkÆq¥¨?èkÇšq¨*´Óß¹`ÍdˆëÃò~ÅšqhdÒòlšq¸å©_µC]±f^<16>»Æ[ÖŒÃ;W¥ŠIÕŒó½Pµ+¬T3N3WT¸aÍ8=ñ|Jȳ kæÅ„£å><3E>g7ÖŒó¤¿vª‡W.ÝÖª§åÞݬ-T3Nõ-ëú•jÆiÕÌ*­À<C2AD>Ÿ¨fþFa½vªML/dÄ5ãŽ+«íž,P3FbbS8ÀeÔÌKÝo…iÔŒQ!rÄb@­jæ…šE$®h ÔŒ¦<E28093>e…Þ´ jF3;TWÖjÆ¥Aº<41>_x²jFsULáæMºRÍÑë6§iÕŒYS.5_©f^r%çŒç¶`ͼTo²k&mÆ`a ®´ªùÁyZ±fŒrÅcüÜ<C3BC>5“t‰õ <20>6a͈Öá¹ kæŒ5cJÌ8Ôk Ö,°ÄˆõC°fÌÜ<C38C>¼õÚ±f¬ŠG&êž°f\{ ŸŽ9+ÖŒKÜ@žMX3ÌpyØ(w ÖLVkšù^mX3ÖŸ3iP‡ØkÆ…(:)wnášqS<5õë®×Ù,}yí\3æ¡\—°pÍ<C38D>0SU?õ•kFspÜ¥¦#ÄÊ5“ÅU=ùøÚ¹f²ÐKú߀—Ý\³pW¸½v®™xútŸÜÐ&®™¸æ_“<5F>k&1#ÇÁ.[¸JZôqpÍÒfø¼sÍ<Ï.—Á.[°f<È0p ׌u;V8ypÍX=_ã¥-\³H·>#Ðn\3®¹j-Ù¸f,)Z1qrÍX_¯Ÿ[ÀfÜëkšÈ`3ÜysL[ÀfÈ\¨v£7°‹•«¡}v°RÌ4ÑŽxÊxß×,qÉ·Øñ®<C3B1>k˜ ¶n@ºkFÞYŠ
]±f<£<>§ñˆ5#É´÷C°f<§ŸÔMÿµcÍä9â«Ãà“ÝX³$,_óKÙ°f<ZÎuµÇ^±fIöÍïeÚ%nb¨ËkÇšÑUžóÃ…<°fY¨vÿÎ kFK_>p%U-T3úrÞèk3Ö, ÿ'˜÷Š5ËRД)¿a͘þûËyzÅšeNëÞÛkÇšåO-îUÂÁŠ5£¹p+ÖLÜÕÃnX3Y
/³yíX3<58>tZWÖà5#«·+Ù3_°fôƒìb<C3AC> 0íÆšq<>7ˆ
kVxV<EFBFBD>GN´ ÖŒ&¶ÈüÚ±fìŸ<Ì fð+ÖŒö“É™aÒ†5ã#yÒV­X3öóžèd¿bÍXA¯4|ÁšÉáju<6A>~íX3´ ÅW4´‰kÆ`6ñ|²‰kF«fn&
äÙ„5cÉRÅ6<C385>gÖ¬ÎfÐÖŒ‡<nðn^°f4ÑäÙ6´kƹ}FOËmX³öi¢X3¡Zq³²™6aÍäX¾+æ´ž¬q,æjC¸f ô˜ÊkÇšÑʉ·ZÀ•kÖùê7[<Z¹f<ŠR¬hÚ‰GM—
׎5£C5­ذfòŒyhÐ6a͸îÄÓÈ´k&ÖQú(E±fÄrÑ8hª³`ÍX'À*s¬Y¬Á±äD´ÆwZ%³r͈óãäkåš±¼@J Ý€—]\³"Yø°=^¹f…n¨…ãÇn®Yá«èõÄôkãšñþÅsõƒyvsÍŠ •kFz#wýºkF÷«Ì0í¯ Ö¬Èª6k<36>ƒiÖŒ'ši«î<C2AB>Ñ5cÍŠ,x³xth7Ö¬pQ#¡î<C2A1>¯X³"ÇæxREQU3Ö¬ÈCéÝš9cÍX ᜆ–¯
kV«WF¸`ÍŠóÐㄯkFŽžž,˽6¬YëJ\¬Æ Ö¬ÐµŠ“»i7ÖLj.BÓEî•jVäìpó_©f,ÇÀ»žB\ª‰øðT“n¬­½,QmÆš©„êÑVm¬YáªHˆÔkÚñ«Ûå¸bÍèV™._ȳk&%Ä»÷<C2BB><»±fEæ^;F¼RÍhfæ¦ÝT³ÂÚ*#Òe¥…jVd¡%ZßZ f, Ap„^¨<>n†šÑcŒöß¾ 톚±hDÔŸP3^*"ój°ÄjFÿ1vÊnÊ<6E><20>&!<21>H3ž™/ZñÚˆf¬4)bè}ÍŠœq²$üÚˆf<jÏ£G¶ºÍŠ«³/tÍxóp`gš±D¥Ø¾ÉkšñÆ¢W9ÃqÎ@3š<33>Uòu¢)7ÏŒÕ+²ä§ýá™ñK³ìæ™Ñ­k!½i7ÏŒ•-Žs¡Î# ÏŒDŽŽÆ¡Ý<3ñHãB¼±Õfž™ø\Å3 ÏŒî´ñbÝ<3ú§Ù×׆3£û'Z-Z[qfu]<5D>Ypf,aiA¹´gÆbþ=Ÿ³âÌø<C38C>C»8a ÎŒÎk‰×àwÎŒnE7ûDšqf•»•dY™rÃ̪øZKFlÚ
3c…M )½&9 ÌŒï<06>ØÄs<C384>™‰]9óú} Ì ×V2ôÚ`fUݸC¸ˆeÌŒ¶ Mºaf,Îárs6<73>Ö 8©íÐk£™ñ•b—Ú…¬43î°ìÒkÖ»ÐÌøº±0ÍVÔšm6ñp¬i7ÍŒ&p,±5<C2B1>gƪžìÕ°üµáÌø26/0¦Ý@³*\¨ª¦Ý@3©ø‰ã8Ã
Z;\Ú
ŠY%Ù;¶Íh:‘Ü(ê_<C3AA>fô®\ïT¸î4«²6ÐŒP³Íh-‡×Û,~V  ј^ûÐ4«R†§â¯
hÆwœÜñ<EFBFBD>´ìš±<C5A1>ˆîí!,<³*®øh•]úÌ3ãëO¿†¤[ ÏŒ¯?½´lÂXxf´¤£¿ŒÖµ®<3hÅÔåµñÌØ5H"
uvãÌèV7“׆3c±jì÷gÖ¤FÓÙ׆3£'k j“þÚpfMÊÌ Ù¸ÀÌXš4<—^ÌŒ¥IDÿ¨kË
3c‡ÊIÍg_ͬ )v˜¬4³& ìÑ|þWœY“%3_Ô¤rÅ™±³¡“äªYÉŒ3£ýËäš 7ÌŒMz~â„™±VgE+ËŒ<C38B>STuüØÍ2£1^«nÚÍ2k2qúÕß9³ÌZÛ5óë_YfMͺ²­ëÍ03Z—d|y4úÛL3£gž»LuVš+¡è_i ø ͬñð—qü@Ý4³F+e¼SÕø|3ÎLüô¬üµá̤JJ0 zé3ÏŒeRÜívÆÒ»yfìÕj«:~êæ™58všêµÍXA…éµzuÐ[ˆ bqíõc7ÐŒ=ž­â²¶àÌÔ•½ßX`3ÎŒ¥UUc/Ónœk«ÂUk¹àÌ8 Ctfò¼àÌ8ðô@¯'ÎŒþ|\«5¸Æ3cÙF—`þ άKµú‰¾6œÇ :#9õR[pf'h¨c ÎL¼û&:ÜŒ3“š¬Æí]½Ñ3ÎŒ£Æ+¯ÝWœ™Œ"xm³úý.83û5õ,mÆ™ÑØ<C391>ÛžÁîÙÌ3ër<C3AB>ÚeƒZ,<3Ž0ä ÜÌ3ã~h7ÏŒ¦œ «º;.<3šþÓ£Ë[+ϬÓz#B4ŒÝÌ3ã¸ÁçOžG ¾Ñj™¶ò̺˜lÊ,`ÚÍ3£%``¨®–} ÏŒ>ÂêpM»yf<1C>´™9ÎÊ3ãèDâIÓg»ðÌèX$u¬³gF¿@´¤¸YvóÌhÔÓÔ$дäiCoÚÍ3ãÐÅ3Tj…<ã̺¬µ:¡štãÌh%H3?ãU,83Zÿ4Öð¦gÆA- Ç)švó̺lÂsAw°Înžm¹ßkî• ÏŒ>ƒôÂ8¨e7ÐŒvB]Ïë6ˆf, ,¿òö€&¢5=µ«VÏ3ÑLl™IÊÐwzš±ÌÉ8˜eÏLj˸m¦Öˆ3ÎL¼œÂE7~ì™
=×€ô~M83ˆ­kµßŒ3£Ä
@@ -2156,78 +2161,85 @@ v~
8«R±¥ÉÍ8ãLÍ”"õ¡Ý€3ÎÔÎ*½vÀgj|WTïß•pÆ¢°"eσ~vÎXøˆl§ë²ÙJ8£ƒ”"…æ5Î8{Ö.ù“p&³±”Ç<>qÖÄ:%òÖL8“âÆ+QX g,nÄØo<6F>+âLl¢XÅòÀ8kb„¨Ü;ãLÐÒô(Ò<>8kÂ^æƒ+âŒVP<Beh·™pÆYUSÇ“pÆY5]YÞŠ8“Ev £Ú͈3­€ÒÒú
qF»§"ÆCécGœ ¼ JâcGœ±
·ºl±"Κ¬é‹}ñÇŽ8ãì8VkxzCëVÄY“ãûÃbcEœ±î¨ÝÜ™q&ÕEˆä<CB86>à¶ ÎXMˆ>kŽï+âŒîL…öÎJñYgœåÆ<C3A5>¤qÆR ÷Ä<C3B7>p&þKxOœA¹fÀËiʪ§ÖWÀ zÐ'é‚ü±κ$öD9(@k&œ DÊKUþÇN8c]ÎÌ}0ƒ5cñ,ˆ3ø #KÇœq&nIÁÓ}EœqÚ±z<C2B1><7A>qÆ: Ì„¹~ìˆ3N-<4¬éqÆB½ŠÛ”»µ Î8{0SlÅìˆ3-iqÝÅ<C39D>gt7ªºËó±#Î:7]¹ìÊÇÎ8£ƒú.…<><E280A6>qƺ:w“gÆ™ÔÕéÝTmbœE|çTíËà‚Cú؈…Lê:°0ÎXëÆ¥«ªh­qF‰ÎM]­ÐÄËÙ1·?6Ä™”º©ùåÀŸ]ˆ³(eb7t Τœ-ºaí¾ ÎXøÄ6´ q¦%k­Ù<C2AD>µqÆÒ³ LIÕ&Ä™B²šóÙX^âŒåe4ÜeÝùdž8£Öhà
8ãį}MQ^àŒó~ç<1A>Îl àŒ•€jj`ÒÍ7+],ϬNk届Ôx»€o&E”v2àµáÍ*SÒëdúŠ7«O†<4F>°]ðf¬Ì³Ú¦]x3ÚQMÃû7«²Ã\CqC»ñf,±Ë7øráq~÷º "ÚÌ7“ù=‰‰i7àŒµržÞlyüÜ
8ãü^yìLjc3àŒqñ:±ºÎ¤Xò².^g,zãÞeobvΪ¥+à¬Ê¹Ÿá ±Î8‰“¦å+àŒ“¸NS+ߌs¸lk¸pÆ"´Ä3ŠýXˆÔ[V>vÀ Ínºí
8«R±¥ÉÍ8ãLÍ”"õ¡Ý€3ÎÔÎ*½vÀgj|WTïß•pÆ¢°"eσ~vÎXøˆl§ë²ÙJ8£ƒ”"…æ5Î8{Ö.ù“p&³±”Ç<>qÖÄ:%òÖL8“âÆ+QX g,nÄØo<6F>+âLl¢XÅòÀ8kb„¨Ü;ãLÐÒô(Ò<>8kÂ^æƒ+âŒVP<Beh·™pÆYUSÇ“pÆY5]YÞŠ8“Ev £Ú͈3­€ÒÒú
qF»§"ÆCécGœ ¼ JâcGœ±
·ºl±"Κ¬é‹}ñÇŽ8ãì8VkxzCëVÄY“ãûÃbcEœ±î¨ÝÜ™q&ÕEˆä<CB86>à¶ ÎXMˆ>kŽï+âŒîL…öÎJñYgœåÆ<C3A5>¤qÆR ÷Ä<C3B7>p&þKxOœA¹fÀËiʪ§ÖWÀ zÐ'é‚ü±κ$öD9(@k&œ DÊKUþÇN8c]ÎÌ}0ƒ5cñ,ˆ3ø #KÇœq&nIÁÓ}EœqÚ±z<C2B1><7A>qÆ: Ì„¹~ìˆ3N-<4¬éqÆB½ŠÛ”»µ Î8{0SlÅìˆ3-iqÝÅ<C39D>gt7ªºËó±#Î:7]¹ìÊÇÎ8£ƒú.…<><E280A6>qƺ:w“gÆ™ÔÕéÝTmbœE|çTíËà‚Cú؈…Lê:°0ÎXëÆ¥«ªh­qF‰ÎM]­ÐÄËÙ1·?6Ä™”º©ùåÀŸ]ˆ³(eb7t Τœ-ºaí¾ ÎXøÄ6´ q¦%k­Ù<C2AD>µqÆÒ³ LIÕ&Ä™B²šóÙX^âŒåe4ÜeÝùdž8£Öhà
©6!Τ¼Œy…5e"œ @K¶kÀ ÁX;ú 8“"±hEË+ÞŒž;õÚ2Xùf4Ö¡Fm'ߌŒ¢Ì§l ²™oæõˆÍZøfä<66>§$+;ߌ£L'ÊI'í…o&Ô­«¤jåy¡\<5C>l{å±öjÜó<C39C>o&` GkôÁE»ùft¬Á%äA¼ùfÜ'/v4ýXøf²Îu”0°h7ßL(>è”Îpj ßL Ûñ­yÒbʃoF&þM¡} ߌÕKx…Ú㮀3ë *iãçnÀ™l3¨Tä'
ñJœ~8ãúì'¹DЙx<E284A2>Ä™÷»9gaãœm˜3¡9ý æ,Èè‰sæÍûÈ93LJGΙ¥Ù<C2A5>œ3§aß#çÌy9gʬøÿ-å¬éã#åÌ¢äGÊYNÆ®z œEs~¢œ
³ÓÊ™TVvPÎäÌërÆýý<>'åÌʆ)g¶nôD9+ƒFô@9Äm§œÑ³.š¶SÎÈV×ßù€9£s†78©÷å<C3B7>9»ü@0g%èYš'Ì™nͽ1gÞxÒO˜3žÚsV\º´sf¦WOœ³^tZ}âœÑ/!¶sΤÔO´“sFjÅ`™íœ3RmŠi;çl?qÎðPÔˆ÷äœõhÜšÎYìºXóÄ9kjÃò„9£Ït4mçœe5bzœu:3vbÎçŸ0g9_ÒN9kn¾ž(gÓ4ÓvÊ™za¿)grLB´“r<52>r&gmLÛ)gâ
!ÚI9ÓcQ¯GÊY”3¾Æzí'åŒ6¹É´s&=Ý´sFÇå<C387>+Û0gÉÛ.ËæÌ <Ÿ(gb'öz„œÅ<C593> :!gH%kÚN93oìƒqÆí]§V¯'ãìrC?ÒÇó9cÅD5m<35>œ©f2i‡œe1 z=BÎ.oùrÌ,ô<>q†þïìëNÆY¢ i;ãŒö¼i;äŒ>¬ƒH¶AÎêðÍ~€œi÷z„œ•áè~BÎðþVô<1D>3zÕ?<3F>œqno9«ö:œŒ³ë„ÛÁ8“:˜²3Îr5”áÉ8Ë|”Ù´<C399>q¦ed¦íŒ3^Π•mŒ³ÄêAoÚÊ8#QD Å(g⪠ÚI9£Ia3m§œÙ1Ö'È™Ò$^<0F>³ÂuxSVÄYá\èMÚg<+æÆlCœ59<lÚ†8“ú<oÚ†8ãÁ^}×.@×NÄYäþõŸÎòð=9gL
tü:g,JÒÆ7óZpúzâñX\ÚÆ7ãnh6iÃ!a5Úâ<C39A>7ãìÕãŸàͲÚ<C2B2>½N¼Wv 6tâÍ8i¹?!œÑØ4™´ÎŒqòzœ]Ÿ€³@¬Æ€Ÿm„3ÉåMZgÉlA_€³$´l“6ÀYܽoÔˆáõ„7#'Óý Þ¬ƒ¬¼íkóÀ”mx³ÛdüÄa”ö¢x³À-_¥`x3.Ž÷<C5BD>>ÛøfèüEƒë“oæ…à"ÚÁ7KWPž¾™”Ç .ÚÆ7C00¨[ߌÅzF;øf,ñÑñæœÑ¡Fƒù|ÎähÁ€˜-€3OSP]Þå_WÀY<C380>ÀY*†¥:ùft|©Â7£»Ž'ßL(zÓV¾™˜¶ñÍdïXµƒo<16>¬€¼øfÉu#*ž|³Ä§Â7£ÕžäÀY¡UB4mœæ÷z[À™”Ë ˆÙ8«£Ì÷pFCCÂí€31ƒ &m€3:cÆ?œ‰_á•m€³ÊêΡm€3Œë:øf<…P†¶ñÍXy¨”Ý“o²•ÿ<ðÍ<C3B0>ÛÂÃÁ7Ë—«þÉ7£ý“­ãœ|³Î3˜Í´<C38D>oÖR4^î 8»É-'à,{7nç8Ó¢SÑvÀYå<02>ÆM'à¬_±Ñ 8CÂÒŸ Îx?Û3â,葵×áŒÆ\šõž„3Û~=Îâ
úÚ g—ÄàŒ¨oÒÆ7»aºßÌ¢ Ñ6¾C<>q¾Õ^rðͺ“
)Ñv¾™1iå<E280BA>ýøºƒoÆÿÐMߌîž}0Ì6¾щa°Ï6¾™yÕ½øfxŸÍžî<C5BE>ov§µ;ߌ[ºíúÀ7£ÙÚÅ0[ùfÑ«<C391>Ýë‰oFÿ8f ßL¢y¯qÂÉ7e¹'Þ¬úÁÑ<éfÃdåà%@iÖtðÍè©à/mãµbèøoÖÇžÿÝÌ\ ^t3Úë[¾xâÍXÖ§“Ó‰7Ão×ó5'ÞŒ<C39E>ݬdó<ñfw<66>ó‰7ãŠa´fnx³š<ýÀÑn _P´oÆWÛý Ý )ˆ­t31-Ô±æ q»È¥?¡‰EÃ3ÞlâŸîx3Å)ãëÀ›±º^ûñ<C3BB>7cM“­¸x³ÂéG‡ÙoV£­-t3ž+ði<C3B0>ÏVº™xhDÒÍì9¾Nºž¸÷eüØJ7+Ä »?¡q­×€iÝì*>éfžXe Ì6º×ÿ o¦>ò¦­|3µ-Smç±t.ôÙÊ7£7™VŽœ|3dÿV?öÀ7«|½¨lå<C3A5>M×ߌ+ÈÍœ€³FÏoý<6F>;àŒæa@Ì6ÀÙµ­zÎ
}[Æ+½Κ9r¿žg¤Lj<4C>=gŒÃºÎ×'áLέ6ÓVÂmõ|Ñá WÞý •­„3ŽÎÈháÌ^«×ጌåB•mˆ³~a—ÄYdD¯÷ì@œÝÆåâŒ{"1ë{0Θû}F'äL >õ~î<>³1£¾ gYñC[!g\¾ëv
䌮:e<1C>3ohÉø9cnÖ-ÎÙ)g]ýÁ_O<5F>3Þ#àÈúe¶…öƒrÆz[Ð<(gÌ;Þm¥œqFoö®ì”³@×<>4h+åŒGŒk´…rÆRFV@‰¶SÎ:ãŽ8Hf+åL
³i+å ³šÓ<1D>³ÂÅ0´
rÖFŽpBÎXÔ>°i+âLÜ¡”#µ#Îð¾&†¶!ÎxŒ·mEœñ~…2Pe+âŒé²ysžˆ3æ#jô·#Îp“ø½¾žg´lˆƒc¶2κ¢¸R ĘÁ´rvG<0F>³¦SËërV³âÉ^<0F>3zkivqRÎêXB}€œaä5Ëìç+Ó6È™íæ½ž gUXÓ6Èúgé޶@ÎÁúB<1C>³žiNlÚ
9«²†õ 9cùà@ó<1D>3[hy=AÎÄÄaüÜ
¸ë •m<EFBFBD>3…ð˜¶@κ¸?ý äŒË5F„Ú g²Ä¢À´<C380>r†èÜleOÊYÖ£þ¯'ÊY”íIÓVÊ™x¹«æI9ëc—û<E28094>rÆ%BµŽ=)gt Æv@ÎÚe€BκsºBÎXÙü™m<E284A2>3\Ÿ™(?@Κ1l!g^ÓÍÊ™º%š¶SÎ|5ü“ræƒ3xÆI9+¤ÚJ9Z¡ûzœ9))0mÜÉr^2mÜѺEGÀsƱDG²­<>æ £œNÌ™rÕL[8g´es—´tqèäœĤ/üÁ9ÃP2ìZOΙ—•ÑvÎ&âÐËÐ6ÎYàJà࣭œ³`©ÃëäœÑ7ñjçœi-h4måœyz
”ÙŠ93«ÓVÌFàÔ3÷ÀœÑ©Ê¨Iæ,ê`iÚŠ9uÒ¯sænkÒsF «<¤•rV…<h å ]"gc¸í”³Äõ4´•rFÞT0ÙN9ãA2Ê™žª´•ræ¸ ˜MZ!gI‚š¶@Îh„Ó«1ÜvÈwÅÔæ€œô¤e…'äŒV ÝØh;äŒÇŒØz@Î<Ïò•¡­<C2A1>3A<33>è•<1F>3NCÙ(`;äŒ^ØÊ8g˜/hx#ÚÆ8#æ èÔ|0ÎpW“fª'ãl¢”Œ3ÚzpeœÉÖ·ç½i+ã -S
Ñ6Æ3ƒÔý3ä,±â@‡€r&¼píäÌŽq¶BÎ"Y¼†[!g´ds.
<EFBFBD>Ù
9Ë·+ø9£[<5B>Í;䌾R݆Žr†Ò?lgœîi¦mcœaÔJƒßt0ΊÏ#l…œÅá<C385> ÎxöT׸Ä™£¹¶ñEƽÐÜ3â,¨u°h;⌶ԆÙÜgQ
7‡¶ ÎX¡àœ±¢6ÄYâauª>g$gDˆ3j­ò<C2AD>8ãÁ)ËÀÄY·´ÄYêŽSgØqF>…0ˆ3îÔYv±#ΘÓû<>;âÌóvˆmGœqyÈ.|'œÍ¸¸<C2B8>pvÚ<C39A>„3ô«ÄRlÓÂY¥û”å@;áŒn÷U«76™˜€³š.™6Îx·‡>LZg¾ßVè;á,мÒånÚB8cqVÒ°ö œ1.wö|vÂß!£³„3Útêø|΢Ú}ˆ¶Î
«$4Œx<C592>€34£©ð³p6GíàL­<4C>Ý€˜-€³¨f£É´pF÷s¯žó;àŒKTÞlàwÂK7½ž©:g„„ÒÑ]´…pÆÙ[ÝL[ gÃ_ûuÎèžá ´ÎhãcŰ'áLñÞ´…p¦'J/ŠÙB8«äÝéªÒA8£Ýº¬
¿NÄ™¢áqÆØ7µ d6#Î+Ô
æ`œ±Œ±=#ÎÔZ阭ˆ33À3mAœÕê<C395>¼µ βx²Ñàv ÊĆª: ä;âŒÆÑ¬ 6mAœñ U°
q¦Vöönˆ³ÊJ­°ÛgtÕ;ጕ°f˜{Î|Õí‘× 8ct@—hàŒGmO÷œMv0à ³H죕pÆr††‡ <E280A1>r'œÙ¦÷ÐfÂë<»E;áŒÎäÞx²;ᬸëàËA8£=…To€3±T¸ s;àŒ§sC°+Øg¤ŒÛŠàÎ7KV kÚÌ7c¡Ÿ¼l¯“oF¿ëE¹—N
޾K#ìê8³£özuàŒî(½õA1[g…CGÕ<>p†©X¨²…pFžÞ.ŒÙB8 \²Íψ³x;Óˆ³Ìj!-ü:gÌöÇjáŠ8ËrDÁžùF8ãCà6¯i ጥŸÍr±<72>pFØ,P™¶ ÎÊ}ðð@œÑ,ë©òÁØtlßg<>µWÉp^âŒ{ƒIÝÈÙÕè× 9ÓÊÒ‘*µ†¯“rfë·C[(g\oLÝ(TåŒüYW|<7C>˜3oöMƒsæè3® æŒÅOÕè׿Œ@C î˜3*!\¸²sÆ¥§`ÑØŽ9ãþbÔ³“æŒë°ÙVÚvÌÙtòåÀœU݇¦M˜3I/ò†9C;xyѤsfPÏ`ÚÂ9Ë—ç<>ÄÌ`hæŒ^=Ö^'æ,LôÔsÆq$ØêŽ9+|›ö½
-gÉÀŽ9s¤g¤:´tÆ“Ì7M[@g™«AIùu;èL†4×Ìl<02>ÑiyµÝtF@A·Iv<07>q†+ѨV+èŒ.¿ÙÐk<03>ÑÔ¢êÁøtÆá¨kÁì:c=Õi 3ô»fõ˜èL\¥‚ŽÅ+èLŽ-ó„΀™- 3!ƒÙµqÎxt·)¢åàœÑ_#håœÑ€±^ îÎ9ó\úÊÆ†Û8g4¤ÊÉš¹qÎhÎ ½sÎÚ8Ãü:9g¬ç‹ê;çŒN fÍupβœFÑ7w眩3R ´…sÆ,?ªKüÁ9 <»a«t猦êjˆu€Îj¹vƒÎhLWyÌl<01>ñ× Ô:ã(¢.sï 3t<33>¨g66몯 ÇbÙã:£ÿ,<2C>Èš¶Î¦ñc<07>!H<>¶•rpΜLIÁ´…sÆNR~r<>Îb7ÿÉ×I:ãZˆá(wÐ<19>,Mi'èì®;@gqJÐ]l \¸ƒÎXzm âÎ9£™„
d;錭ÎÖÛÒ­Û»D<7F>q1ÞK¦­¨3„¦cyG<79>IEsIJ•tÆc”\í¤3ž·3ØéŒÓµbÙB:ã=î†5>Hg¬áWžá:cPŒ+y€Îõ[¥Ý:c:к=ºtÆ]e-Z>@gMíó³i3èŒæÎplèŒÈ©”
εƒÎèõ¦GÐ ©¹`eÚJ:jÏÿ:QgQ¿<™¶¢ÎRºŒž~´u†·É5Ãoí¨3OS¤2~lE<6C>ufmG<6D>óÚz= ÎL{=Õ}¢Îв\î¨3„T>©‰Ì‰:#CàÖVÔO“ªqˉ:+e¬ýŸ¨3åÕmC<6D>±,-ü êŒæÜj¦w¢Îœ7 ªÔ<19>¸âŸ ÎZµšÔ<19>©±ñ‰:GH}ËvÔ
Õbù <20>åQ|Îüííy€Îš»üøÐYò÷<C3B2>Þ@gÇl<=9g¸P-81gAŒ˜½i+æL|<7C>Ÿ[1géî
;æŒà'y9^˜3å' <ÚŠ9ÜSªýÜÆ9ëݰå …m×”3Z.z3²=(g<6VÊ  ­”3®•š—úN9ËôN2@ÐA9kfþZ)gRB†ñ-EñF9ã™§bžÁå Ñ@2<>å<EFBFBD>rÖb¿€;æÌÏøº<C3B8>sÆWÛ¼¬wзqs4,Ù:ëÂWÕg¾ƒÎô7m<06>%<—ª«‰é S_ÔŃtÖ9í-øN:£¥EÍövÒYG³ºö»<C3B6>tV'fÅJ:ãú.‡}»Ó;éŒÃ¹y¤3~qרuÆžk5¥'êŒ÷Rù4;ê <0C>º%C¢É´¸ÅE¢m¨3:Œ•?A<>% £i ê¬:;©õ:QgôR·8í@<40>Ûlûƒꌇ"»á/wÔ÷Hé )Ú‚:#
å6ŠßQgx
”mö:Qg <0C>jÐ9vG<76>!<¡UÛÀ -¨3U¦W®i êÌìÔõ¾l¨³B¼I0ÌÛ†:ëñFî¨3\?}îôÚ7ÔÙU¯÷:Qg• E×qzE<7A>)€¹xqg<71>ñ`JÓ3½ë,ÓeIÞ¬3Q\¿sa<73>9Ð`ÃÎŽ:ã+,XÛQg¬pnê5·£ÎºY£4£ÎðµŠ!z<>¨3îÂ'=ì{ ÎEE­<45>ÚPgÜGçÎb´u»4Ã<34>m¨³LOo ª
†4´uÆa p—A”•toBûÁ:Ã#«ð¦-¬3®dñ(hëŒSKÖeȃu†<17>•gƒƒ¶°ÎT³öq@Ë&ÖY•#§È»±Î¸ä_ƒÑÇVÖMJ£z¬3Z1ãì­¬3®¾¶¡qÇ;#nÅëù™vV¸[ –-´3FÒU—òÚwé¹`ÚL;ãš$ggVÚÙÿÇÜýìÈëxÞ× Ô)ÓÐh`j¦ª<C2A6>^Îä®ÑÛêYØ]Íû£I™”òdyx¤Ït-úÞà<C39E>ã
ws™L"ù5,•¹!¨ÕÎ"å’Ÿ\0¾`g(¨8*s;CLlöHÌ`gBc‰)ì þl<C3BE>¸Xg‰šnÏÌXgœ÷ߦƒ¦­3lm̶·Î"ÒbE~ñÖÎùˆv¡Î¸ï©˜W†:C-ù<>x¸PgÈ“Ïr_öÔze%
<u†-­&,ž¥Î<C2A5>3^<5E>æ.Ô ÷‡]¨³†táž¶ÔÙ‰ƒÄgÌXg‰'üÐå©3ôftÓ…:£…{³Äu†ŒŽç#~;u†Ä¯(W­§Î ¦G1O=uv&º]ð8u†n­¶Hg8èKB—zé¬á<C2AC>š9é ÿµÊeÆŒt<74>¬ÎÇ­tVeßbN:1Nþ²Ä”t†}´ka‰ÁKgy6¸Vé¬IwUÄŒt†¤»¹—ÎÔ»—ΰNO|Úï¥3t0•f'N:£ŒôØC-N:Ëãмš“Î<E2809C>]
ê ¥‰(”˜¡ÎÐ>)H?øâ¬³ÂûÄ´uÖ¡q{k<>Q<1A>kµÎR»óIë¬Î¦Ð×j<C397>&1c<31>¡eÊb«9ë 7zÜø)¦­³BNÇYgãC¿1ËXgÈm=…}ðÖú{WÁ<57>½u6žÊN©&X¬3$:„Ê;6Þ:C™óY˜2±Ö%-e4i˜Âθ<C38E>ÚagWs 43ØnG]Ä/<2F><>U®¬^9ë,7Êã-3ØY«b\;ÃqjÈ\q³Xg)I—­E:«³³ÉµJg'ç'05夳À©RAbF:Ã*á3ÒYCB—69ê,PšA?…ú¶ùBzê G\ ¹Hg':lœy+<2B>!å…Òÿ®U:CÊU:å-sÒY;ï>.N:C»¤©³®á¥3ôâOUÞj'<27>Ḡðq÷"<22><>Y6âiMbF:Cvh<76>M/<2F>©F
t†®Ásm©3܉éÄ6JÌPg¨Wš(µ§ÎÚ²Õ4c†:ÃÁî)7{K<>¡Þ~Ü«ø/pÔöq°Å 1c<31><63>¹ìÞ µÖR !䩳±:é<>»ê.ÔYSŽ¥ÎúS~­ÔYzxO<>!´r¯ g<>aEƒ³OŠ8ë å”ÐYgÒz=JÌXg¬uðÖXgHŠDÁ•xÂÞ:ËHj=Mo<4D>áÐDέu†SñŽåñ)!m<>¡d5òa÷b<C3B7><62>C¢ {ë ‰S™ òë,âé3{묠bB”#o<>ÝÛƒ—·Îpˆ‡Ž´u3í¨žÒÖYƒR›Î:#{G¼Ó33Ö’°Çò*KÌXgßk®…]¬3ôI—„ÌÅ:C÷åI†{ë é!‡ oŽ:7Ë£ Y3¡°1ê¥3ªäµÝKg}¬
™Ú­tÖ,æ¤3$¸â—{é [TMàO+<2B>ÑW2M4)G<><47>©`¼:ÿ}ž:«du÷wËQgé ~ZÓ33Ô²?)CîZ­´å¥·Î"Œ.°_¬³Lå<·Øò¨¡çµbgx«<C2AB>E1‡<31>ÔG»vÖŸŽ;Ã.÷¸r~ÿ<C3BF>Ñ£;  v†åÏ!ˆ<>±ÎðÕ«XêñŸà¬³<.Û3í±3ô~Ät%1…<31>ᔜ*W·ØÙ˜Ñ™bf;“fœì UÔ/?<>áê¤{êµbgcZ¾·‡ vFÝ´©0!<21><>abΧp`;kHÚ¡Xì¬Q£»¹Ïã±³lÑ2ƒ<32>ñÎ^Ÿ1…<31>aÏ)Þ–²Çΰð˜( ÃÎP~s[Z;Cwªñì,ذ×Îr¡sÊ­v6¾³4+IìáÎet<65>ECš¿g¸3.«GÌqg<71>È/±Éw†:‡#äI¡iî¬Pwp^Szî ¹=s ë¹³H*V<56>ÑÎв6Š0æ°3T¹Ézì,JR¡Ä vV¹¢€Ïag'Ò€Å<E282AC>tØ™t7‰Ný§¢h±3<C2B1>·§¯;ÃæQâ<Ý;—3ó׊<C397>…*äµjgÔóY`<‡<>!úÓä¬3l9N?\¬3Ô,¡YÍ×b<C397><62>¦ÿâ)’–³ÎÆ•376Z¬3ÎÚOëŒÒ4ÆË¦­u†-ȃûÚXg}6ÙXg8&hc<68>aGã<„õ2ÖNáP*˜ëׯ:ËhËÓ¿6ÔYG¯è³ðHu¿6ÔY™Ë¸:«qp<s†pP`_çlÜQBåÂÅ9ãj¶é•çŒê±Ëm ç
¢¸ïßœáàÕ?_æ¬á¦Uä/°Ì Ò[waÎ*fÅ”ù£1ÌŠ<>ã„Öæ =á$KuaÎPs¤Äÿ¦cÎ<63>>9ÝjaÎЉ«ò“šcÎðí Y®<§œ)€bQθõ1Cm^9cæ‰m¯œá'O,r6Þò~FQ¦œsV»´yÞ8g"\m<>3jÝ”ÚôÑç Û)žâ]9æLÐ-sÖ©„ð˜¿g˜³„ª¾R·ÌÅW]˜3ô]ˆÓŒsÌÌŸzÞ\™aÎP#ïœ<C382>§îÊì™3Ô.Pý
ÿ Ž9C<39>Úx¶Š1Æ…ÒŒæ ]¦cΰ¥¸~aÎ2êÒÎ4y4Üaï;s:ðœ1¶ø÷s6Þ°,”òœ<C382>ò¦Ç
sÖÑ0žOæl\+y*Þ9ë8„âCÝÅ9-ŠÖ¦efœ³1×f)y]œ3¬€ëc çŒ<C3A7>K»]Î9Cíl&.κžÒÚÆ9ã^UiZfÆ9Cÿƒñ><3E>_çì^roœ3”Êίƒwβܶ¿6ÐÙ‰S^Ñûé¬Gî#㥳€ÃÈL58êlL:\°°£Î:Ò…qsÔ™¬Vâ׆:CªÀD¶uÖf§î
u†^›â^,ÔŽ<>¤ñÅJ<C385>¡;lùÎQg'öB\IŽ:<1B>÷c*¨ík¡ÎP&e=ê M<>7+<2B>E´[æ¬ÒU:ë”lÆ<C386>“ÎPÒ953#<23>©œóE:+ÊCõÒÖqÃ"<22>5<ÎþÐéì¬IR‰oéìD©eyO:ûB9rr†2•9{|³à|³CgãOΨUØg3vm€3³À™ŽyàÌÆ,pfc8Ó1œÙ˜!ÎlÈg:æ<>3³Æ™<C386>YãLÅã õÞ\?ºg6d<36>3óÆ™<C386>YãÌÆ¬q¦cÞ8³1kœÙ˜5ÎtÌg6d<36>3³Æ™ŽyãÌÆ¬qfcÖ8Ó1oœÙ˜5ÎFŒˆŽk1ÎtÄg6f<36>3³Æ™ŽyãÌÆ¬qfcÆ8Ó!oœÙ˜5ÎlÌg:æ<>3³ÆÙ¸<C399>ôÌ-wãÌÆ¬q¦bÞ8³!kœÙ˜5ÎtÌ#g6f3³Ê™ŽyåÌÆ¬r6bUšº{æÌÄsæb†9s1Ü™˜cÎ\Ì0g.f˜3b”p­Ì™æÌÄsæb†9s1Ü™˜cÎ\Ì0g.fœ3Äâ93ƒœ™ˆ!ÎTÄg&¢<>3"‡`Dž7s1͹<E280BA>áÍLÌñf.fx3 !;QÌùf.f|33¾™‰YßÌ…Œo†Xe2yñÍ\Ìøf&æ|33¾™ß 1ÞÝ\|3R¼™
ÝL‡nÆOðy¹˜ÁÍLÌáf.fp3©fN3¸™‰9ÜÌÅ næbF7Ããn—Fý^7s1í¹<E280BA>ñÍ£ÌÈkõÍ\Ìøf.f|3s¾YvGbÆ7s1œ™˜ÎŠÒZÞ g.fˆ3sÄÙݼïZ‰33ÆÙˆ•éüyãÌÅŒqæbÚ8CH\OœÙ<C593>ÎlÈgÉÖÅ"œ¹˜ÎC+‰áÌÅ q†Ø!“#Î\Ègù2ÜþtAÎLÌ!g.f<>3ÄJJÎ!g&æ<>3İ#1ƒœ¹˜£þ±×ŠœÜ©¸àrAÎ\Ì gˆI×[nº«<C2BA>3bàf%f<>3bÒH`AÎ\Ì gˆΆÄ5ÈYÁ±Fgߤ8äÌÅ4r†P>Ç#gˆIöØ¢œ¹˜‹œ[º(gˆÁ˜QÎ\Ì(g{»MH2§œ!†+‰iå !é’µ(g&æ”3ÄnöÎ(g;8ÙÓ)g;¤TÓ)gk%MM)gKL)goÚ gÍZäŒc<C592>; 1äy0)m3ŽÑÁÙå3ŽI±ˆSÎ86q«œqìhyjeJ9£ž Ä”rƱ*JUÎ8¹>×)g“d6§œqì»Æ*gkœ%æ<>3•Ü'd¦<64>3Ž¡ãšÄrÆ1j)syäŒbè2´AÎ8V¹+¦CÎ8&I9ãXM×"gN9£Öaü7åŒcÔSëòÊÇPV9£O—gÎ8϶qÎ8¸*Û9g)¦œ3Ž4néœ3ŽÅ&ÔœqÎ8&éÈÖ9£<39>Ô”:æŒC‰+¸sÆ1I%rÌÅ”W-sƱœÙ2ÌÅøyïòÌǤHÈ1g ®aÎ8tˆÛe”3„`®ä)™)åŒcÒ}Á)gë8×¥˜QÎ8Ä$²ÊÅõ§¿<sÆ1éäœ3Ž>¾²Ð…Ps 3Žå㜿¦ 3ŠÍ'<27>q 7,‰)êŒb™<62>1œtÆ!i[ì¤3Ž tyéŒbœKqyéŒcGÙHg¢‰)éŒbáäjL'<27>qŒò¾.+<2B>bÔJgr¢…Î8„ªWŠé 1þS3SÒŨUbJ:ãØ¸ª˜~2ÒÅÚ$­tF±zf¾ÍéŒC‰kœtF±Çû2ÒÇBà<42>ÜJgËåà)ÚJgK]xK<78>q,ò¢£Î(Sc7ÛRgâ¼Hì¡Î(ħt—§Î8F.O<>!FM—šÄuF±N©—§Î8vœ¼Ø´ÔÅÚ$?-uF±š9÷ÂQg+¬uXéŒ"³hÔIgC~X˜Î8C<>b™Î(§Çf 3
)ftÐÅŽ¼aÎWžø¶6ì'<27>¦œ3е"Þ¶uÎ(V%;É9g+¸{HL9gËÜçœ3Š%A"œsF1éæî˜3
¡D(IL1g;Ðc™b†9C,f-1ÅœQŒòj%¦˜3Š¡ñ¤ÌsF1~޼<sF1nü|yæŒbÓTrÌŰ%!¥œQ'FIbJ9CìNsuÊÅ8¡àòÊÅš<C385>À9£Pirœh3Šá `Bf
9£Xìl,8äŒbãçÕŠAÎBmuœ™RÎ(†üÀ 1¥œQŒ«R/¯œQ¬¤§€¦”3Š%©ü0ÊEP½HƒœQvAb
9C %?ZäŒb<C592>
Ì/<2F>œQl\<5C>òÇäŒbã¿ôÅ&Bç˜3ŠMyÕ1gxœ8oÈ2g«³ÓŸ…Î(
<EFBFBD>tF±˜¥½ž•Î(FÔ$¦¤3İ„;7ÒÅ(»^bJ:£XF
«Ä”tF±»i©•ÎkØ~ÎÅZí2N#<23>Q µe¬ éŒbI:ë8éŒb¼)yyé 1$ÓéŒbõ<62>v»V:£XY'<27>^ž:CL—.O<>¥§ ïòÔÅ¢do:êŒbGäN_Ž:C,<2C>7†»pjêŒ"ÜañòÔÅÆb¤MÎLQgˆ¡T™¿§¨³ôôT¸<uF1J“—˜¢Î·F<>uF1li"d¥3
͆V:C(œ"g;éŒb<C592>k¦X¦¤3Š¥<C5A0>ù³³ÒbÇìäã¤3ŠÕ ms­tF±ˆêd‰)é,¡)í£ILIg+AºZéŒbYµNŽ:£Ø„u†n€aC<61>Ql¦59êŒbÄILQg‰`+4n ˜¡Î(6¾ÃarfŠ:C ]ÌÏù{Š:£jùõ u¨ºg^ž:£õ„—ØC<C398>!„^ÇäÌuF1,Ø’Äu†R9Ûü=E<>Q,7v[u¨$«uF±Œf×bÝØ)f¨3Š%x¢{¨³„}ññuâ»”¥Î(Ë¤Ç u†X¯•³ÔÅf©£Îå,u†—€ILQg]:¯Zê 1:3œžÙC<C399>Qh V:C(ƒ\š1%<25>!6V•ÒôØRg;8õÛIgEjÃ$1%<25>!6}ÒÜ×JgˆaÝxLMIgCŸœ(±G:Kh*Cëw
é ±qk;x.¶ÔbìGJì¡Î(„](~S u†¤‰=f¨³D=Ž'Yd©3İ,i“3SÔbHQ<51>ÜPgˆá\Z><c<>Ql\¥÷¿©¬³¤Û 1¸Œ¼¸2ÖYÂM<M/ÏPga·ï&Ëuhä<>)ÕRg‰:‰MðÕRg‰<0E>Bå©ßRg‰ú°b 1¤ç“ASÖb1KÖ»µÎ¢sâ(!e<>!vÄÔî_SÖYByuœ¡˜±Î÷G™¬u†Ògyä­[ÖËYg%qr<71>ÄŒu†/¹OMSgãùâà†jt†ÎÁ¹
Yæ¤34¯2Q9é ]VЬI¼t6F4™äýZ¤³Å(^ 3j2Æ3´‡ÎJd<4A>@bF:C¹Â™óÒŒt¦Ó{é¬H³o‰)鬠S·SrÖbø?î“l­³DÝ*7µrÖbá¤Ó»Ëcgˆ7<>d±³„LŠŠžmbõ$IéòØY"EãHb~iì !j?”$¤°3ĶUN‰)ì ç¤ç
$YìŒÎPÏ,Ž“ÅΨ+&žµ‚Äv†ÿ„°2Øb8âäÖjgˆôè}9ì ²Ø»ª3¤°³D}iª<ÏXì ±ÔÅß±ØB\|-1…<31>¥çê¾<v†˜T];C,Ïlg‡<67>Q·å¹¯î°3ÄîZ<>¡d<1B>¼V±Øb…S).<2E><>!»Í쌪ÀÑ"~i
;#q}5øbÜ(Yb
;Cìñ}­v†åÂÉ <>q™:5JLigˆ<67>IXÄV;£.ãá£MÒ,¨/zÆ -@’ÕÎË’è°3„hc¶š v†íäN(¨Äv†ØX#È¥i±3Äbš,‡ÅÎ<C385>ÿÓÏÆ§è;C¬HSk<>QÖP<C396><(g<>¡£#š*ðJÌZgˆ±t 1e<31>!ví8ë øek²ßQ uF.&•4JLQgˆ<67>AÜ+#<23>¡âÆbiié !Ê<™!%<25>á¥ûl¡ì¨3êåuNUÄRg ­N€ g‰)ê,QGÌÊUŽ:Cl¬µß u†XóôËQgýJ­tV¨4øÖ;<3B>tF±¹çi¡3„:±óâ[CgJô°N!%<25>¡YéŒbdkØC<C398>jºÛ(ùñrÔÅ"U_Iì¡Î;€Î²šk¨3ŠlÛ3⤩³<02>¦¢—N<E28094>ØC<C398>Q ½SãB<C3A3>!Ôå\ÿrÔC.M<>QìYsê ±ñ¤4¡c<>QL:G]Î:C¬ Órœ¿÷Xg…ºØåÈ©;£Ø<C2A3><C398>ž)šÝØBiŒê`IÁ`gˆÅçd°3Š!C˜¿x;Cl\²E&8ƒ<38>!v<<02>ÁÎ
j{Áõ(±;£Ø
…iê ‘ŽÚ
žÞ u†æîûf©3ĤïÒå¤3„°AÁG¦V:£N"<22>© b8
'#<23>!†ªÛ²±Î$«¦Î÷¾$·PC<50>*c7µ:ï¡Î0·ž˜âä]ÑÔbùÓ5u†š£¥H{¨3ÄÆW2Ä89³‡:CL=-êŒæùñ¥„ÅPgˆ<67>ë«”ºRgˆÅމ?Hì¡Î
%<Ô"Ú«¡ÎÃfž<66>š†:C#H#§¼ž¦Î
Uü=욦ÎH—ŽU:'Zê 1¤³aÆnê ¡ŒîhE"uV¨sʘ-rÓÔµ«T¼˜¦ÎÃBV¸dC<64>!‡•ù²Ëm¨³BN8ÂÍ™=ÔbMŽ.G<>!†-σïAš:£”ÉtJý§¥Î ªøfb¨3â¿K<C2BF>æ|Ö:Cì@C¹È´u†Åú É2ÔXgÄ<67>#?Jä8m<38>!6><3E>·LÖ:C %ïù\¬3^»œQfc<>¥ ë ¸  áHì±ÎkcúÙXgä¬c-Àº±ÎSf<53>±Î
8ýôÌ댚¢Þ‰}Æ:C¨!Éð˜DÚc<C39A>?¾kœj­3Ä@Oó»b¨3ʯÅa±‡:Cl|°I¾é†:ƒh?ƒêüë4u†˜b5
uV(]¾ÈÝPg1RNŸ¹¡ÎhÁÎ%ò@gˆ ·„|¬:C ŠUá}^<03>!Afw<03>¡íÝÉé¼{ 3êg;o<>¿è:Cl<qõ$蚆ÎafÄX茠Ñ9„×½:+Ô OKAbtVxgý×%ö@gˆ!í±œ,{ 3<`GIB<03>!VðóC¸<43>Î
qªïå 3´ÄY('kYè¬Pk_*‘Ø<03>!†Š,ù¦é ±qUuæ5¬t†„òñÝÍñŽ=Òb‰YŠié 1<àBiiê OShhtn¥©3ÄP}Þù:3ÔÚ+¢×§Yê¬ÐîGäDk<44>Q[Æû$ÖPgÈ¥GéÉ[x†:£<û:å`#<23>!4þ2Á~¬t†ÇHo¢‡kꌞ0Ç<30>†»~Zê }%ÇB¥ÓÔb(õ?óŒ=Ôõ®Yö£ŒtV¨• n SO{¤3ÄnIM1M<31>¤Ÿ<C2A4>ý<EFBFBD><C3BD>\KgæoÝО¬Çÿ®Èðµs†P`çJb<4A>sF]²qŒÁß<03>!†û¹lôè Åø¼EcÓÎBcÒŠ].uíœao àMY™3ôò>ÁUܘÙdÎ
©6!Τ¼Œy…5e"œ @K¶kÀ ÁX;ú 8“"±hEË+ÞŒž;õÚ2Xùf4Ö¡Fm'ߌŒ¢Ì§l ²™oæõˆÍZøfä<66>§$+;ߌ£L'ÊI'í…o&Ô­«¤jåy¡\<5C>l{å±öjÜó<C39C>o&` GkôÁE»ùft¬Á%äA¼ùfÜ'/v4ýXøf²Îu”0°h7ßL(>è”Îpj ßL Ûñ­yÒbʃoF&þM¡} ߌÕKx…Ú㮀3ë *iãçnÀ™l3¨Tä'
ñJœ~8ãúì'¹DЙx<E284A2>Ä™÷»9gaãœm˜3¡9ý æ,Èè‰sæÍûÈ93LJGΙ¥Ù<C2A5>œ3§aß#çÌy9gʬøÿ-å¬éã#åÌ¢äGÊYNÆ®z œEs~¢œ
³ÓÊ™TVvPÎäÌërÆýý<>'åÌʆ)g¶nôD9+ƒFô@9Äm§œÑ³.š¶SÎÈV×ßù€9£s†78©÷å<C3B7>9»ü@0g%èYš'Ì™nͽ1gÞxÒO˜3žÚsV\º´sf¦WOœ³^tZ}âœÑ/!¶sΤÔO´“sFjÅ`™íœ3RmŠi;çl?qÎðPÔˆ÷äœõhÜšÎYìºXóÄ9kjÃò„9£Ït4mçœe5bzœu:3vbÎçŸ0g9_ÒN9kn¾ž(gÓ4ÓvÊ™za¿)grLB´“r<52>r&gmLÛ)gâ
!ÚI9ÓcQ¯GÊY”3¾Æzí'åŒ6¹É´s&=Ý´sFÇå<C387>+Û0gÉÛ.ËæÌ <Ÿ(gb'öz„œÅ<C593> :!gH%kÚN93oìƒqÆí]§V¯'ãìrC?ÒÇó9cÅD5m<35>œ©f2i‡œe1 z=BÎ.oùrÌ,ô<>q†þïìëNÆY¢ i;ãŒö¼i;äŒ>¬ƒH¶AÎêðÍ~€œi÷z„œ•áè~BÎðþVô<1D>3zÕ?<3F>œqno9«ö:œŒ³ë„ÛÁ8“:˜²3Îr5”áÉ8Ë|”Ù´<C399>q¦ed¦íŒ3^Π•mŒ³ÄêAoÚÊ8#QD Å(g⪠ÚI9£Ia3m§œÙ1Ö'È™Ò$^<0F>³ÂuxSVÄYá\èMÚg<+æÆlCœ59<lÚ†8“ú<oÚ†8ãÁ^}×.@×NÄYäþõŸÎòð=9gL
tü:g,JÒÆ7óZpúzâñX\ÚÆ7ãnh6iÃ!a5Úâ<C39A>7ãìÕãŸàͲÚ<C2B2>½N¼Wv 6tâÍ8i¹?!œÑØ4™´ÎŒqòzœ]Ÿ€³@¬Æ€Ÿm„3ÉåMZgÉlA_€³$´l“6ÀYܽoÔˆáõ„7#'Óý Þ¬ƒ¬¼íkóÀ”mx³ÛdüÄa”ö¢x³À-_¥`x3.Ž÷<C5BD>>ÛøfèüEƒë“oæ…à"ÚÁ7KWPž¾™”Ç .ÚÆ7C00¨[ߌÅzF;øf,ñÑñæœÑ¡Fƒù|ÎähÁ€˜-€3OSP]Þå_WÀY<C380>ÀY*†¥:ùft|©Â7£»Ž'ßL(zÓV¾™˜¶ñÍdïXµƒo<16>¬€¼øfÉu#*ž|³Ä§Â7£ÕžäÀY¡UB4mœæ÷z[À™”Ë ˆÙ8«£Ì÷pFCCÂí€31ƒ &m€3:cÆ?œ‰_á•m€³ÊêΡm€3Œë:øf<…P†¶ñÍXy¨”Ý“o²•ÿ<ðÍ<C3B0>ÛÂÃÁ7Ë—«þÉ7£ý“­ãœ|³Î3˜Í´<C38D>oÖR4^î 8»É-'à,{7nç8Ó¢SÑvÀYå<02>ÆM'à¬_±Ñ 8CÂÒŸ Îx?Û3â,葵×áŒÆ\šõž„3Û~=Îâ
úÚ g—ÄàŒ¨oÒÆ7»aºßÌ¢ Ñ6¾C<>q¾Õ^rðͺ“
)Ñv¾™1iå<E280BA>ýøºƒoÆÿÐMߌîž}0Ì6¾щa°Ï6¾™yÕ½øfxŸÍžî<C5BE>ov§µ;ߌ[ºíúÀ7£ÙÚÅ0[ùfÑ«<C391>Ýë‰oFÿ8f ßL¢y¯qÂÉ7e¹'Þ¬úÁÑ<éfÃdåà%@iÖtðÍè©à/mãµbèøoÖÇžÿÝÌ\ ^t3Úë[¾xâÍXÖ§“Ó‰7Ão×ó5'ÞŒ<C39E>ݬdó<ñfw<66>ó‰7ãŠa´fnx³š<ýÀÑn _P´oÆWÛý Ý )ˆ­t31-Ô±æ q»È¥?¡‰EÃ3ÞlâŸîx3Å)ãëÀ›±º^ûñ<C3BB>7cM“­¸x³ÂéG‡ÙoV£­-t3ž+ði<C3B0>ÏVº™xhDÒÍì9¾Nºž¸÷eüØJ7+Ä »?¡q­×€iÝì*>éfžXe Ì6º×ÿ o¦>ò¦­|3µ-Smç±t.ôÙÊ7£7™VŽœ|3dÿV?öÀ7«|½¨lå<C3A5>M×ߌ+ÈÍœ€³FÏoý<6F>;àŒæa@Ì6ÀÙµ­zÎ
}[Æ+½Κ9r¿žg¤Lj<4C>=gŒÃºÎ×'áLέ6ÓVÂmõ|Ñá WÞý •­„3ŽÎÈháÌ^«×ጌåB•mˆ³~a—ÄYdD¯÷ì@œÝÆåâŒ{"1ë{0Θû}F'äL >õ~î<>³1£¾ gYñC[!g\¾ëv
䌮:e<1C>3ohÉø9cnÖ-ÎÙ)g]ýÁ_O<5F>3Þ#àÈúe¶…öƒrÆz[Ð<(gÌ;Þm¥œqFoö®ì”³@×<>4h+åŒGŒk´…rÆRFV@‰¶SÎ:ãŽ8Hf+åL
³i+å ³šÓ<1D>³ÂÅ0´
rÖFŽpBÎXÔ>°i+âLÜ¡”#µ#Îð¾&†¶!ÎxŒ·mEœñ~…2Pe+âŒé²ysžˆ3æ#jô·#Îp“ø½¾žg´lˆƒc¶2κ¢¸R ĘÁ´rvG<0F>³¦SËërV³âÉ^<0F>3zkivqRÎêXB}€œaä5Ëìç+Ó6È™íæ½ž gUXÓ6Èúgé޶@ÎÁúB<1C>³žiNlÚ
9«²†õ 9cùà@ó<1D>3[hy=AÎÄÄaüÜ
¸ë •m<EFBFBD>3…ð˜¶@κ¸?ý äŒË5F„Ú g²Ä¢À´<C380>r†èÜleOÊYÖ£þ¯'ÊY”íIÓVÊ™x¹«æI9ëc—û<E28094>rÆ%BµŽ=)gt Æv@ÎÚe€BκsºBÎXÙü™m<E284A2>3\Ÿ™(?@Κ1l!g^ÓÍÊ™º%š¶SÎ|5ü“ræƒ3xÆI9+¤ÚJ9Z¡ûzœ9))0mÜÉr^2mÜѺEGÀsƱDG²­<>æ £œNÌ™rÕL[8g´es—´tqèäœĤ/üÁ9ÃP2ìZOΙ—•ÑvÎ&âÐËÐ6ÎYàJà࣭œ³`©ÃëäœÑ7ñjçœi-h4måœyz
”ÙŠ93«ÓVÌFàÔ3÷ÀœÑ©Ê¨Iæ,ê`iÚŠ9uÒ¯sænkÒsF «<¤•rV…<h å ]"gc¸í”³Äõ4´•rFÞT0ÙN9ãA2Ê™žª´•ræ¸ ˜MZ!gI‚š¶@Îh„Ó«1ÜvÈwÅÔæ€œô¤e…'äŒV ÝØh;äŒÇŒØz@Î<Ïò•¡­<C2A1>3A<33>è•<1F>3NCÙ(`;äŒ^ØÊ8g˜/hx#ÚÆ8#æ èÔ|0ÎpW“fª'ãl¢”Œ3ÚzpeœÉÖ·ç½i+ã -S
Ñ6Æ3ƒÔý3ä,±â@‡€r&¼píäÌŽq¶BÎ"Y¼†[!g´ds.
<EFBFBD>Ù
9Ë·+ø9£[<5B>Í;䌾R݆Žr†Ò?lgœîi¦mcœaÔJƒßt0ΊÏ#l…œÅá<C385> ÎxöT׸Ä™£¹¶ñEƽÐÜ3â,¨u°h;⌶ԆÙÜgQ
7‡¶ ÎX¡àœ±¢6ÄYâauª>g$gDˆ3j­ò<C2AD>8ãÁ)ËÀÄY·´ÄYêŽSgØqF>…0ˆ3îÔYv±#ΘÓû<>;âÌóvˆmGœqyÈ.|'œÍ¸¸<C2B8>pvÚ<C39A>„3ô«ÄRlÓÂY¥û”å@;áŒn÷U«76™˜€³š.™6Îx·‡>LZg¾ßVè;á,мÒånÚB8cqVÒ°ö œ1.wö|vÂß!£³„3Útêø|΢Ú}ˆ¶Î
«$4Œx<C592>€34£©ð³p6GíàL­<4C>Ý€˜-€³¨f£É´pF÷s¯žó;àŒKTÞlàwÂK7½ž©:g„„ÒÑ]´…pÆÙ[ÝL[ gÃ_ûuÎèžá ´ÎhãcŰ'áLñÞ´…p¦'J/ŠÙB8«äÝéªÒA8£Ýº¬
¿NÄ™¢áqÆØ7µ d6#Î+Ô
æ`œ±Œ±=#ÎÔZ阭ˆ33À3mAœÕê<C395>¼µ βx²Ñàv ÊĆª: ä;âŒÆÑ¬ 6mAœñ U°
q¦Vöönˆ³ÊJ­°ÛgtÕ;ጕ°f˜{Î|Õí‘× 8ct@—hàŒGmO÷œMv0à ³H죕pÆr††‡ <E280A1>r'œÙ¦÷ÐfÂë<»E;áŒÎäÞx²;ᬸëàËA8£=…To€3±T¸ s;àŒ§sC°+Øg¤ŒÛŠàÎ7KV kÚÌ7c¡Ÿ¼l¯“oF¿ëE¹—N
޾K#ìê8³£özuàŒî(½õA1[g…CGÕ<>p†©X¨²…pFžÞ.ŒÙB8 \²Íψ³x;Óˆ³Ìj!-ü:gÌöÇjáŠ8ËrDÁžùF8ãCà6¯i ጥŸÍr±<72>pFØ,P™¶ ÎÊ}ðð@œÑ,ë©òÁØtlßg<>µWÉp^âŒ{ƒIÝÈÙÕè× 9ÓÊÒ‘*µ†¯“rfë·C[(g\oLÝ(TåŒüYW|<7C>˜3oöMƒsæè3® æŒÅOÕè׿Œ@C î˜3*!\¸²sÆ¥§`ÑØŽ9ãþbÔ³“æŒë°ÙVÚvÌÙtòåÀœU݇¦M˜3I/ò†9C;xyѤsfPÏ`ÚÂ9Ë—ç<>ÄÌ`hæŒ^=Ö^'æ,LôÔsÆq$ØêŽ9+|›ö½
-gÉÀŽ9s¤g¤:´tÆ“Ì7M[@g™«AIùu;èL†4×Ìl<02>ÑiyµÝtF@A·Iv<07>q†+ѨV+èŒ.¿ÙÐk<03>ÑÔ¢êÁøtÆá¨kÁì:c=Õi 3ô»fõ˜èL\¥‚ŽÅ+èLŽ-ó„΀™- 3!ƒÙµqÎxt·)¢åàœÑ_#håœÑ€±^ îÎ9ó\úÊÆ†Û8g4¤ÊÉš¹qÎhÎ ½sÎÚ8Ãü:9g¬ç‹ê;çŒN fÍupβœFÑ7w眩3R ´…sÆ,?ªKüÁ9 <»a«t猦êjˆu€Îj¹vƒÎhLWyÌl<01>ñ× Ô:ã(¢.sï 3t<33>¨g66몯 ÇbÙã:£ÿ,<2C>Èš¶Î¦ñc<07>!H<>¶•rpΜLIÁ´…sÆNR~r<>Îb7ÿÉ×I:ãZˆá(wÐ<19>,Mi'èì®;@gqJÐ]l \¸ƒÎXzm âÎ9£™„
d;錭ÎÖÛÒ­Û»D<7F>q1ÞK¦­¨3„¦cyG<79>IEsIJ•tÆc”\í¤3ž·3ØéŒÓµbÙB:ã=î†5>Hg¬áWžá:cPŒ+y€Îõ[¥Ý:c:к=ºtÆ]e-Z>@gMíó³i3èŒæÎplèŒÈ©”
εƒÎèõ¦GÐ ©¹`eÚJ:jÏÿ:QgQ¿<™¶¢ÎRºŒž~´u†·É5Ãoí¨3OS¤2~lE<6C>ufmG<6D>óÚz= ÎL{=Õ}¢Îв\î¨3„T>©‰Ì‰:#CàÖVÔO“ªqˉ:+e¬ýŸ¨3åÕmC<6D>±,-ü êŒæÜj¦w¢Îœ7 ªÔ<19>¸âŸ ÎZµšÔ<19>©±ñ‰:GH}ËvÔ
Õbù <20>åQ|Îüííy€Îš»üøÐYò÷<C3B2>Þ@gÇl<=9g¸P-81gAŒ˜½i+æL|<7C>Ÿ[1géî
;æŒà'y9^˜3å' <ÚŠ9ÜSªýÜÆ9ëݰå …m×”3Z.z3²=(g<6VÊ  ­”3®•š—úN9ËôN2@ÐA9kfþZ)gRB†ñ-EñF9ã™§bžÁå Ñ@2<>å<EFBFBD>rÖb¿€;æÌÏøº<C3B8>sÆWÛ¼¬wзqs4,Ù:ëÂWÕg¾ƒÎô7m<06>%<—ª«‰é S_ÔŃtÖ9í-øN:£¥EÍövÒYG³ºö»<C3B6>tV'fÅJ:ãú.‡}»Ó;éŒÃ¹y¤3~qרuÆžk5¥'êŒ÷Rù4;ê <0C>º%C¢É´¸ÅE¢m¨3:Œ•?A<>% £i ê¬:;©õ:QgôR·8í@<40>Ûlûƒꌇ"»á/wÔ÷Hé )Ú‚:#
å6ŠßQgx
”mö:Qg <0C>jÐ9vG<76>!<¡UÛÀ -¨3U¦W®i êÌìÔõ¾l¨³B¼I0ÌÛ†:ëñFî¨3\?}îôÚ7ÔÙU¯÷:Qg• E×qzE<7A>)€¹xqg<71>ñ`JÓ3½ë,ÓeIÞ¬3Q\¿sa<73>9Ð`ÃÎŽ:ã+,XÛQg¬pnê5·£ÎºY£4£ÎðµŠ!z<>¨3îÂ'=ì{ ÎEE­<45>ÚPgÜGçÎb´u»4Ã<34>m¨³LOo ª
†4´uÆa p—A”•toBûÁ:Ã#«ð¦-¬3®dñ(hëŒSKÖeȃu†<17>•gƒƒ¶°ÎT³öq@Ë&ÖY•#§È»±Î¸ä_ƒÑÇVÖMJ£z¬3Z1ãì­¬3®¾¶¡qÇ;#nÅëù™vV¸[ –-´3FÒU—òÚwé¹`ÚL;ãš$ggVÚÙÿÇÜýìÈëxÞ× Ô)ÓÐh`j¦ª<C2A6>^Îä®ÑÛêYØ]Íû£I™”òdyx¤Ït-úÞà<C39E>ã
ws™L"ù5,•¹!¨ÕÎ"å’Ÿ\0¾`g(¨8*s;CLlöHÌ`gBc‰)ì þl<C3BE>¸Xg‰šnÏÌXgœ÷ߦƒ¦­3lm̶·Î"ÒbE~ñÖÎùˆv¡Î¸ï©˜W†:C-ù<>x¸PgÈ“Ïr_öÔze%
<u†-­&,ž¥Î<C2A5>3^<5E>æ.Ô ÷‡]¨³†táž¶ÔÙ‰ƒÄgÌXg‰'üÐå©3ôftÓ…:£…{³Äu†ŒŽç#~;u†Ä¯(W­§Î ¦G1O=uv&º]ð8u†n­¶Hg8èKB—zé¬á<C2AC>š9é ÿµÊeÆŒt<74>¬ÎÇ­tVeßbN:1Nþ²Ä”t†}´ka‰ÁKgy6¸Vé¬IwUÄŒt†¤»¹—ÎÔ»—ΰNO|Úï¥3t0•f'N:£ŒôØC-N:Ëãмš“Î<E2809C>]
ê ¥‰(”˜¡ÎÐ>)H?øâ¬³ÂûÄ´uÖ¡q{k<>Q<1A>kµÎR»óIë¬Î¦Ð×j<C397>&1c<31>¡eÊb«9ë 7zÜø)¦­³BNÇYgãC¿1ËXgÈm=…}ðÖú{WÁ<57>½u6žÊN©&X¬3$:„Ê;6Þ:C™óY˜2±Ö%-e4i˜Âθ<C38E>ÚagWs 43ØnG]Ä/<2F><>U®¬^9ë,7Êã-3ØY«b\;ÃqjÈ\q³Xg)I—­E:«³³ÉµJg'ç'05夳À©RAbF:Ã*á3ÒYCB—69ê,PšA?…ú¶ùBzê G\ ¹Hg':lœy+<2B>!å…Òÿ®U:CÊU:å-sÒY;ï>.N:C»¤©³®á¥3ôâOUÞj'<27>Ḡðq÷"<22><>Y6âiMbF:Cvh<76>M/<2F>©F
t†®Ásm©3܉éÄ6JÌPg¨Wš(µ§ÎÚ²Õ4c†:ÃÁî)7{K<>¡Þ~Ü«ø/pÔöq°Å 1c<31><63>¹ìÞ µÖR !䩳±:é<>»ê.ÔYSŽ¥ÎúS~­ÔYzxO<>!´r¯ g<>aEƒ³OŠ8ë å”ÐYgÒz=JÌXg¬uðÖXgHŠDÁ•xÂÞ:ËHj=Mo<4D>áÐDέu†SñŽåñ)!m<>¡d5òa÷b<C3B7><62>C¢ {ë ‰S™ òë,âé3{묠bB”#o<>ÝÛƒ—·Îpˆ‡Ž´u3í¨žÒÖYƒR›Î:#{G¼Ó33Ö’°Çò*KÌXgßk®…]¬3ôI—„ÌÅ:C÷åI†{ë é!‡ oŽ:7Ë£ Y3¡°1ê¥3ªäµÝKg}¬
™Ú­tÖ,æ¤3$¸â—{é [TMàO+<2B>ÑW2M4)G<><47>©`¼:ÿ}ž:«du÷wËQgé ~ZÓ33Ô²?)CîZ­´å¥·Î"Œ.°_¬³Lå<·Øò¨¡çµbgx«<C2AB>E1‡<31>ÔG»vÖŸŽ;Ã.÷¸r~ÿ<C3BF>Ñ£;  v†åÏ!ˆ<>±ÎðÕ«XêñŸà¬³<.Û3í±3ô~Ät%1…<31>ᔜ*W·ØÙ˜Ñ™bf;“fœì UÔ/?<>áê¤{êµbgcZ¾·‡ vFÝ´©0!<21><>abΧp`;kHÚ¡Xì¬Q£»¹Ïã±³lÑ2ƒ<32>ñÎ^Ÿ1…<31>aÏ)Þ–²Çΰð˜( ÃÎP~s[Z;Cwªñì,ذ×Îr¡sÊ­v6¾³4+IìáÎet<65>ECš¿g¸3.«GÌqg<71>È/±Éw†:‡#äI¡iî¬Pwp^Szî ¹=s ë¹³H*V<56>ÑÎв6Š0æ°3T¹Ézì,JR¡Ä vV¹¢€Ïag'Ò€Å<E282AC>tØ™t7‰Ný§¢h±3<C2B1>·§¯;ÃæQâ<Ý;—3ó׊<C397>…*äµjgÔóY`<‡<>!úÓä¬3l9N?\¬3Ô,¡YÍ×b<C397><62>¦ÿâ)’–³ÎÆ•376Z¬3ÎÚOëŒÒ4ÆË¦­u†-ȃûÚXg}6ÙXg8&hc<68>aGã<„õ2ÖNáP*˜ëׯ:ËhËÓ¿6ÔYG¯è³ðHu¿6ÔY™Ë¸:«qp<s†pP`_çlÜQBåÂÅ9ãj¶é•çŒê±Ëm ç
¢¸ïßœáàÕ?_æ¬á¦Uä/°Ì Ò[waÎ*fÅ”ù£1ÌŠ<>ã„Öæ =á$KuaÎPs¤Äÿ¦cÎ<63>>9ÝjaÎЉ«ò“šcÎðí Y®<§œ)€bQθõ1Cm^9cæ‰m¯œá'O,r6Þò~FQ¦œsV»´yÞ8g"\m<>3jÝ”ÚôÑç Û)žâ]9æLÐ-sÖ©„ð˜¿g˜³„ª¾R·ÌÅW]˜3ô]ˆÓŒsÌÌŸzÞ\™aÎP#ïœ<C382>§îÊì™3Ô.Pý
ÿ Ž9C<39>Úx¶Š1Æ…ÒŒæ ]¦cΰ¥¸~aÎ2êÒÎ4y4Üaï;s:ðœ1¶ø÷s6Þ°,”òœ<C382>ò¦Ç
sÖÑ0žOæl\+y*Þ9ë8„âCÝÅ9-ŠÖ¦efœ³1×f)y]œ3¬€ëc çŒ<C3A7>K»]Î9Cíl&.κžÒÚÆ9ã^UiZfÆ9Cÿƒñ><3E>_çì^roœ3”Êίƒwβܶ¿6ÐÙ‰S^Ñûé¬Gî#㥳€ÃÈL58êlL:\°°£Î:Ò…qsÔ™¬Vâ׆:CªÀD¶uÖf§î
u†^›â^,ÔŽ<>¤ñÅJ<C385>¡;lùÎQg'öB\IŽ:<1B>÷c*¨ík¡ÎP&e=ê M<>7+<2B>E´[æ¬ÒU:ë”lÆ<C386>“ÎPÒ953#<23>©œóE:+ÊCõÒÖqÃ"<22>5<ÎþÐéì¬IR‰oéìD©eyO:ûB9rr†2•9{|³à|³CgãOΨUØg3vm€3³À™ŽyàÌÆ,pfc8Ó1œÙ˜!ÎlÈg:æ<>3³Æ™<C386>YãLÅã õÞ\?ºg6d<36>3óÆ™<C386>YãÌÆ¬q¦cÞ8³1kœÙ˜5ÎtÌg6d<36>3³Æ™ŽyãÌÆ¬qfcÖ8Ó1oœÙ˜5ÎFŒˆŽk1ÎtÄg6f<36>3³Æ™ŽyãÌÆ¬qfcÆ8Ó!oœÙ˜5ÎlÌg:æ<>3³ÆÙ¸<C399>ôÌ-wãÌÆ¬q¦bÞ8³!kœÙ˜5ÎtÌ#g6f3³Ê™ŽyåÌÆ¬r6bUšº{æÌÄsæb†9s1Ü™˜cÎ\Ì0g.f˜3b”p­Ì™æÌÄsæb†9s1Ü™˜cÎ\Ì0g.fœ3Äâ93ƒœ™ˆ!ÎTÄg&¢<>3"‡`Dž7s1͹<E280BA>áÍLÌñf.fx3 !;QÌùf.f|33¾™‰YßÌ…Œo†Xe2yñÍ\Ìøf&æ|33¾™ß 1ÞÝ\|3R¼™
ÝL‡nÆOðy¹˜ÁÍLÌáf.fp3©fN3¸™‰9ÜÌÅ næbF7Ããn—Fý^7s1í¹<E280BA>ñÍ£ÌÈkõÍ\Ìøf.f|3s¾YvGbÆ7s1œ™˜ÎŠÒZÞ g.fˆ3sÄÙݼïZ‰33ÆÙˆ•éüyãÌÅŒqæbÚ8CH\OœÙ<C593>ÎlÈgÉÖÅ"œ¹˜ÎC+‰áÌÅ q†Ø!“#Î\Ègù2ÜþtAÎLÌ!g.f<>3ÄJJÎ!g&æ<>3İ#1ƒœ¹˜£þ±×ŠœÜ©¸àrAÎ\Ì gˆI×[nº«<C2BA>3bàf%f<>3bÒH`AÎ\Ì gˆΆÄ5ÈYÁ±Fgߤ8äÌÅ4r†P>Ç#gˆIöØ¢œ¹˜‹œ[º(gˆÁ˜QÎ\Ì(g{»MH2§œ!†+‰iå !é’µ(g&æ”3ÄnöÎ(g;8ÙÓ)g;¤TÓ)gk%MM)gKL)goÚ gÍZäŒc<C592>; 1äy0)m3ŽÑÁÙå3ŽI±ˆSÎ86q«œqìhyjeJ9£ž Ä”rƱ*JUÎ8¹>×)g“d6§œqì»Æ*gkœ%æ<>3•Ü'd¦<64>3Ž¡ãšÄrÆ1j)syäŒbè2´AÎ8V¹+¦CÎ8&I9ãXM×"gN9£Öaü7åŒcÔSëòÊÇPV9£O—gÎ8϶qÎ8¸*Û9g)¦œ3Ž4néœ3ŽÅ&ÔœqÎ8&éÈÖ9£<39>Ô”:æŒC‰+¸sÆ1I%rÌÅ”W-sƱœÙ2ÌÅøyïòÌǤHÈ1g ®aÎ8tˆÛe”3„`®ä)™)åŒcÒ}Á)gë8×¥˜QÎ8Ä$²ÊÅõ§¿<sÆ1éäœ3Ž>¾²Ð…Ps 3Žå㜿¦ 3ŠÍ'<27>q 7,‰)êŒb™<62>1œtÆ!i[ì¤3Ž tyéŒbœKqyéŒcGÙHg¢‰)éŒbáäjL'<27>qŒò¾.+<2B>bÔJgr¢…Î8„ªWŠé 1þS3SÒŨUbJ:ãØ¸ª˜~2ÒÅÚ$­tF±zf¾ÍéŒC‰kœtF±Çû2ÒÇBà<42>ÜJgËåà)ÚJgK]xK<78>q,ò¢£Î(Sc7ÛRgâ¼Hì¡Î(ħt—§Î8F.O<>!FM—šÄuF±N©—§Î8vœ¼Ø´ÔÅÚ$?-uF±š9÷ÂQg+¬uXéŒ"³hÔIgC~X˜Î8C<>b™Î(§Çf 3
)ftÐÅŽ¼aÎWžø¶6ì'<27>¦œ3е"Þ¶uÎ(V%;É9g+¸{HL9gËÜçœ3Š%A"œsF1éæî˜3
¡D(IL1g;Ðc™b†9C,f-1ÅœQŒòj%¦˜3Š¡ñ¤ÌsF1~޼<sF1nü|yæŒbÓTrÌŰ%!¥œQ'FIbJ9CìNsuÊÅ8¡àòÊÅš<C385>À9£Pirœh3Šá `Bf
9£Xìl,8äŒbãçÕŠAÎBmuœ™RÎ(†üÀ 1¥œQŒ«R/¯œQ¬¤§€¦”3Š%©ü0ÊEP½HƒœQvAb
9C %?ZäŒb<C592>
Ì/<2F>œQl\<5C>òÇäŒbã¿ôÅ&Bç˜3ŠMyÕ1gxœ8oÈ2g«³ÓŸ…Î(
<EFBFBD>tF±˜¥½ž•Î(FÔ$¦¤3İ„;7ÒÅ(»^bJ:£XF
«Ä”tF±»i©•ÎkØ~ÎÅZí2N#<23>Q µe¬ éŒbI:ë8éŒb¼)yyé 1$ÓéŒbõ<62>v»V:£XY'<27>^ž:CL—.O<>¥§ ïòÔÅ¢do:êŒbGäN_Ž:C,<2C>7†»pjêŒ"ÜañòÔÅÆb¤MÎLQgˆ¡T™¿§¨³ôôT¸<uF1J“—˜¢Î·F<>uF1li"d¥3
͆V:C(œ"g;éŒb<C592>k¦X¦¤3Š¥<C5A0>ù³³ÒbÇìäã¤3ŠÕ ms­tF±ˆêd‰)é,¡)í£ILIg+AºZéŒbYµNŽ:£Ø„u†n€aC<61>Ql¦59êŒbÄILQg‰`+4n ˜¡Î(6¾ÃarfŠ:C ]ÌÏù{Š:£jùõ u¨ºg^ž:£õ„—ØC<C398>!„^ÇäÌuF1,Ø’Äu†R9Ûü=E<>Q,7v[u¨$«uF±Œf×bÝØ)f¨3Š%x¢{¨³„}ññuâ»”¥Î(Ë¤Ç u†X¯•³ÔÅf©£Îå,u†—€ILQg]:¯Zê 1:3œžÙC<C399>Qh V:C(ƒ\š1%<25>!6V•ÒôØRg;8õÛIgEjÃ$1%<25>!6}ÒÜ×JgˆaÝxLMIgCŸœ(±G:Kh*Cëw
é ±qk;x.¶ÔbìGJì¡Î(„](~S u†¤‰=f¨³D=Ž'Yd©3İ,i“3SÔbHQ<51>ÜPgˆá\Z><c<>Ql\¥÷¿©¬³¤Û 1¸Œ¼¸2ÖYÂM<M/ÏPga·ï&Ëuhä<>)ÕRg‰:‰MðÕRg‰<0E>Bå©ßRg‰ú°b 1¤ç“ASÖb1KÖ»µÎ¢sâ(!e<>!vÄÔî_SÖYByuœ¡˜±Î÷G™¬u†Ògyä­[ÖËYg%qr<71>ÄŒu†/¹OMSgãùâà†jt†ÎÁ¹
Yæ¤34¯2Q9é ]VЬI¼t6F4™äýZ¤³Å(^ 3j2Æ3´‡ÎJd<4A>@bF:C¹Â™óÒŒt¦Ó{é¬H³o‰)鬠S·SrÖbø?î“l­³DÝ*7µrÖbá¤Ó»Ëcgˆ7<>d±³„LŠŠžmbõ$IéòØY"EãHb~iì !j?”$¤°3ĶUN‰)ì ç¤ç
$YìŒÎPÏ,Ž“ÅΨ+&žµ‚Äv†ÿ„°2Øb8âäÖjgˆôè}9ì ²Ø»ª3¤°³D}iª<ÏXì ±ÔÅß±ØB\|-1…<31>¥çê¾<v†˜T];C,Ïlg‡<67>Q·å¹¯î°3ÄîZ<>¡d<1B>¼V±Øb…S).<2E><>!»Í쌪ÀÑ"~i
;#q}5øbÜ(Yb
;Cìñ}­v†åÂÉ <>q™:5JLigˆ<67>IXÄV;£.ãá£MÒ,¨/zÆ -@’ÕÎË’è°3„hc¶š v†íäN(¨Äv†ØX#È¥i±3Äbš,‡ÅÎ<C385>ÿÓÏÆ§è;C¬HSk<>QÖP<C396><(g<>¡£#š*ðJÌZgˆ±t 1e<31>!ví8ë øek²ßQ uF.&•4JLQgˆ<67>AÜ+#<23>¡âÆbiié !Ê<™!%<25>á¥ûl¡ì¨3êåuNUÄRg ­N€ g‰)ê,QGÌÊUŽ:Cl¬µß u†XóôËQgýJ­tV¨4øÖ;<3B>tF±¹çi¡3„:±óâ[CgJô°N!%<25>¡YéŒbdkØC<C398>jºÛ(ùñrÔÅ"U_Iì¡Î;€Î²šk¨3ŠlÛ3⤩³<02>¦¢—N<E28094>ØC<C398>Q ½SãB<C3A3>!Ôå\ÿrÔC.M<>QìYsê ±ñ¤4¡c<>QL:G]Î:C¬ Órœ¿÷Xg…ºØåÈ©;£Ø<C2A3><C398>ž)šÝØBiŒê`IÁ`gˆÅçd°3Š!C˜¿x;Cl\²E&8ƒ<38>!v<<02>ÁÎ
j{Áõ(±;£Ø
…iê ‘ŽÚ
žÞ u†æîûf©3ĤïÒå¤3„°AÁG¦V:£N"<22>© b8
'#<23>!†ªÛ²±Î$«¦Î÷¾$·PC<50>*c7µ:ï¡Î0·ž˜âä]ÑÔbùÓ5u†š£¥H{¨3ÄÆW2Ä89³‡:CL=-êŒæùñ¥„ÅPgˆ<67>ë«”ºRgˆÅމ?Hì¡Î
%<Ô"Ú«¡ÎÃfž<66>š†:C#H#§¼ž¦Î
Uü=욦ÎH—ŽU:'Zê 1¤³aÆnê ¡ŒîhE"uV¨sʘ-rÓÔµ«T¼˜¦ÎÃBV¸dC<64>!‡•ù²Ëm¨³BN8ÂÍ™=ÔbMŽ.G<>!†-σïAš:£”ÉtJý§¥Î ªøfb¨3â¿K<C2BF>æ|Ö:Cì@C¹È´u†Åú É2ÔXgÄ<67>#?Jä8m<38>!6><3E>·LÖ:C %ïù\¬3^»œQfc<>¥ ë ¸  áHì±ÎkcúÙXgä¬c-Àº±ÎSf<53>±Î
8ýôÌ댚¢Þ‰}Æ:C¨!Éð˜DÚc<C39A>?¾kœj­3Ä@Oó»b¨3ʯÅa±‡:Cl|°I¾é†:ƒh?ƒêüë4u†˜b5
uV(]¾ÈÝPg1RNŸ¹¡ÎhÁÎ%ò@gˆ ·„|¬:C ŠUá}^<03>!Afw<03>¡íÝÉé¼{ 3êg;o<>¿è:Cl<qõ$蚆ÎafÄX茠Ñ9„×½:+Ô OKAbtVxgý×%ö@gˆ!í±œ,{ 3<`GIB<03>!VðóC¸<43>Î
qªïå 3´ÄY('kYè¬Pk_*‘Ø<03>!†Š,ù¦é ±qUuæ5¬t†„òñÝÍñŽ=Òb‰YŠié 1<àBiiê OShhtn¥©3ÄP}Þù:3ÔÚ+¢×§Yê¬ÐîGäDk<44>Q[Æû$ÖPgÈ¥GéÉ[x†:£<û:å`#<23>!4þ2Á~¬t†ÇHo¢‡kꌞ0Ç<30>†»~Zê }%ÇB¥ÓÔb(õ?óŒ=Ôõ®Yö£ŒtV¨• n SO{¤3ÄnIM1M<31>¤Ÿ<C2A4>ý<EFBFBD><C3BD>\KgæoÝО¬Çÿ®Èðµs†P`çJb<4A>sF]²qŒÁß<03>!†û¹lôè Åø¼EcÓÎBcÒŠ].uíœao àMY™3ôò>ÁUܘÙdÎ
î¢ñÖü­‡9C<39>¬¤<C2AC>¥aÎC2º°cZ9ÃþEeÁKb<4B>r†2Á¤‡ºaÎÐŒ<a{áœÚÜj…žÓó÷æ¬<C3A6>CÂ}ÿ.Ëœa%£S1·Ð3ÌYAM&Xž0íaÎ
·B§Õêå˜3”Ë`SQšpæ ­\ 7ØÃœa;¨#q†_æ,Ó6ì|Ò¶Ì<7A>Ÿ W©Äæ e=Š¥0ÌY&ïa¦àYæ ½äÇ·æ¶2gˆ\ÜG1Íœ¡ÄÇì å,SúÁ|LµÊÚÚ£yÉ™¦dö(gTÑT'$o•3ìÉQÒ*7†4ÊYF“6<i‰6§•3TPᤎ÷Ž,sÑŠk|y;µs†ýÁB…<휡]0-¤Ã4Ðç Õ\ã{.ÇxÖ9Ã~äÓ0ÎBghO Ü¢¥©™=ÒªÇð½æM[+<2B>¡å1ŠøyÍJg¨H£Ü­4ŲG:Þ*zëpþ<70>•ÎÐb9â¨æ˜
Ú#<23>eÌxt¦Ã¯§¤3jÚŒN:ÜÆÛXg@PåvÜ@Úc<C39A>a[ø±| uÇaöf»u‰Ž$_Ebu­~Åà3ÔÊÇ8ÄôRÒB<>)œ*±)<29>ê=®°t,ÒbMoÂ15³[:£âETäKb-<2D>!Ñk¤È¿©¤3ª‡Œôh$vKgˆÉ³uØ-<2D>¡øòä.èü!(éŒ
3aP‰0¡¤³@‡ 7ª«¥3.õäÓËBgás}!5t†ÊÒ1ß<31>i”íj茪NÑÛWæF
<EFBFBD>!F¥Ü«Ç@gˆáÒÈ<C392>{[jèŒ*`±PŸ”ÙÍœ¡n­*ƒÌpŠ9C¨Jp ÝÌb -wxsÏ8gTÁl<E280B9>ÈvÎPùÛç)ûe<C3BB>3İA[-—uÎùwÌeh·sè°,rW³Ë:g¨^n<>׃1m<>3*•F ÜÚfìFÎPb=¿D»3ÄÐo¸Ë´¡3ªèFnƒØhÊ8 ¤€üoMg<>Î9ãM-iã 1t.=å{¬<>3¬£z¼Í3vgTŸ¹<C5B8>Å”q†âyÔQgƒËgˆe=9-ÆÕñã|BØmœ!†³lîafˆ3„°Z”?\gè3P°éå3PÀbØj+<2B>ïæ8Cσòœ^àŒ[,œQN¹ p†Ö ³R N ghѧRsYá 1@y½ŠôõgèJ<C3A8>jI™ÒÂz` '<1F>%t g<>R<ð`)LÎЈ£<’ºÎÐò£g<rð_§…3Ä<33>©\źÐÂÚ<>N»…3´;yžUÀ5^<5E>¼,mî•pF}^Æ«F1lµpF}e°á#œ¡W
&·Ì´ÎÐÛqt¬uYá,PwBÙ·¹¬pFí„
ÝŒøßTÂu6+gäkV gh£4¦“ñ/”‰ŸMáŒ:Aedò.£…34žº»ß\V8£¾Z³ Ñe…3j
†*s^}kàŒº¡¡óYg<01>|.›òÍR©#:ËËHß =ˆONM§ÈÃ!å>A©â…°ÖÍÐäz,|‘Î&¡[7#Çy|½ò1²7C/x`Ì¥M÷ìÎÃm<C383>JŠè$š6CßêÆk1„4mõMÛe¡¤e36PÕU&z6a3Ü\Ç'Ò8eƺf8ë©Hó^X3¬î6|ÄÚR¬Ö¢>(L¹ìVͰ‡<C2B0>½MY|hÔ Íýñ[iRh7iÖé$d\Ƽ¢Ô¢ˆ<>K&ȪQƒf¨Xˆèôq[g·g†O¼c<C2BC>%X¶RžYÀ³’‰ä‹«=3j_7n²°u%v{fÔà
•ÚÇ<EFBFBD>Ý :™LŸG‰Ý ¾eçhF<68>¹0êÄ«[
ša6À£cæd šÑ ƒXr5hFÝN;†)“Ý ¦ÁŇ84Z4£~Eã“;ÏsÍhÏÜÅ€S¢nØ& ²¸Ò¢{åãQ#šQ{±ñ”hFífðÃÛNF4ÃB"Q¼\èJ4£^-AþØËŠfX•¡eý
t)Ñ ËCT¡"³Tb·hFmIpäPîØÍèa§"2*ÑŒž® ð´0Õ²[4£§ÕSzZ]V4ã<34>ˆÀ¾ËŠf´†müÆëC-šñ–|ˆÇü­Û3Ãy
Ðy*Ê3C»ˆ~òÝú2œ:4 žô(Öœ-¬øùdÀpfh˜ñTr¶I<C2B6>ÝœµE˜5©—åÌЦ½asäY^sf<73>P j{½pfhXÏuÆnÎ õÿU Š=œÊøñØÕyÓVsf¨ÆÇ{PO^¨jÎ,ÐÐ9Aªã¦ÇtÇnÎ uî`2¨ÝÅe9³À²²ÕùCUœ*ϹȇWŽš3CyçóŒSb™¡¹üU¶ÕgFEÛH=…Xsf(•êpp<1D>áÌPòŒ>…;ÏŒjžèvuZg·g†2dì,Î{¾öÌPNŒµ ˜S Y ,¬2Ž…4C}/Šññ¯Jì&ÍPTÐ"&ÅɖݤŠcqNtˆ¦ I3”¤bE&ª†4£*Ñ1gæsªe·h†
Ë
[Hž8µh†Ä ‡.§É–Ý¢Û<>Ev"%ö<>fhÎ<68>º ÌsŠ!ÍPAS+o«ÒŒ‘Á#ÉwY“fx[bâ¬?Š)ÒŒº~Ȧ⛹&ͨó 4ò1(ÒŒ:LŒAÒ)ÜeI3\<5C>
Ú#<23>eÌxt¦Ã¯§¤3jÚŒN:ÜÆÛXg@PåvÜ@Úc<C39A>a[ø±| uÇaöf»u‰Ž$_Ebu­~Åà3ÔÊÇ8ÄôRÒB<>)œ*±)<29>ê=®°t,ÒbMoÂ15³[:£âETäKb-<2D>!Ñk¤È¿©¤3ª‡Œôh$vKgˆÉ³uØ-<2D>¡øòä.èü!(éŒ
ß_!4i†K [«…Kó i†KÛc“
Ò¤•|ãp¡/¢ýyöYÙ¿Ô¢•DÚïãßS¢>udÁt±1µhFÕÆ”NgLø\0u*÷¦3¢UøFº=LµìÍèbA…¬Vµh˜ eH3*<2A>%cí!MšÑE†âÕ,r”"ÍŸ¹´¹å«I3žFêVËS¸"ÍP@
TçàEš! Wôx@8<38>7š4 „…`±ÒÒ,ÐáC!Hbš4£ªÍ€èMbi¾ƒëñWÒ çã] ÜÔËf(¢Ÿ±hÜZ4C™$=î¦U4Ãîüq×\[Ñ ;ðbrHìÍ* ÆIΔÐÑ ¥‰ù®ê·¢Êó}$lE3öçÑí¬KìÍЗwan¯gD3<_<>©}| ø·´hv<68>{5n%}ÆÑì &¯Až½ h†}æñýïò”n@³€ íŽMº,±4C
KFIbh-UöœmaE3ÔÒeY_Ž4£z¹‡-3¤jâP,Ú…Ó¤žrŸÎú4Cm[ ³ù…%Ͱ¤<C2B0>w¢§%ÍÈ<1F>xé†4C!ŸŒu‰=¤‰·q9ÒŒ
@@ -2237,169 +2249,214 @@ Q
'qÍPÕç„öˆÅ"uZg<5A>g†êœ1¿œœTo=³DݸÑp;Kìñ̰7”ïN“Ö3ÃP`sN˜ìöÌУiƒ\Uh=3êCŠjzÆY<C386>g†f£"PL{f´»ÇÃçm¶ëqÓ“o³ñÌȺ-cÆ•7Z{fôKg>Yb<59>gF§w²§ñÌ2Un 3ÿ Ú3ËÔh&PZÃå<³L‰Óö3žŠFP·:?
šá( Íkê Š?p?İӞŽÇ{'â<>õ̰<15>ºbÙûÔžÙ¬¥RZÐå<3SÇiÞ\1žÎÃ<C38E>¯ŠöÌðÞ𤧃öxfH<66>Kõ±|^=3<ž<>;Ë‘îØã™Jk²çh<3ÊÏ @Ó'Zö€fœG
ŽwÆÐ <0C>äcvÓJüò ZD"
Ë
[Hž8µh†Ä ‡.§É–Ý¢Û<>Ev"%ö<>fhÎ<68>º ÌsŠ!ÍPAS+o«ÒŒ‘Á#ÉwY“fx[bâ¬?Š)ÒŒº~Ȧ⛹&ͨó 4ò1(ÒŒ:LŒAÒ)ÜeI3\<5C>
ß_!4i†K [«…Kó i†KÛc“
Ò¤•|ãp¡/¢ýyöYÙ¿Ô¢•DÚïãßS¢>udÁt±1µhFÕÆ”NgLø\0u*÷¦3¢UøFº=LµìÍèbA…¬Vµh˜ eH3*<2A>%cí!MšÑE†âÕ,r”"ÍŸ¹´¹å«I3žFêVËS¸"ÍP@
TçàEš! Wôx@8<38>7š4 „…`±ÒÒ,ÐáC!Hbš4£ªÍ€èMbi¾ƒëñWÒ çã] ÜÔËf(¢Ÿ±hÜZ4C™$=î¦U4Ãîüq×\[Ñ ;ðbrHìÍ* ÆIΔÐÑ ¥‰ù®ê·¢Êó}$lE3öçÑí¬KìÍЗwan¯gD3<_<>©}| ø·´hv<68>{5n%}ÆÑì &¯Až½ h†}æñýïò”n@³€ íŽMº,±4C
KFIbh-UöœmaE3ÔÒeY_Ž4£z¹‡-3¤jâP,Ú…Ó¤žrŸÎú4Cm[ ³ù…%Ͱ¤<C2B0>w¢§%ÍÈ<1F>xé†4C!ŸŒu‰=¤‰·q9ÒŒ
Ê<EFBFBD>šÈ§!ÍP56þ…ã¶L“fØ48±<38>Ç·JCš¡úk¼¡c†ˆ{H³ˆ­“@_"‰=¤ê¸~—(¦I3<49>ÖíÕä½Ö¤6Ñ\ô1-šEÜãêLy¶¢6qAb<41>h†'<27>1“`J<>Ø#š¡-vÙ9ŸÓŠfÔow8¦ÍÐS6£L“Ÿ iÆ=ñA)¦I3T3<54>w¹%ÍÐÝG¬+iFuIÈPäOHfä%K‡ÅˉfØsˆ­;<3B>{LµìÍhsK]<5D>Z4Ã
׸®Z4£&«
É:S{D3hÃ
'qÍPÕç„öˆÅ"uZg<5A>g†êœ1¿œœTo=³DݸÑp;Kìñ̰7”ïN“Ö3ÃP`sN˜ìöÌУiƒ\Uh=3êCŠjzÆY<C386>g†f£"PL{f´»ÇÃçm¶ëqÓ“o³ñÌȺ-cÆ•7Z{fôKg>Yb<59>gF§w²§ñÌ2Un 3ÿ Ú3ËÔh&PZÃå<³L‰Óö3žŠFP·:?
šá( Íkê Š?p?İӞŽÇ{'â<>õ̰<15>ºbÙûÔžÙ¬¥RZÐå<3SÇiÞ\1žÎÃ<C38E>¯ŠöÌðÞ𤧃öxfH<66>Kõ±|^=3<ž<>;Ë‘îØã™Jk²çh<3ÊÏ @Ó'Zö€fœG
ŽwÆÐ <0C>äcvÓJüò ZD"
¥ "¦A³#‡ññ¤sÆÐ e H4JLÆЬ ]?˜ ÉýÆg­g†at_9Î{<3<ìŽ<06>TyÏ ´Ó»ð]Ú3ÃN©S<C2A9>¿÷xfÄqž¸G¬¢²ú¹d<C2B9>Ý/-š!uõ¨wèÍðˆÙ¸—‚Í*å
ŽQÉ_ M3zTDYk¨_Þ4Ãã`@[ÒcZh<5A>iF½ ©[5CÿAH\dQ3dÄK"GÍH¤¤n‡<L<>šUÔ Ÿá†ñjV©ŸmÅÞå—GÍ*V8Fï.{P3<IaQÀd¨EÍð¼„ÿW$[ÔŒÈ1;å6á²}È…dšÇ fèÂ7®ê{àQ³«ÈI«kTJ5Cê÷ø\#w»³ªY£<59>çCôp«š5ª3åZ¯š!Q;STüòªY£vîhæU3$\ÏΦ^5£‡ƒñŇWV5ÃÀ¸
>W5ª6f°ÖcuΨfXÉc1¥/¯šQW¹ÙÞ¢fèGYõB½iÔ¬q¢%}é=j†pcêM¼·¨ò‘~«3¨YG—D´ÌL£fÈ,Îè”ÓFͺy³¨%S—€ôåQ3dC½É7xö fÈõÅ^R­ {P3äóæ™žlM3¬;q˜Så£Ó¦Òr“¬<1F>iFô_«3‰È˜f”^;–è•›)Ó 1¤M¼¬2¦¥É†þxnÊ4CJ+V<>ù<EFBFBD>¯2Í(Ý•N¥<4E>öåL3¤­Ž©ùiFi«8gÌÎiÓ ±*o_Î4£üÓt§5Ó 14%‰ßOmšQ&)¶zN1¥”iFÙ¢Ô?†ß3mšQJ謷s¦å}2ÿ™¾œi†4MÒñ8Kטf”Â9ž×[‹Ó-»M3äbÖ$ûSÎ4CZåøB¡¿gÊ4#k>R°¨:Uå¹oM3jF5Ú…èÒ¦NIç)¿7Íz§F¨_Î4ÃÍ<18><>OÁ´iv
8Wé^iM3¤$âø¢ÜÚcš!íðÀA{åajÓì ºç¤ú oš!
Âí<EFBFBD>=¦Ù<C2A6>¦ˆ>ü iÓŒ;+UI'6¨îIc ´WëQ3Üwp´Ç…5ÃIíXìæ0á2…š¡¬IJàÔ þÄGÆ5C["Im÷¦uê3£Îšf˜¶)Õ*ߦIL
ß3Ͱ¿ðuоþÖªýUÖŒîVc±»cͰ­Â<C2AD>èÊšaå»øÊšÕƒÚ`R̳fH¡âSì•5{ŠÒVÖ¬àTñà˜gÍÐÆ•mÈ…5+wõéÊšpGÄ…5CÏ ~ ZY³¾9qþžeͰgÍá+k†M½Ên‰gÍÐdof+kVÐyŠ[úpgÐE5CÉüöªYÆÒŸ¨f™¶C$dQ³1ï"óOb CRÌ¡f¨ì˜`AÍx¥³GÍhž;].¨ÙX6é@½ f˜7Òý{5C<35>ìx˜5K­Ñ®áµAÍ(/˜[V:Ô,ñâ–"5KhÂ+«GÍX-<2D>¿gQ3ˆ0qoš!ÕX¾wiÆõ
3fL3ŒWn­»˜f±Î2ÿÕ4÷…3ûWÓ,Òbƒßoš=øújšE$fq§âÅ4C2? ¯¦÷äõ¦YÀÎ)c
ir'«èÚ˜fhð)ÒËbš¡VÓ,€`C`1ÍŽûLz5ͰbíÜGv1ÍÐioš¡ €gŽ…4;úht‰Ò,cy×¹®'Í€®¶È½b=i†Žó<C5BD>÷ŒÒ =\n¿ïE³1ãðáǵŠfØü=·®ö¢š¸ô(Ÿ‚Íð˜Øï]D³ŒDJþšxÐ xPäN‰ h††²s^ñ ÙÝÂñZA³Üø9Sb4˳CÖµfGB<47>¿ uä¦> k†íƒÙ£ÕÃfwÔµÐfãÏÁñë)!ƒaž<9åfÁÍÆÝèD<C3A8>e‰iÜ ç]8I—<49>ÁÍ2®é΄ÇÍ2¿Õ3fp3dKIÙãÝ}ä®7Oœ(v
3¸Ž89¿d±Í2vz¤<7A>¼³Í°[N<>ý×ja«¹Jã]o¡©«dÿ,¶¶6¥ÙÙbá€<C3A1>“¤Ú Í<>KGÚl,VÛ´j¼m™ÆÛÁëfcyPð(N1Ç!û¢<C3BB>bÏ9ÞìîŸw­¼Y"Ï„1{Þ éEé”ÏÇñf mº9cáÍúwy3oPP™ùÆìy³q{*= ˜X®SÌñfH0II>Ë›%tþî¼$ö¼6$IáÍà5'™‰=o†><>Þ õ|˜½èfØ(
òj7KÜBv¢h<37>ÒøÀÉãf ý
¸vÁͰñ—Dãô¸^$Nµ_p³±
@§â3¸YB¦ O8Þ6è
Æ[þm†*†s+!åVX<>÷£IçzáQ¢Ç6cF6Ãsfæ® m$ý䤀…6O‰Ú í•Ä
_h³±2nò;Ø,΄Šk<C5A0>ÍbºAïš<C3AF>¸Ôäïv®º*LTÊ»f(<ßv™qÍÀ±Ç"<17>sÍÐÌGÚô.®Ó<3®ŽOù'k@\ÔºeÍRìNþÀ=kÚ½ñª*ßÀYRÌ©f(éÂ,/1£šá3ªY@Mºu2£ša¬só<73>E5ƒR/ÍUÕŒ;×ð¯9Ô,àüœk/e1÷ f8W?Dk*5;нWnu5Ãftå<74>Ñ5Ãó­äÕ.¨ü)ç\P3J{äR»5;ž®¥ jvd)TºVÔ ý OnøåQ3d¼Io»5C6Tˉ9Ô ké”ãP3ÔhÉ[{yÔ,R éWäP34Ì7‡X6¨:Ðtjï+1…šEä VipiU3êNƒSµSBJ5ÃAx/—YÔ ÉÇcq<63> ž2ZfLðL¡f8q¡nÏ<S¨:×Ô{b´¨u®9¥´CÍй¦Œ—²AͰ—ò—<c
5¿¸w5/j-j†ï î³qÆj†=Š»§¸CÍÐÖf¬ÞåQƪfhk#y—WÍÐy<MÇ>O©f8îI©ÈêÔªf0k0¬2å2¥š¡<C5A1>‰e‰)Õ,b—ËÔÉ”j†Žc…Qy[̪fÔ§Ï/ŠUÍÐË«ft"L]¤$¦T3$â¢É÷¹QͰÞN…—WÍÐZFRÙ/¯š¡”g¼\¸O©fè£sp<73>¶Ëªf8¥¯(6œr™RÍp Œñ6ùëŒjqF5ãÄÎ$°¨eÍ(<28>ÜùŽhY3PPÓüÉ“)Ö,RÞ#…ŠqpâÃ5ÃÆÛ˜ÓF5C<35>9̽wL©fèÌ3Öó•o5F5ÔÝ“û>8Õ Ù¡ã+'\¦P3,ùPEb
5éW~yÔ çð؃ëÔ <0C>ýÇL|ÑZÔ /~Êô¾<j†g=x#lÃÔ,RžyéwH¡fÊ<E28098>[œÌ fÇ;Ø7dmË fhD9õEb
I5V<ßZÕ 9­T0¶QͨïæÎiF½¤³4Vs¤ÇŽÙÆ™fXhðéŸÄ”i†~h,½3ÍÐYh|­…5Ô¦ú
Q2üÆ4×…š †Ä,jFO9p2žCÍ"Ö莛%¦P³øØZ—GÍ"¶>•¤\<®è v”AͰc0þQ1î j†"îã¾;YÔ §oè?´Õ‡#̘BÍ(±-Ïgšao7„.S¨j"e‡âò¨ÚÍv7Î4ÃA*ZŽÓ;{L3¬IëQäkgM3 ÓP(4cš¡
žRt7¦Y@Å
·G¿¼ižnN—7Í<37>©q%¦L3ªNUN'¬i¨eˆÂÀiÔ oc˜G/5CnõÝ<C3B5>v—Nî[yyÔ,P
ê‹%¦T34Y«|tuyÕŒz;Ó<´®L!ôÕçëš¡òŒ+ƒ.Ïša<C5A1>­nòL±fÁÊr†5C¿(ÒI²Äk†ù±B<C2B1>•ŒeÍðtÓ»ÐÁV5ÃYmùÒ´¬òù±ÏÅ—»eÍPTšî²fȽyË5Ãw-Ýü§eÍŸîiÚ<>;9Ö E§ãVŸÏIž)Ö,àÞ•¸Ç©f<C2A9>ÿ1ˆ4k†Â§Æÿåò¬¶7q¸Ä×´eÍP)ˆ^iÚ¡<C5A1>ÖÃRZ× ‰ûh}Ø6®ò¨ÿÅŒ)× <6E>x¶²®õæªÒCÖºf<C2BA>ºçŽ7¦KH¹f<C2B9>:äÊWȲfh90žGy¿ÌªfH«´ª.Ž>'w<>šá‰¤í¬j†jéöhnF5 ÏÎàåU³@ý¤i”SÍ<53>¼ÝÐÈô”˜ü$ƒ$‰)Õ )ŠØ1<17>ɨfˆè‰×$¦T3ÜtÆçÛòÏ”j†² T*ó÷”j†ý?®?¤˜%éϦ™V5 :AÉ©fè<66>†m_Ñ´Œj§š!v¯±<C2AF>j†~æ·ZëT3Äh™r™RÍ@Lµ»7½UÍÃ~÷±´ªUá£}û)1¥š!6°ÍßSªY ú<C2A0>.]i­jÆ)º©qËF«ša9þô¶ª-Õ;5¸¼jFÝè°ÒNbX Ï<>ŠL\5£X/Ò=Ò¢fôOÆåÏS¨
„ªš)bP3ú°>%¦P3úÃqmNðL¡fˆq7+ŠÔŒÞh4D<34>p™BÍèšH×8ÕŒ.ˆ~p“«š!ÄyaRªY tnq7<71>j†Øy3
V5Ãõކ{ejhJ5Ãwˆwø(fT3|÷Æ+†0cJ5£ïìQØFvª¾ëHWãëݪf˜
-˜QÍ0·ŒeÏ™¦x¦T³@ÂÂ)-.­j'æòªæGðÕ}jhJ5ܰP=%¦T3ÌÕ¹ÉÖºSÍÂÓ@þòªY îš„ ÚG> ŠUÍè+<>N5 ¿¸GÚ±ªf¸Y
LsyÕ slä_gšáÖ<®Ê­Ø­i†¾½ýÔ8fL3,eJKL™f<E284A2>T…ÉZÓ,ü9ƒÿcš¡éÃ1Ó CèŽ'…¦L3,ȨYátË”i†…Üøv×0Ý2ešaqˆóí$!EškfÒ ËT,YÃ)1Eš¡£Ýxð4Ã.¡t+½i†ExFÃß©<C39F>)ÓŒö³€Ï™fxXé]oM3<àã<C3A0>.S¨ŽÒ°åÊýÝ-jFc¾'Nšáù
Û•¬FXÔ k]ú>'‰=¨õIŸ[5ÃþèÑZ 3¦P3È:Hùä®÷5ã1ú”‰GgP3<nÚâf£5Ã#<jnãÄÐj†äx¬Ÿ¹³½EͰ Á=[$¦P3¬äqÆU7¨òfîÓ‡ša×f<BWy7
jÉ
iœQfQ3ìI¡+d˜!¥šaŸ«#g‰¯?£šaÃMjá.¯šá<C5A1>#&Qª<51>j†­Fôü滥UͰ¢r´"1¥ša“UЊ˫fØð
I6ú­jF{ÏEH5£æ>5Šž`Q3låãé”É[Ô «ºÒe½âM3¬kä¹r1ÍP3<50>¾ð¦¾jY®?oš¡£~•–Ï5ïræç5çˆÔ,•ûºuY¿zÓ,CÐå.@«i`6Ý¿gP3ìEp}èbšQÀùg;Ó¬Ä_-ošu*¸æÀÇ)—)êè·ýÛy3¦YÆÎoân¡Ž4ËæYÀf¨
nCš¡N£¥$&Ž%Íàø cŒ'}Kš¡VÿnŸáH3úë„ÌÒ¤Y&¬÷<C2AC>»«%ÍP]^ÑæwJhŠ4Cë ¾4(fH³ŒNŸã]f<>Àfh+Ï–€Äi†fDc™öüŠ4CSß{ËÆfèHŠC$îjoL3dö@MæÙÔšfÈNhè)>á2ešaG±ÌßYÔ¬ ÙøÌ½Ó¬ ­;OFÈšfh/Œ3+žù¬iF
è$1ešÑ~xl íXÒ 7œŒ‡<C592>É<EFBFBD>¬
dmò¥iI3ô„<YW¸<i†mÀT$ØføžQGÈ !EšUÔªÈÖ¿ÍÐÅ{0<¹YÑ _ÏD¾±Ä”h†”rîpyѬQõakÂÑÑ ÉýÒ}óò¢R¨À$±RcD3ÜL;SÍPj<50>;dœÚ™"Í°Ž¥%{M†4C«f³pësKšá ò<C3B2>-i†é2(ÛW†4ëô,MÆÀåI3ôÑg휱Ç4Ã}}<šq1´<33>EÙq#ìÕ<>·.ðM1¦Yž±.oš<6F>;Àâûœ1…ša±pŒïIà™BÍÐÐ)ÏÞ™N5;qíc}Ú%ö¨f(GÁ÷é˜r™R͸¸Í_SªÙIIˆG
ͨfT°Iy<¶~i*žÚ£šQ©¤EUÍÀrEj¡%ö¨fH¨÷)¬eÍ*õ—¼W…†5C2*üã{\3p^ÙÕušg·k†<ƒÊ=Ÿ)¤\³ÊÏàc&Éz\³ð’äëšUºg×mëšUêÿ;K!­kV‰„@OØãšA£]Z~Ä3®Z`lÙðde\³J;ÛA 4k†²æq•«QÍ*myâˆiÓ¬b?áˆÒ ÖšfÀÈÐA{Å[Ó¬Ò^CnQÖ4CÄq 3q—ØcšU"õRÏmºe<C2BA>iV©(ƒ ˆËšf@Ìðè%h°1Í*ÚWRâ …4iVÑ<56>÷I~x0¤å]Ä"L´Í*ÕÁÖ“w÷­h†” $ræ”Íð<C38D>à…û]YÓ ½½2Ri§Mö<4D>f•Ò¡Æ|#þ˜&Íj¡Ãgà2{L3¼62Öj]M³J]ÇpªR$ö˜f”å<E2809D>ÞÀABiVéÎKÅšÓ¤º…<C2BA>g¨Âé<C382>Ö4«È°š™t´Ã¸ÊåH3ä†êBפšŒ¡½¼(؆4CÞHÏœÿz9Ò *I/ˆÐ ýÇøÁ¨KìÍÐ °Þy4CÕ<>SÜ+
š!Û­ßdËÈ€fx‡æaÒå@3TÛW¤qKLƒf•«¾IÎ o^åäËifHRAܸ´f†÷µR#ê*±[3C·3\¡<ëÍ ù+íÁž<C381>f†w¼—vD^¡Í <0C>ÐÐNAv%<25>fÖHÁ~ÕTÉÍ Ÿ¾¤iÌŒz¤<7A>ç™ÒgìĄ́<C38C>þï\03|R+ íÓJ¾U<ƒ™¡ý@m7 n0³Æ;1%ç <09>=˜f(<19>­Jƒ™5ZÙŸ]^N[føˆq¤Öøff,34^C+b¹eiË Ý<0E>_tÈå¬-³†ÃÊxO|Æ2kÔÚãÐC™!ͧfœÈh)3\¬ʌڵ¡ .¬”Ùˆ!ýCÒ”,eF×M¸=WM™¡ïBý§€öPfHÏ)€xùn`(³Vž4µËYf¸¦Æç8×ÂÆ2Cêrä!ÚXf¸Þ6Ë }Î4«s¬e†&pc;äáÎ`fÈìAÂÜÁû3ÃÅØÃL0¶œY£&<06>r—ãÌ(ëçnÛb93\¨Hs
wìáÌp¡â¯³ Ù¡ëDæ¦Óœúa<C3BA>åhä 'Ë™5Ú ~/{83ô×·ô²œå Éx9άQ"Þ¸ÿð3áÌp‰gô+g†\¢ñÎ%¡áÌõÅW±|š3Ãõ?fò³¯š.ÿ±n:8!ÑjfhIh43öhf#ÖpwâÉ`føf T}‹™¡[n§ò m03¤ qš3C3¨@ýœ`Ùƒ™¡'+ï­˜:ÙÅçj1˜Ò“*µ®N{03¤'…#Ÿ+e†/TÁ…Ä7Jc™!sé¼kÀ¬eÖik=¡UbfÖiÃ,àxb3×
Pqm f†öw8ø­çŠ™uÚntk™ákˆ;^¹K[føŽ»T”S,ƒ™¡5Ê-Î4cfÖiFâÞ"—ÃÌ:6]ÎÒ¸]œÕ̺nØe434/<01>"׺áÌÐ4ï(èà7cg†\¨->MíáÌ:ª·2*Þø]ÑœYG?å<î¢òhÏŒêü2­³Ç3£<©ÂtÑå@3äIw×U
šákýô´³ YÇŒs¯2b4C
ŽÏ˜R¶¢R¨P฽žÍð<C38D>§ò^nífD3nÍRš¼œÍ<>]Õ°²á^Œ4CvU¼{*jÏ ³޵…F1žfúâüµÇ3C‡> ™½(Ù!ï*Ï¢«™až TUn©o43̸9‰d43ÌãæŠý@‰=šuï£D•Ø£™QJ<16>xÕÌ0‡4Z©%‰=šÍ"8Ûhf'W0]t9Í ­ý0·±ûi9³“
¢<EFBFBD>$ÃÔš&t€NõF3Ãz½Ì-D<>f†®¨®A{034ýC ß,fv¢óÀyJ1±ÅÌ0û`¯,Ȧ13Ì>ÈÒ<¹—¤ÁÌNj±y7Ô7˜Z¢í)/;,f†.Â3<C382>ïr˜f&t®ÜúÑ`f˜î¯"±3C¿@ì¹Å
f†~<7E>³ èr˜úôઊy(³“<C2B3> P¸ZÐRf˜µÆ
X.i-™¡‘ yŸÜÑHfh$ˆöGœ*a%3ôýéH¯<WÊ ó|¾ÈŸ<C388>¡ÌN:z¿šÊ MŸ|K™¡Ëà¸K>N³z á<00>owÚ2C
<EFBFBD>ŒF2C„ëuíÑ’5dÏbc¡9c·d†°m¥í²–Ì(©,ð3ŠÄnÉŒ9#q•Ë(<28>di ©ä4µ²[2Cr*Hš@@J2Cùþœ¹ª!3Ê6ã!{‘ÌëàÊùÕd†¬1$]J/Y
™!”cE«† Ý<E28099>µy?wª¼,dF‰hhøÍ
dF‰h¨ËJfÔŠº7aI5d†²tÙÖ<C399>Y$¥Ï3™Q†Ú“Ÿi 3ÊP<50><E280BA>/ ™Q†ZàŒS<>Y¤^NÒ4î²<C3AE><62>«†ÌC?Aiuc,3J_ìÔn“ì¶Ì(}­pË~‰Ý–b8>„qÔb jÊ2Ò*¨òf¬ÁÌ<C381>¤6&†‚҉ݘ<>2qÇ7ƒ™!Öf9üe13$©!‰Byƒ™!†ÌÿpJLafˆ¡<CB86>2Ñ%vcfˆ<66>Y$Ï<1B>ÆÌ<C386>Á†-…Sú8kÌ ±qÐÆ”ÄnÍŒzó QØí™!†²!i°i<3d·áóÊœPi<3ÊŠÃi—‰Ú3£¬¸ÙÍÿ²žbH<62>=MëìöÌ"ÍæO¿pí™!V¢ì´\Æ3£„¹ñÆÏVÛÊ3£|9ô“ãœ.ã™Q¾\â„eŠ)ÏŒòå°½}žÓ,»=3Äú“àm<3ä½iëA1å™!–±²å­ã™Q.:¨œÜ'X<>f”JWäÞqÐ qØýåÖÉš3tkN4g†
Ý{¿Y²3C>ŽeéæwYÎ ±¤fÍ™!V¨—;5g†Þ+IÚМY¤ÛCÂÒ¤Khrf¡‚$HsnÍ™!6žb¸Kùe93JÀÃÃú53Ê¿“)‰Ýœbèƒ#ȦÖÌ7;Îcº,g†<:L=‡è2Š3CÐd•gF‰yãK絬@3ÎÌ+“¨Sžåå)¶@ƒfÔQ>À¸ço±Í´Îß»I³Hm<48>fHCš!÷<0E>r>bÙS¨õ¨÷ÉMV5TÇ…þ€§ÄnÖ ±ð†;q× ±ñkè¸Â¿§`3ÄðdŸ¢XJ6£|>H<>¥Ìß»m3ÊçKâƒ\7£|¾ñó.ObZ7C Ïö-ŸE»y3äìE4íI|oÒ¼Y¤îIøzò¦y³(}!O—Z7£\?œ Ê"Sëf”ë‡2î‰`t3Äð\IÍ
/«›!vÆÊ<—ÕÍ<C395>ЇZiÜbt3Ä<33>¼x}ÑÍÏT÷­^ëf”˜¨k^Ø­Q"`<60>né—ÕÍC_¬±¤ã·Séfˆa½3Ž´n†Œ>4<>È\Jht3Ä0ëòh¡u3Äp¶Ÿ¸ã·ÑÍ(KýEŽ<å³[7£,AÔrù”n†Øøôz—¥šÖÍ"Ýß=³HìÖÍ<C396>íÆ
-ˆŽ­t3„Xh8¼n†<6E>*F3ºåb)ªdQºåŽ¥{ÏiÑÍ(ƒP®ËâfµŽòþð4o†L@l¬NäKéf¥Ì ÄfM8BHªœ3Dyx3„°egHñfHDWš2ÿEÅ!–çêñ²¼bø"'a 5o†,Anr<6E>fìæÍ£¦µ"¨jÞŒ¥µÅÞŒQFÊM5oF‰‡•V^EB7oF‰‡¹Ì¼Û!†¦5sQ¡y3db
<EFBFBD>DÀÔ¼bœoÞ 1pBX¼JìæÍë<>ºõèf”˜ïœu­qF"räoSºå$ŽIXö$<24>nFI‰ÖGeÑÍ"ÝNÇ6å4nÆnZ<>¦»q³HÍŸ0¦p32%ÆÚ‡ò˜.!Ññ²0¦¨q3ÊW HGâû²ÆÍ(_ñ@ï$!°n†XäaÂg7n†ØìQuYÜ ¡ŽÚS¡¶5n†¼CÌÖsÆÔ¸bªÙ·ÅÍ2•±ÜV¤ÁÍ2žW‰=¸rÑÁˆ[Ü 1jëÃ­Ö nF,¦oyÖ¸²‘Ñ{ˆ«¥q363Æ“»ì¬jÜ ±± ǧ´àfäiŒ§9Ë6¸bR »àfdm ¼G¾•Z7£LÇ1I:¸ÑÍ(ÕÍ­ïthÝŒR¹Ã݌ݺbãÒ„ö>U´‰¡ÐM:vÙ×bèþÉå‡7C9ä§ðÞ7C ølÇDÊnÜ éŒP?@IìÆÍ(
,¸Ü,4nFi<46>Oc4ƒQd¹{ÐiÜŒ² Q{Z'‰&¶8Ñ,OÐÚ6C.ã<>$ë*x²Í"Ý»Ã}¡hÛ ±
xSö@<40>m†{wjH=%öØfè95.¼³ÍÐs
*ê)l˜²ÍÐs*¡ÖÿXp³¢¹]7£Zô øLãfÈŽLÒ7år¸Ò#§ IìÁͨ=ÆxÔoò®h܌گÄ0iWƒqþÿ}Ò¸·*Kèq$¡ùxr¹©ÅÍpcÇÑy fn†óz˜ ©âõ¹]ݬÐQD¤Ä©ËéfÈÁnâD\N7CædÇf=OŒF7+üöÕ$טÖÍ<C396>ÂŒ[\lS>{t3dN$·ò¼ot3Êœ¼û ™“¼GÖ%öèf…ŽþKä>ÜV7C*oIœ#p9Ý ÷}â<> ·ý¹Óz9ܬtÝÆÕâfHEýQè+n†;<Ð]”…/<2F>áÖ?&ׯ³Š±ÍèÎ<C3A8><EFBFBD><E2809E>m†;ÿXÂg¹Û ©§à<C2A7>äÍÔ´îü„³…Õ6«„=a£re<>m†;?µ?”AÛf•*ͦÐam³JåV‡$äYÛ¬Ò<C2AC>2J<4A>µÍpçGâP9¦{öØfhUõôö¶¶0ÑTšÙaCáÎO}áî_{h3ÜùÑÖô”—Ó¶2& žy±ll3J¬ãî!¶ÍpçGŽ—°ÄÆ6Ã<36>ŸÛ͉=¶:U<>™ù<ê4ÑnÛ 7þ£%<>±Íp㟹t—³Ípã‡[øAÛØf¸ñ#}«²­n†?f<I<>n†?¾¯²Î1ºR%<25>Ÿ{t3Üøù»ÆŽ—ÒÍpß?±GÃw6£!<07>ÛHèÁÍêI-Ïèq9Ü ù“”$ôØf”>)5—³ÍžI¥ÓÄål³F”Q4k!+ rnnkl34£RÓ»±Í.7él`m3dוǼ4¸îï<C3AE>Ï@(¦q3º¿gê>"±G7Cž\@k¶2ïÑÍõrÆί§u3$Ã=ÝS<C39D>nFyðÌÎU7C¾Û˜8ÚÙ§`öèf<C3A8>Šcp¦$öèfè9…3bBÝ 7q°aœÿhu3ÜÄ>½n†{8<>j«n†ü³Œj&?Œn†dH~Ëê—×Í<C397>cF·Ñ<ïÑÍ%kÍ¢D«áN<C3A1>gŠ|ÎØ£áN}H×Íp§îwg;Ë›!¬RÂó¤ÏÞ 9<>hÈûf7Cÿ(æ„òÒ¼îÆiKaåÍènLÉÄéËóf¸ßU—V7£¼ÆûAÁêfÈks¿ìBZÞŒzD!áŽOî½í}3°Ëý‰fèáÍ:ÑëÔ
ùËófh…ó}qÝ´n†»*?;®ºîªù~̳¼e'Æép[ÞŒSŸ8«ÞñfhõT‰õÊ_ž7#üDG]ŽiÞ ˆ':1ƒex³N;ú…6å<o†»ãÜJò¼²<C2B2>BÌõ¡7ëT³<54>ïSøò¼2ŽúcÎhÞŒŠÆJ^ô6Ã!p|g/¬,o†ÆL<15><>Yð1¼îr³ÉófÈBfOúò¸µ^Bš<42>€\7C>àtÛ¶¸ryÐn©ÊHnvÒ“ýä¬nF€Tr¤mu3äähóMóf¸#ET±Ãcx3dö<C3B6>ÅsŽáͨMR_.F¢ o†Ûޤk|yÞ I2œ&7co†[Ëú‚çÍ›!E™ŠÜÃòf¸{àI3£,oÆ-Çy¤IŸ=¼ú5>åùò¼Ù‰#×óŒÄúfè]„)çdaÉøfȨ;Pûf”QÇï&Ç”oØö.Hýr¾Ò߯3·¯w¾b€óq,¾ܰwÅu*†7Cè>³t¼2Ù¢d~}9ÞŒ²Ü¸¥Ã¤ÏnÞ,QuZx3ÊdKd§2<¥x3d¤E\©ÏØÍq¶Z§^í_Ž7CÚYdOcŠ7c zæ/Ç›!·,žl³ ±Žô÷ œšâÍ(· Ï2¥›žE‡µ n†,0$ÀÎï‚ÆÍ(CŒw+<m†N;í>3°¶Úé 9ºõÕ6OTð) R¦m³@ÕØ÷(_Î6ƒA>Þ<>6‡¢m3Ì2c )MJ¬mFâÖ<C3A2>Qem³@Àõ|Ú¶¶R¯æ{îm32<33>Žqï<71>ÓD{l3t©B™Ú<E284A2>¶ÍϦPÆ6£“pì£ÄI¢=¶ >ãKy¥fl3ê×> ̪ZÛ yæ<ÊÅ6Cï%ü7ûŒm†ì¥Œâ‹ÁÍØÔ«’>ïÁÍèÄJæ><3E>áÛ<C3A1>î§7p3lÐ~á&—<>œÔ<>OÞŒ*ýã,:ãÌgÈFŠBœaÊ×JœÍÔŒ
qvˆ3à%æ‰3îGpm‰3nÍxíˆ3”;ŸÓ1sÄÙ˜<C399>¹Sè†8Ÿqíψ3¤ÍßsÄYF/õ?!ÎÆ7¨¦=q†m9¡VâlÎ ;â,§cêgž8+! g|xm‰³ÒDåZ‰³»7â†8#!‡b q†73JÈg¨ZjóÄY¦¾é×8£ýj‰Yâ ø7Ä\…³ñMÌÜßzÎföÌ8w³;f<>³
l•"+p6._¾œWàl¼WYx°8öÿÚ
œq÷“k œñ}áÚg=ˆκÜÌvÀYšÿ
p6V÷‰û5o€³1‰Ÿ9à,ÌÇÅp6Ï7ÀYGeƧà¬UñVଠj½IÌgµñ!þ8¯åw¾ó¾ÙÜ)Üøf<C3B8>z];ÞŒç
‰yÞlü+<¥l|3n,t­¾YA[‰*×âIƒÈkçÕ$4òÎ7ãÚÔk œÍ<C593>øp†Y3HÌg¥ñÎä8)Nà,*1'œ<>»n){á ‡¼ ¼ÎÆ"¥ÿ™p6žªfÈgIT”•7ÃuTÄ<o6¥â
o#÷Ot3®‡˜ÓÍÊüN®ºÙø4BøÝ ±°anvÊãõF7»<37>Ö<EFBFBD>nÖ«t½Ýàf]r×7¸YBŸÉ©”YÜ,Ô÷Lb7k·Æºêf0y”7 xLÉr¸¥“ϘÃ͈NJs¸•Ÿó{¹àfØÕç~¿ݬOeÕÍb™pÁª<C2AA>7£éu³rß,VÝ,b¥À¿µèf<C3A8><$æt³ñÅåö*Ý, 7…VÜŒ{5^;Ü Çm<>á©ü¸3‡U¼ŸMbãOl3ôŽ•we±ÍÆuÄ»ÔmVq&×&‰æl3dëòHVÛ,0‰síl³6û,nl³x®PÙàf¼÷"1§¡°¤OÍéf'Nùõ¼nF™øS0sºÙ é+HÌéf¼7K±E7CIÒ1cN7æUgÌñfwÖñ†7»³¶¶O Yà,¡­7Ë[p&{—×N8N/Ùg<>{k_;á,4ʘ»vÂ:²ñaÎ0ƒN=l1Î(-ejeÖ8CÿL"gã;©Øä¬P¯fŠ-Ȳ¬ùN¸"gZd˜CÎjšÍýWä (¼|Oä,â¬ÈY<C388>Y”Æ9;<3B>ÐOÉÌ!gÓ ®<>r†2~|-rÖn|¸ éu'ÛeQÎð•É<ÎE9£S sÊYãÆk£œQæ<51>ˆk s&KõkÇœ¡¦¼žgÎî^æLо®svb‡¥IÌ2gÜFaRfŽ9Ã)<29>À\ s¥ íF9Ã<1D>kAÎ*6Ý»Ä,r&rv?è¬ÆÙÉí®<>q†ÿ¦<>f<EFBFBD>s"ÖjœIû'‰YãŒR­âŒYã å7²½à<C2BD>³;!l%Îø 8KÌgØÃåã´Õ8Ø<E280B9>©Ó*sÆšÿd 9âìLõ°!ÎúýXµgxÀç e%Îp.zógŽ8CÚbÿâ,£ôºKÌg‰úâHÌgq̓ܘa%ÎÚƒ ɵg¿g•{B\;â Éx|Zˆ³¡zv‰Y⬠ëýfÌqÖªlƒ¬Â™”K]á ʳNÅÌ g¤ó%‰9á Ç<Œ†¬Â"œÕƒ—!×N8k\?w턳|/<2F>p9ÎÝgØÞšÏg¸¼ùƼøfciÁɰߌRƒ¦}f}3œ6VÑß Y^ü6/¾Ù˜’‘Ñ$1çõ‡FosÀÙ‰-³ù{8£<næ"œQëÀ.1Gœ=ÂèJœ<4A>÷Æž'Î2§fžsÄ™@-׆8k©ÍýJœaßPˆ0GœMçéÚgm,âj•˜%ÎÂch­Ä™Üø¯qvòdxmˆ3쟴ð'ÄÙ<C384>¹»*g «4cN9c+<2B>brvò£üµQÎ:ÒëÊŒ9åŒöÞ¦Wf”3åÓyå Ç©óÚ\”³ÚikôZ•³À‰¡3f•3É}»vÈ:J0Ùå<C399>³"}8¯<38>q†Ê3MÿÌguæC8ã Çûc”Ø.ÆY—¹üÚg”&ÎnÕbœ<62>”é'1kœ<6B>k³Ší»gØË9ÓŸ gg8äIÎ#gc­wŠ9æ<39>3Lcâ%­ÆÙÝ-w5Îð(+§Å8£.Uü¯ÆÙs̰g(ßlw1ÎjÁ³Ü„̬qÆE鲯Ê]S™¿f<C2BF>³€û÷m•9ãìœ<C3AC>{Wã¬#g¹MÍguX¯ÆžAÞoœQ<C593>c™<63>™CÎð…¬Ì!gㆳK¾<4B>ä Åi<Ý.Èúø´<q4œ¡èžÇ9£Æ×Syä ‡e"C.È®Ô&df³s¬<73>;{ r6Ö¹SÛ]<5D>³Êw²kcœ\§òrÞ8Ãfgh­ÆY”<µk‡œ‰árm<72>3n=š%f³qcæ¬Ã<C2AC>
ï<EFBFBD>³[1?ä-ÆÙx@
<EFBFBD>%ò!Òbœ<62>—îbœqeû1!3cœ¡4Aάã¬ó÷ðÚgcµÔú„Ì,r†5BI@³ÈY¦,„ 1­œÍËæÚ(g¨Å=d$^9 œ!1£œáQGÀ¤U9ƒ¥ÄÄ«r6
_å¬aÏ0ý‰rÖÆŸÎ
Wåìä¯k£œ!“…o^«r†Ýl~§Wå TñO<C3B1>3 Ô€yälLT…zm<7A>3C±A°gÔÈjkœa<13>8™kgœÝ Z«q†C£ø'ÄÙÉm`®
q:
G扳©¿ºÄq†vB¿-ÄY_5n¸gÜ£³HÌgãVÜX‰3ä\•ÉŸ9â ·e^<5E>³¦<>±gÔÀ,HÌgèïtLÿÌg<>½\ã À™öÆfIqí<qF úÁ¿¶gU:Wm„³iÈ3f…3€á<E282AC>Ûl®Â:yœ2ÀÙ‰ÞDÇ Ë‡¾Î<>=^8=kœ<>õˆôÚ]<5D>³q¯è|­Àr+e,8öH œ¡ÙÀT p†J¶sâg8ë“Xßg㢊ÜfsÎP(%Ë¡W]Œ“>s¼Y,´é}íx³1µò±õŽ7£†Ê·„Z[y³±vÚmáÍÖU“>s¼ŽåS÷¼™œÏ];ÞŒÿ>‰9àìÑ °+p†Ç¿8c8ãû÷µóÍ$'óÚùf¥K±áâ¡·NI“E³¾{²úféˆrwZ|3”Öœ÷ï9àìéí»g°¦N1Óà r p6>c)_€3”݈)´g<>•x‰YàìI\<5C>3lœü
Z€3Øc|i.¾ÙAMðø¯ó¾YjçDd߬¡Dø,硬CfïÅ7CŸÜëß ©7|õyÞ,H§ÛkÃeâÛ$du3$¿ežkÝ,f~ê¾6ºúÖwnI¿èfè<66>:ß/¯qf˜ÑÍ<C391>'-=KWÝ S´ô÷ºY£ÐEBV7‡œ4¬¸Y¥^9Ub7ózâBñÊù5+n†t!<21>[ܬ Kºìq3Üûd¦ò¸ËØ¢›ÍâfÊ'Yp3´ Rfp3êަ÷Qb7KòPz­¸˜ÛŒg·ùkÆ6;:eðSÈãfõä êkƒqóŒiÝl|UbæC¼U7Ckm<6B>ÝlÜ<6C>ªtC÷ºÙX¦¤8µ.ϛ͸š«I¯cÏ¡d•<64>ÇëfH±-eÆ´n†^=<3D>¿tn†úÑ#<o†uÐqŠÇçy³ñI¡$Ab7ý¦ŽÞŒúgÜ1Ã!â˜WãÍp<„Ló¼Ù“ºòf¨5 táÍPé$Kϵs&Œ.º@¬Â3ÅͰ<C38D>Ò)Üaªò}pÁÍÆr@ŽzÜ ïêÑfÈâfèÉÔó7Ó;$fq³ƒ¼Õù{F7ƒ&p¦ÓÍÐ ´ò~í¢›¡DcÅëfãñ
žuÇáØŽ7;øÁ,IÈðfhJÒ«ÐgŽ7Å>JLófLЦùk7CN“hpž7 <><C383>…W“ý o)AHËU¤H ³w—˜áÍÆ€Ó´:<oPÈUÞ³¼YÄt&K&Ï›© ®•7<1B>ðI¼NÏU)j<>˜áÍ€}M“ÓófÀX¨„ñò¼îÞ½çC((Ï<C38F> ^8Übu³ˆ‰W6 ¼n6>ä¤NùÌêfGœ.´ÇÍ(ëAŠÃÍð@<40>Å£/7C<37>Uç³8Ü •þmK<r-ƒ§Í°GE3×Jeyö˜¡Íp°#Ä"!e@<40>f/Ým(.'A=;ïVál6®ô$Årl6Þn~½VÙ,£<>µ8™^6ÃkIO¸E6Sj^6ÃdšƒÀmV6;<3B><>š§yf`³À»oAb6Ã)pâD—6CA{æÖ÷ l†Oîä¨ l6¨b^ÊÀf<C380>6òC<C3B2>[Ø,„{kØËfØ…€
ž6ÃY26Þ%fp³zÌ2ÛÅ6Wï9á#kQO…#È¿èh³ñÑ'IO]h³H½LÖñ´YÎÔ£JLÓfc¢ÅsæTÏ m†iïPÕÚf‰ÞKà(3¶YÀ×"ó÷ n†,˜&H‡ÇÍ =t­¸Ù¸?£ýõ)1ƒuy<>o[^7;p•ÃŒÝ,¢!Q¸cF7CU*/(æt³FÀBzÝlÌX<C38C>I_ž7Ã5®wÞÛò¼Ù¸šá-¼j,&lë}³‚5‡¼oVAþÈç}3 Ðñfè<66>1­ÏAô™­ÎP¥"ÏÞ7«Oÿ<4F>Å7ë´qÂÓ¾÷Ílœ¤¾õÍ"NOÂÞ7Ëè1}ô­oV *\xEï…3ä‰A<>˜€L¹N¬Ìg±r߉iâl,ÑÁi†Œq†ö IÞ8C£Õ˜d˜Î8;ÆÕ<C386>Ä*sÄYDLÍËgåé
µœq†'àÔK—Óg<>z[òªÐ¥ñØbœa«²õí<C3B5>3L@8˜eãÊRÌg[1M«Ìgc©s”Ž8×}œ“€#ÎP¦^¹EÎBœ<42>4 ™1Cœ<43>+ý¶y½q†ª æ<>³†.S²‡m<E280A1>34šOi¾)Þ8CQÉŸYŒ3<•d¹A9ã —iž8CžN)æˆ3lDU.:]ˆ3”HÈBœ<42>uj \š°gØÅK²ßg‰3ªZFËãɘâlÌÂÔó@b†8£ÂN®U[ˆ³Ú%µþòÄ:0Ž <0B>;¡.ÄYkº&K.Oœ¡!üd=q†Ì.^Ëxà ·¼('G8;¨ÏjØ6JÌg<05>}åœÄgHŠýœø™Î@àõ<C2A0>Ä pñ†E^f/ÀÙ¹Cëµg
=še!j€3´¥CŠ·Hè^8á®ËZ„³Œ”ˆÀó˜Î*êkøC·ÂuNöºg(?iMì0/œÅ;¿sÎjEÎhÜ gOQÐ"œ%${á •“Ó¾öÂj*£êÞ8#<23>…Ó õåÜ_~1ÎÆ_WJÝgÈÏœÜgc%+l!ÎÆj[z÷-IJQ;G1oœQrѼœq†½ÈÀÝíVãl,*¥îy1Î"ÃôÆÙ1®êƒ¿Þ8똦ç8rv «6?¡{ä U%…«”Wäì@U¡òrƉ6abe9ú¿n<C2BF>³J&É(½qò
ôzã -ÂË!/g<>³pΣ<4F>
Y\.OœÅzûž8Cu•n® q6¾×9ˆ3´U³Æ­ Ä×hQ9{œ¹9C<39>i<>½ gOšæªœÉž½Ä,s†&áÒmaÎî½E9Øxº*gã¯îOÌ*gXóuUÎ*
äd˜^9KËÊ5 å,Ϋv£œ…[ØY•3œ±rs»•9Ãy˜”™cÎz£ÛÕµcÎî^fç }v¸Ïíâœ!o4ËÇç<C387>3xÔ‡\IÞ9 HKÂ;gý¸Û_.Î]ó½vÎYÀþänzs†V³Â-,ÎY,t²"1ëœÑ½ò˜>šuÎÆ
ã”ëÌ;gÀŸZI{é ·î&”—Îp߉ò{Ž:ÃzíhYB:«”„Ô%f¨³q} 5ÿ“ž:O0-pGÔ…:K˜Èéö u6Ÿ§äš­Ô™4uF d86ŒÜ¦ÝQg }€¶X°3n'5c;Ê
£Ä v´`ç±3\àÒÑÚcg8É-©NÍbgçIÿ<49>b;C{ë o™ÅΰÈ+Ò—ÖkgHý:YOñÚÙÉ­×gÌhg€Pë!çÎøü†cŽ;»ÿ‡—çΰË+[w׆;ÜžøßôÞþ=œILƒgøögcäì¨Å;4².“ÄŒwV!ä½3¬¾ÐŒbÎ;CŸ±ü'ÞÙxkkäuñâ<C3B1><C3A2>[ú)i‰w†Žê³×ïl¬ Ž(÷Kï<4B>¡ã)÷Yï<59>áœ}4)f¼3ˆåŠðÞÙ¸ î&²Þ;Có»±á×sÞÙX£ðçµzgm¦rç¼3iªÎŸóΪ½w†SY v+°B”˜ñÎÚygD0ÏCŽÅ;CÑwVÐi‰ËÍï y<14>÷
œw©š¡ÖcZhÆ;C·®c^/Î;CŠóüÛ<C3BC>wvJ‡t iï .R? Žâ%­bñΰEºóÎpž°6:%f¼³ˆ%LƒÌygäqñªœwÖŸ„3ë<33>a@Í!K\;CÿýÄ<C3BD>Ç x6nÓ´/1ž¡ånâtÀ<ý¥GçÁ³\ðý
C3àYC1v=¦\¦À³Fe§rÌîÁ3lü£øRB<C¯Rš_¯<CGæ(Øžϰ‡ÓdîMíÅ3°+G˜ÿ¤ÏjÆFQœr™Ï<>#»Åx†ƒzœ&HL˜lb†:ñ GÉ™û®Xñ,R&¹£/äYD®Ÿ^/äYyRŒòL|Ì 1EžáºŸ<C2BA>ò,Q^ÓÍšòl,ÀÑòhrhš<ÃǼi{ò,F²<46>»Ä yO<õ5 ñŒ»Ÿ
}eÄ3”ßu˜x†yiµˆçm×*žakK¶.œx†œ˜ñjÜ=nÏ<>çŸDnöâYú·§­xvâ41Ç3äYDò 3^<SMÔñ šr$¦Ä3è)ØÌâEÏhß©Ÿ3fij1á4:¸ uƒH»£˜ÏÆP°§¸Ïrçc|‰ñ¬UÞò£˜Ïð_<C3B0>=.ƒÏÍËÚÝgU¶¿)æÄ3$,œò<C593>µâÎõªŠN‰ñLšk'‰ñ¬I“UÄŒx†^Lǃ<xñ,â˜UÙœx†…º¤ <0C>LÃ)¯fÄ3JI<4A>MHÔâij| ‰OæßsâLp¬!1Cž¡0QÌ-äÙø^÷ má
7î/ÓæyÞ.Ú<C"!qò¢Ãgcn罌k5Ï*·Rœ1cž!õ9·<í2cžaµ“[öæY<C3A6>v+?ožÁê¸?smž¢pªH<Î<KÈS“e¶7Ï*^Jôož¡ÍwâØgã± e -<>C(;gža_í,ò!óŒò²d<C2B2>:ôŒÛù§z†½ÜÂ„Í z†ûQùË£ga| —Œ/èYn”Ë[$fÔ³VÅ<¸¼z†SUÀî63èYÂô×$bȳ±)~Îß2äÙÉi
LN9ò <0C>
Sç‡Oža)g± <79><17>å7æY lƒ~Š%æÌ34n™wXož¡ú]¦<4F>ãëÙϼ%Ï !5nZ²<5A>gãM 5c†<kl<6B>ð¿iÈ34œñÇs˜'ÏГ?UÁ½y6æÕ²çȳ“[+4‰ò Ù!AìfOžaVÊÜåa!ÏÐ=x.¤-y†{1<>ÜÎß3ä
¦Míɳ6D±¦3äÙ‰§éÀO<£rû(ˆš#ϸ.3žÞ<“Y<E2809C>¶üÎ<Cšá‰*"„<y6Ö'½sÞìBž5ÅâXò¬?…à×Jž¥‡iðä2Bkó <6B>ÅÆræž(=ýZÍ3iÁ%fÌ3(U€cž!1%Wâ
{ól<Òy¨ÄŒy†£“C0cžát¼c<C2BC>|JHgX5Egè:q
çÈ3$ëa_Nb†<xüŽqRi†<+(šìÈ“g÷þàåÉ3œå5®„¾ò ]„ÐûDBš<C¾få|{GžAˆ³ÞÉšò ‰Øcy•%fȳZzV`!ÏÐ.]:=-äÙXÏÔé†{ò I"‡XoN<ë¨ :¶àYP&<Ã9×<šòàY óCfv ž5«…9ðlÌ`üLz­àv<>¥­žÏèŽ&¨”ÏÆL<C386>¥"|Ï*J <04>óâw”ˉg賃=Š9ñl|$…ò䮕<C•Öɉ yA-È¿'Ï
LÁé½y†…ãñÐŒy†·ºr¯ØÅ<+(?Žx9óŒ²T¢ŒÓ˜gØæ7Q®»[Ì3øM,æ?‡Xv†<ÃW¯b©Çº#Ï8Wrož¡¤äø;ó ‡åá¶½y:ØŸÓ53æY£$À°1ϰQ•gãÀÅ<ÃÕ)eyÖž¶ÝÖ<£®Údˆ#äÍ3ÌËùÌ™gã-M†bÍ3¼ã±D6z¼y­]fÌ3ÞÙë3¦Ì3ì9ÅÛTöæÖÓJpnR˘gèP…<D¾"<zaj¥¶EÏ$½%JìQÏ%v<>5Cš¿gÔ3®ªNÌ©g<C2A9>ä/!Êœz6Ÿm®=ã~±¼¢ôèr|æÖ£gl¬"!cž<63>©ºù\+y†²ƒ*·XOžEÉ,”˜!ÏÈ¿›<ž#ÏNä>éÈ3iR%dÈ3ýOKÑg€7#ïN_+y¦7<C2A6><yÆ-y÷äÙ˜Rî…¡7ÏÆ“@Ù“gh ÕEkrâ¶œ
7Ð\Ä3ä$ô.ê—Ï T÷´œx6.¨œ¹+ù"žqî~Úˆg”¬1^6mÅ3ôgÉQ<C389>.'žá¸§ŠæÀ³ñÙv¢<76>*‹é|xÏp‡j¾\¿6àYFõcÿÚxgãÚ8¨8qã<71><C3A3>5g“ÄÅ;+s·hg'ÚíM´ÌXg¨?¸<C3BA>5´=d³{Áΰ‰ËDË vVæýfƒ<66>Aã:D?ñØÎ
â!îšÃÎîYEþ<>a’ø;¾`gÜ3ógc°3ÔÇé­/Ø<7A>QÜ5‡<35><E280A1>?
Ÿ>ÿ›;C<>Ulç„Ð v†vj•·ev†oçxÆ9<18>²ÖٸьïÃIÞ:C3¿Æy¬uÆØ ;Þ:ë’¿ôµ±ÎÆ[ÞÑNîk£<6B>©|ÔE;çj«<6A>¡qÓ„Œv†MŠÙjÁÎxý”¶ØY§"ÂcþžÁÎêúJÝbgxHeuÁÎ<C381>¡§ç°3È?õ¼Ñ2ƒ<32>¡,FLÞ;C“ýsò\;Cý±ðŸà°34©<34><¯;ì õ(I3f°3ôis˜;ÃîbàÌ•;ËhÊÄ<C38A>àì [ß™ScìŒÉ%Æv6Þ°, ò<C3B2>ôn‡\,;ÿd 
v6®•<-A¯<41>!¯9ð™î¢<C3AE>¡ ¶sJà¢<C3A0>á”AÚÀõÐŒvƧ¥<C2A7>õ.§<>¥§ÿÕ¢<C395>õ1“ÓÚF;Kè4<><31>u4iŠçùµÑÎî÷F;CKïùuðÚYÛö׆;;qÈ+†ßâ<C39F>õ˜„l°ÞYÀad.ܶmÏJ¾»µ¯àYo³QøžÉj%~mÀ3¤
LjË<EFBFBD>gmvêÞ€gè´‰ÌÖ¯
x$8c<CØ.þ<>ÏÐm5sBÅž<>§ûP¸®ÏP &µ=ðl,œe3Á{gHŠ€$öµóÎzÈI\Mï<4D>¡ -ÞÙIûEr­8ï¬(Õ{gðn+Ÿº-ÞYÃÓ,§ ¯ÞÙYSä:­Û;¿Š4˯7¼³ðõ¿þéøúo8¹þBQ÷?è?I¿@œ Üÿ‰K¾ÿïú<7F>ñRÿòïØýÂõ<¾IüÇxmiþú¾FF½Ý˜zrvŸ:Æð¯ŒaàþÿuÕÃÓËÿøúÿÂÙýúŸ_ü÷ú·?è<>ü¡¢Ä5J;Y^°þ-/˜è„<1C>A—lË f¢ß°‰½¼`ÿ[^%ËØ\_ïü[^Û"è§³yÁÿíoyA”w¡¬dóþëßò讉¾¶ýS/p·ÆÞjû˯ÅwpÅ/t?hpQë{»Š©©xÀTÄI87²‰´<E280B0>ž‹ÖÝÿ oc-S:pÖ±9'¾ðÆtTMb"•ÿÄ´ô¿ûøÍë y—º!ýä$ñ×CR")?9Güæõ<C3A6>Ì„<C38C>çÍ7èÿø;^°Éxàl¿ïßþ×<43>Å“ËëýûßñzT\Îu~Çßòrxn¢]<5D>åõÂßñz88@~í:…øw¼¶DOPÃúúÿJ'×Ëß—ÞŸmqpô|d,±Ù¿5ážq™gé)ïåéõD×—Ø"<0E>þz~
ùÛoøï^(P*oß|ÂáûëÌß½ Ò¿P.±Î@án¨ojÅúƒNÔ=KNü'nbïèÊ_ËxŒa!¯†Îfæ(<28>ÿP<C3BF> ÏcÉ|TÁÃÈÛÏ=x*Ïçã¥@Ïà?]ôŸ¨`†úÕû©ç[/ô/ÿíÿÿëÿõÿüíÆù÷<C3B9>—²ŸŒ~ Æ;P¸(šŽñxxú'4¦oÿéQy}Dج\Ï;‡¤ôþ˜êËcªØ»§j­,CÒ?yDíõJÌJØ<4A>©Ÿ¼?¢þ<C2A2><11>¿¸<C2BF>A~†¤~ôþ˜Î×Ç„ú!ô m$“þÑÛc:<3A><õ@öàÒó“÷G^Q"´:ÆzÏQæGï<47>)~cL8lºGCÿåýq¤×ÇAI¢z~Ô?yD¯ÏØ _ÁÌ<C381>æGï<47>éõ9»"I¦šùQýäý}cÆF9x6ó£úÉû#z}ÆnµéùÑüèý1½>g7œ 3?š½?¦×çìFêz~Ô?y{Dáx}Ên8zìf4?ú<>A½>k7t˜5+7ý“Òë“v+”t¢§&ó£Ôë3x£Œ0=7éŸüÀ<C3BC>^ŸÂQuzrÒ?ù<>!½>ƒ·‡×³“þÑ êõI¼¡ƒ<C2A1>]¾™ýÀ ¾1<C2BE>·2ë7ý“Ò7¦ñ¹
v~Ò?ú<>A}cG¦Z¹‡Cÿåý<C3A5>ש‡š(õO~`H¯ÏÝà½]ÙýÀ ^Ÿ½;ê7Ì"Nÿä†ôúÜ݃oVqú'?0¤×çîŽ>»vg~ôƒz}öîÈP¶ë8ó£Ôë³woðÏõD©òCz}îî<C3AE>¯ë‰Òüè5gï|®[<5B>ùì –ŸÀùâ£{Uÿüþ âñâ æžè?ž=Ñ÷ð<>ÂüHÞÃ7¦`Œ-! ,£ FÿèÝQ}cƨ"Ü:êÐæ¨ô<C2A8>ÞÕ7&bŒ
×ëÌÙ”Qé½;ªoÌÄ4ª@µÄh`v<>JýèÝQ}c*ƨЪråž JýäÝ1}c.¦1´fŠT­3¥~ôî¨^_JcTÈöEÝâ<C39D>U<14>ÊüèÝQ½¾æQC<>®á•úÑ£JßXXcT\TŒÒò9[™½;ªïÍãƒj¼eTúGïŽê{3;Y.˜šò=³›½;ªïÍì(¹˜šÊ}Y©Ÿ¼;¦ïÍëÔj3Ú¶È ô<C2A0>ÞÕ÷æuê]ºqd8ÌQ©½;ªïÍëèNsŒ©)K”Qé½;ªïÍìÜרsø•úÑ»£úæÌŽžˆ'˜óÔó“wÇôÍyí81]¢$V¥ôæ¨ò÷æu4Có7•:Ïgý£wGõ½y<C2BD>z±£?êƒæ¨Ô<C2A8>ÞÕ÷æu°‰ÊëŽ9[™½;ªïÍë„T4Ìl÷Ãåó“wÇô½yäN,¼©|JýèÝQ}o^'«6Fèç¨Ô<C2A8>ÞÕ÷æuòêò<C3AA>&ÅT˜úÑ»£úÞ¼P]€GQ4s½;ªïÍë5-XÜ¡UF¥ô7³*…ÚžïÙJÿèÍQ•oÎìǸ
cjB™­ŒJÿèÝQ}sfGñ:wùÞ_0?zwTßÙOô Ï¢G˜o•þÉ»cúÞ¼Žöÿ•¶]î1©Ÿ¼;¦ïÍë$EDˆð˜ôOÞÓ÷fõŽÊbTÊå{Lê'ïŽé{szEé3Ìã{Q¬ò7£³8Ž^ts¡§ò7ŸS÷8©ómR?xwDßË!½bgyî??ysLõ{39<71>pªç6ãó“wÇôÍ<C3B4>´—ÅüØï‡õ“wÇôÍ}4»Çüx>O}ÏOÞÓ7WçЀÑV¸Í1韼;¦9¿rüB<C3BC>&¼ÄgQýèÝ1•oŒ‰dvLÙ¨kŸk`õ£wÇT¿3¦ûyø­ÙÑU(Ä¿<>ñšôW¾÷ò_Iÿ güøŒ[ùÄ‹¯ €=üüð‹ß¶ÌA™ØõöÖ}ö¥7ž^\þãG_þþ2Ë|üÁ—ö×{‡}ž½½õ¨úŸ}ñß–ü|z0Qíóááü¾ÐçÓƒùm<C3B9>ÏÇóûòžOç/*{>>œßõ|z0QÏóñᬥ<ŸÂo«x>=˜¿(àùôp~[»óéÁü¶lçÃù«Š<C2AB><C5A0>ç÷Å:ŸÎoët>>˜ßWè||8ë#ÅgðÛâ Oæ/Ê‚>=œß}z0¿-úô`þ¢èãÃù}ùϧ‡óÛŸ<C382>æ÷%?ÎZìóá!ü¾ÌçÓƒù‹ŸOç·¥=ŸÌoz>=˜¿(çùøp~_Èóéáü¶„çãƒù}ñΧ‡ãvm?»mfvmá-RãOöLúÏlòô>;×Èw
úè`\G ×"è³C±­€\o ŶòM<C3B2>>;×ûÇwúð`L××è³CqÝ~|ÿŸf6ûyÿ|v¶Á<C2B6>ëøóÙ¡¸Æ>¾ÕÏgc[ú¸Šíåãšû|t(¾‡<C2BE>ïêóáÁØæ=¾<>ÏgcÛö¸>>ŠíÖãû÷|x0þØû³/o»¹¶AŸŠkäÛ}v0¶+<2B>kôÙ¡Øn@®=Ðg‡âšù¶@L3Í|; ÏÆvýqm€><ÛìÇ·ÿùð`f«Ÿ§íÏGàºû¸v?ŸŠkêãÛü|v0¶<C2B6>kïóÙ¡Ø.>®­Ïg‡âš÷øv>ŒmÚãÛø|v0¶[<5B>kßóá¡Ø&=¾mÏg?»áõƒÍ¾µÍù±là%"êøï¤LÿPZú+{­>]
ç§2Ò_ßúÕƒøÔµà>|ïlå0
0ϼ`ñéüyž<79>à<®Z`éY¥ñC½«^<19>ïU¥FóC=«^<19>ïQ¥FóC½ª^<1A>ëM¥Gó3=ª^<19>ëI¥ó3½©^ëE¥ó3=©^ºÿ¹TÏh~ªÕK£q½§ôh~¦Õ;k<>/
Xj4?Ô ë•ÑøÎWj4?Ôë•ÑøŽWj4?Ôùê¥ÑØNWz0?ÒñꕱøWj0?Ôéê¥Ñ¸ÎVz4?Óáê•ÑøŽVj4?ÔÙê¥Ñ¸NVz4?ÓÑê¥ÑØVz0?ÒÉꕱøÎUj0?ÔÁê•g"ß±êÍOu®zi4®S•ÍÏt¬ze4¾C•ÍuªzééÕv¦Rƒù™U/<2F>Åu¤Òƒù™ÎT/<2F>Æu¢Ò£ù™ŽT/mz¸Tj4?Ô‰ê<E280B0>-=šÏïÀø>Xj4?Ôë•ÑøþWj4?Ôë•Ñø¾Wj4?Ôÿê•Ñø~Wj4?Ô÷ê¥Ñ¸>Wz4?Óïê…ÑøþVÏ`~¨ÏÕ+cq}­ÔX~¦¿Õ cñý¬ž±üP_«WÆâúX©±üL?«ÆâûW=cù¡>V/ŒÅ÷­zÆòCý«^ëWõ ågúV½´ lûTéÝàéWõÒ^£íO¥·¤OÕ+Ï*®/•zTù™þT/=Ãý2ý¨ô3ܯŸèKõÊýÈõ¡R·£ŸéGõú©^ó~ö€³á¨â8â™>tv²ñ>Ì >{v²q>Ìh>{v²ñ=Ìh>{v²q=ìh>zv²zf0=;Ù8v0=;Ùøz4>;Ù¸v4=;ÙßëÑ|üôÞ<C3B4><C39E>˜Ñ|öìd£†˜Ñ|öìd£…˜Ñ|öìdUBì`>yv²ÑAÌ`>{v²QAìh>zv²Ñ@Ìh>{v²Q@ìh>zv²êv0Ÿ<;Ù¨f0Ÿ=;Ùhz4>;Ù(v4=;Ùèf4Ÿ=;YU3˜<33>ž<EFBFBD>l4;˜<>ž<EFBFBD>l<>ž<EFBFBD>3šÏž<C38F>l³$õh>Ÿ$iÏNÌh>{v²±CÌh>{v²1CÌh>{v²±BÌh>{v²1Bìh>zv²Ú z0Ÿ=;YM3<33>ž<EFBFBD>¬ˆËgÏNVÄŒå£g'«ý¡ÇòÙ³“ÕüÐcùìÙÉb}è¡|ôìd5>ìnð'ÏNVÛÃn5~òìd5=Ì£ÊGÏNVËÃ>Ã}òìd5<Ìíè£g'ªðD¯yå•ÿåßC*'>ª>¾ÓüÇ
þÍ?N¨cÙi`,¨ñKç2î cLÿúÇ~ãŸÃ×?—±"‰ñHñ«þÊ)ÅT¾þøÇ×ÿø/ØEü¯_ÿóë<C3B3>ÿþOÿöýõ?ö©ãx(†ÍKFýôg÷ñÀø«<C3B8>ògÿìXÆc_Á1œ_q¬9ÆB~ûwË{ÿ· "ŒµiÄÿÛ "mñÝ ã@n,«j*eý4Ú¯2®ÄñÏÿäðÛ—Œy\såÈÿ© àûïýoÇð»÷~7ˆo¿÷m¬ B­ã%>õÖÿæ?õÎÿf¯]ô¨ù•»zãÇôzÐÿV#PcÓÿ“<C3BF>ó˜<C3B3>{Éé<òW©Çø:¶ùg<C3B9>
óO ãñƒ¬ÏF¿™<14>"ýK¿;ßÈÆ{ÐûÎøwë¯ñ?ˆ©ÞkÿŸ¾ga<9a÷ž¥õ"þûF~…±¸ûÿÛGÇR¯=æÍ'—?øöŒåoéã«V7ã(GŽtßÅ·ÿ÷Wò7W[ã•s¯6&þq1üŸfñ5I°ñ¬<16>žÒ.5¹)ñ¬¿R,)´Ômì¢X-GM¹µ]lüç³ÄPÖXû5¾()eó{
}µjnçö÷Î2žJJk =K[ì±…]¬celCçXÙ†7ÞX<C39E>qkÀ ²‰•qÃ*1n†yŽ© <20>é¨ëïa÷6¢DZþÞˆKWÏ.6VĽǾþ
gÝ%Ž;×.TÆÛZYÿ¼Šd†ÒS>7ËáÂX«å]l|èãŸmÛßë)ôñ¼°ù½11<31>¯B-eóç¥1O<31>w÷ÀM¬<1F>ÖØ¸<C398>§¿/£•kNc°»X멇´ùØkùŽ3¤C}ì¹Mb9匱îbãou x<>Õ±Ó_R— Šåpäq—8w±6féÐÔ7ìŽ<C3AC>µE·Âß°^3ÍðXïX:ÎÍïõ_GjGîió÷õ_©Žij<$ïbµ<62>a|kìü5¾ì˜æ7ßù+¥ñ[­oÆyâø{¬YÕWLÅÎ~޶®¿×Ž1³Ž5]8Öß±ñ¬SsÏëß7b#2f—¾þ}m|ÅÎ#ö´
<EFBFBD>Ûì˜\Êúç<C3BA>ؙǵÔÎÍ0#ºÃÅ1co~o|ÅÆ-*$õ±Ç³<>ИòÕÄzÇÆB2Çñ=*yý¸¸õ3ö®æÕ;4Ö¡<E2809A>ÉE}ÃTlÌU%ôc3Ìük<òu¼×kl|ÃÆz7¤¾ù=lÅŸã†7^ù5>¸1»ÔÍ8Ç]´c©}lþ¼ñ
;¹¨UhüqcriaŽ»k®aL„u·WºZv±vÖ1¹¨/X7lŠuì2„4¾™»Ø¸g<C2B8>?°¥]lÜݨô_°³<C2B0>ÉeóOŽõï˜Ã<CB9C>£÷]lÜõZ;×WëcIÓÆ…[ëúk#–Æ•ò±þuý vzãë·¥‡_G“À¸Êv±ÔJ_‡õ¯C>\}éù~õž<C3B5>D±øîëÈIÙÄÆ¥™Ú™¶¿WVKmó{i,çâòó©ëXŠmL-Ï÷KÇj‰ãrÞO<1B>lž5Çb(<28>©¥nÆ™Çb¨×#<_0_“³<E2809C>Ï´:¾p<C2BE>æ<EFBFBD>^ÐÀ}Ì-ÏÇ®cõ—uŽu¿…åd^cu¬†JÌçóÓ±ñÙtŸÞÅΣŒO½mÆÙ~ÅDi3ßCã™q³9Ëö÷zcryæÕ^Æ<>bc!x´u+¼šÍ»X_³|†¸ÆÎ±ïJ-»Ð¸¯<C2B8>¹¥Ÿ»Ø˜R;ò;|è<Æb7õ©Ó±"¸=ébÀ'ÒÇ•>ž1Š<31>„± ûXy­<>î<0ÖÈXÀŽoAõ<41>±öC\R_ª;2ÞÕ\ŸÅϘù)¥¡VÇ2åTŸòߨގs,cv±ñ|é˾‰µqLA}£îXÆéXR<wdnrDZ4®·ú¬
<EFBFBD>9!—°ùµ2Ö>çQŸ<1B><0E>¿;a¾ãæåþ_öÞeW÷WÔÜM?A)Q4”îLÐ”Ô ïHÿp-3s÷ˆ¸U<C2B8>{çÉn}*We†E„»¹½\gècáà)IÙ%1(æƒwÖŒc?­j> *>eÊÇvª©Tƒ°9¡`Ë
ƒÌÇëžN¯ñú-|°º}ªùb0+ܘœÄàRÏpãî0¼r(c'­XÇ~O9^¾õ£Úlyþ8¢A0¡š\»Ãðƒ<C3B0>b_1˜{ÁA‡ûiÅà¤q ü¼=8ürëİСCŠ¿bØV𮹛ïÁÞƒ£œòñ¾ ¬poXKJäØY
ª®9ßî0(´NI`¿Ìûƒ*‰/2=0ß¿7Üa8Ý©œüfêq!}f0øt“û; ?¥r¼öÃ~‡ïw¼[F;š`0øxò×C<C397>­X
x˜ÙÍûƒjoŰ
3;ÂP¾bp©*îäØ
+”°9§qbðN ª¡@©o}Bð§à™ÃÌï7ü75Q«0l`3ä+k‹ÈçÃÅÎ,¥1,æ<08>Ãs§Âµ=¾çðrÄ͓6ÿfÅ"vs:<É*9ÁªqóîRÕúAb¢S\ªW æKÇù31ì„n~¯0ôp‡u8é{}bxɲT<Ü),=ÃkÇ
;^yÂ_ô†uÖÚE©ûcâÀ"D6 V$<24>žy{x•©ÖáOô%„u`p§ð~üŠ©KI5± ,.!¬ÃÖq0ßI¾ñ¬`ñ@O·ã­¯XÆ»K‡Å›-5(ë"Ó{ƒ Øeyl®FÇîØ\+=÷Èá_Ã&.Í0êÍ/!,<¤¤¢p¼µÇa~¼õƒW—½?Þ:ÎÞ°' vð|,6£¾¸S~X¹Cè#néqftð ŽÆ&ª˜énÅÌšbê:"X+Vxóî<ƒÄ‚“¢üîñ=˜ÄÑ0(Fè•ã¥;ÚˆAbPÇþrp“䉸S|mw ¬¹#°T=ÎÄ%€åB—Ö œMä<4D>€f9ÜkÑx†Á Š=ÍíÕzãð\Å
LYïçKo<Ú䱨~ðËÃQ¹Ù:MpÃ"½S<»‰á­
]´#€Õp©&ÎöÀj­j 9p°]N_úÛKñ¹ðãÀ~õG ÎTIÉ0È,~íÄ|îú89°>1àr|Ïqg(Fë<C3AB><E280B9>«Í'œ)=ÙæíUhq}œp¦¨á<C2A8>øœ~üŒa0*±‰æþjpªc5¬¬¥#~ÕŠl(bp¦p±Zæ[ox~1ñÞa—ß¡yÃh¿z?µ*žXÍú°ùϼ˜aü¥#|Õè®à 2®0ÃWx$ؘaasµ#|Å|^M†1âÜ<C3A2>ðU“¸<E2809C>að²ô=`ѱ™zíxéŒÒfÃOA¼t8jvÛƒÎXÑQ-¤<08>J ÷¹½p6V)ä%¦w>ÃWð
ƒZÀ$˜t„¯Z(ºTb<54>‰Óýˆñz¨ƒOj=Þ9ÎÊ\
«'`:¶—ÇîV1aÂN¥zœn<B…%>!ÇhPÍÀŽè4=U1xVP<56>åˆ^ÑDÑÓ]vD¯x³Â+g|<ø¶>©$ð¬rë6ß9T{V=
L´fš:µ2Ã;¾Še¾ î-Õ·‘¤kÙ7Ìœ4<C593>
<EFBFBD>©B׫fVx¨Á+˜`A÷k„ñçäN) $ö†EÆìúÜ[X Nª³ˆÁW+xDó{÷2Œo«§ùαpºªœv(kH'梭¸W4sŽàU•°ša°Bð“3xÅŸ×ë±h
_<W•j;V´«7M ‹¬›¡Ó†XàMK刻ñ æ÷LÁ­2–Õ—*=Äp<C384>ul`!xýÜ«˜ñ#3tUañI•± »?¡«*}œ†am´r„® 
’ž± öŸ—Xí<58>ê<ê.cÉR:0øoÍ0¨;XS£âMzÝ
ìĹ /1LŒÛͰŒMî<4D>ÐVNAÃË=<3D>Ð6ZÓ5<C393>à^AK¤#t¥©j PiºÛ‹ØÃðÐ+3r…'œ<>þ$¼+˜†ð>ç÷ ÛU¥ãGb~®J5HŒÔ4N2¯{(Áþó«9Vä<56>%Xáˆ\ñu¹fX-KuÆ®tó †í³§Ñ+<m}"†+VÐÄ­>.y8eswá÷ÕãL<C3A3>=€P+ó•ÃQª€Å´KÆ0=QcFÍϳ0ÃOTS&Á¹JZe:ÛÂäà
ƒ• Ãz†±`Ä—>0œÃØ3ó<33>g¨z=Ï3¬?(l<±ù=üŸž½ÀpPE8äóîp?y`¢®swiPP!èkãîR£J Æ_pKþþ³Þ¼t(•¹µ°ËœºVR+íè¢Õ‰1l(—Tž
•'¯üÀ`SbÉÎ7ÎÒ<35>áW°<æO .ëC<C3AB>oÅá uf°¼*ÔU‡æpòSà˜ŠöœáZa§†#<23>¥¶ºa¹F,skñ¤×-¬ÑòÌSŸÂF j!äL~GX_skÁ<Ñ™ÙóÙ©«ÆÝa54=z<>µ=·aš©Û• ;Ó%Å50¬DuLÈ5äçKà g ž•$<24>g( 6µSC:s˜cqÓ
+2 v ~u¾ô@»aÚ3Ÿ&¤lj§exVxXÄc—Àoµ°¤q™q{ÁW Oc¸¦¡¬@§BïŒN„²|kÍ^,|+Úñe]•bX(¸à eyxOzï.€j~/]µËoí¦ùÖ™kÐp0èDè•©Pѳ«À·R+nÜÜëªg0i<30>?BYp»ºž%äVÄFðG(Ë1î ϺÀ¹Âb‰G( !ªŸ ú:tªT¼X<C2BC>@ ‡#ëÒç÷cE#agŒ÷ŽuL÷Ê0øNÐ,#„ÙxȪ·
Œ¯¹ÎXVã! ¢ÀúcÙùŒeáuÝn¾þñ3˜5|ZÅð꜊Aªç0äX¸ãµCï3´!Ì?LjÎPªX±aÌJè±ÃeÛø^׈߸½§YýÃÖXO:¢YÍÎbÅ
Ž<EFBFBD>>ÜJ\9¾,<?£YpɘŒTn¸ñaÀÂ*àÊ27Žç<^:ÓÞ:ä†Q?bÓM|h<>àYEúu#5ÐX„­{Ô4^Áp¶[ÃØ0xAøßˆe5¾{`°þ¼ÎJ1¨DS€pæHŠh`Xªä€áâ­7
UU쮦§aа± . DL˜<
¥ "¦A³#‡ññ¤sÆÐ e H4JLÆЬ ]?˜ ÉýÆg­g†at_9Î{<3<ìŽ<06>TyÏ ´Ó»ð]Ú3ÃN©S<C2A9>¿÷xfÄqž¸G¬¢²ú¹d<C2B9>Ý/-š!uõ¨wèÍðˆÙ¸—‚Í*å
ŽQÉ_ M3zTDYk¨_Þ4Ãã`@[ÒcZh<5A>iF½ ©[5CÿAH\dQ3dÄK"GÍH¤¤n‡<L<>šUÔ Ÿá†ñjV©ŸmÅÞå—GÍ*V8Fï.{P3<IaQÀd¨EÍð¼„ÿW$[ÔŒÈ1;å6á²}È…dšÇ fèÂ7®ê{àQ³«ÈI«kTJ5Cê÷ø\#w»³ªY£<59>çCôp«š5ª3åZ¯š!Q;STüòªY£vîhæU3$\ÏΦ^5£‡ƒñŇWV5ÃÀ¸
>W5ª6f°ÖcuΨfXÉc1¥/¯šQW¹ÙÞ¢fèGYõB½iÔ¬q¢%}é=j†pcêM¼·¨ò‘~«3¨YG—D´ÌL£fÈ,Îè”ÓFͺy³¨%S—€ôåQ3dC½É7xö fÈõÅ^R­ {P3äóæ™žlM3¬;q˜Så£Ó¦Òr“¬<1F>iFô_«3‰È˜f”^;–è•›)Ó 1¤M¼¬2¦¥É†þxnÊ4CJ+V<>ù<EFBFBD>¯2Í(Ý•N¥<4E>öåL3¤­Ž©ùiFi«8gÌÎiÓ ±*o_Î4£üÓt§5Ó 14%‰ßOmšQ&)¶zN1¥”iFÙ¢Ô?†ß3mšQJ謷s¦å}2ÿ™¾œi†4MÒñ8Kטf”Â9ž×[‹Ó-»M3äbÖ$ûSÎ4CZåøB¡¿gÊ4#k>R°¨:Uå¹oM3jF5Ú…èÒ¦NIç)¿7Íz§F¨_Î4ÃÍ<18><>OÁ´iv
8Wé^iM3¤$âø¢ÜÚcš!íðÀA{åajÓì ºç¤ú oš!
Âí<EFBFBD>=¦Ù<C2A6>¦ˆ>ü iÓŒ;+UI'6¨îIc ´WëQ3Üwp´Ç…5ÃIíXìæ0á2…š¡¬IJàÔ þÄGÆ5C["Im÷¦uê3£Îšf˜¶)Õ*ߦIL
ß3Ͱ¿ðuоþÖªýUÖŒîVc±»cͰ­Â<C2AD>èÊšaå»øÊšÕƒÚ`R̳fH¡âSì•5{ŠÒVÖ¬àTñà˜gÍÐÆ•mÈ…5+wõéÊšÉ\¸zNðÕÊšôÍáF¸ k†=k._Y3lêUvK<k†&|3[Y³ÎSÜrxaÍÐЇ;ƒ.ª<4A>°WÍ2v<32>þD5Ë´"!š<E280B9>y™³¨Yfb5Ce<43>À jÆ+<2B>=jF;ðÜérAÍÆ°Iê5üîß³¨zdçÀÃô¨Yj<59>v
¯
j†ciÜèP³Ä[ŠxÔ,¡ ¯|¬5cµtþžEÍ ÂĽi†TcùÞ-¦ט1Íp0^¹µîbšÅ:ËüWÓ ßÎì_M³H
þ ¼iöàë«i˜Å<CB9C>ŠÓ É@ü,¼šfxTHÜ“×f;§Œ5,¦YÈ<59>¬¢kcš¡Á§H/i†Z^~XM³
<EFBFBD>Å4;î3éÕ4ʵsÙÅ4;@S¤½i†ž9Òìè£Ñ%fH³Œå]çV¸ž4ºÚ"÷Šõ¤Þ3ZH3ôp9¸ý¾ÍƌÇ×*šaó÷lܺÚfhâÒ£|
N4Ã`b¿wÍ2)ùkâA3àA;%. ÊÎyŃfw ÇkÍrãçL‰Ð,ÏY×Jše 5þ.xÔ ;Ô‘›ú,¬f<>VÝIR×B<42>?ǯ§„ n†yòä”7=%¦q3œwá$]B7ËØ~åÓÐ7ËüV'‰Ü ÙRRö¸àfw¹kÅÍÆ'Š]ƒÄ n†#NÎ/Yl³Œ<C2B3>i'ïl3ìÓcÿµÚfØj®Òx×Ûfhê*Ù?m†­Miv¶Øf8`à$é…6CBsçÒ…6Õ6­oed¦ñ¶¤ÃÍò<C38D>FNüEðºÙX<ŠSÌñfȾh§ØsŽ7»ûç]+oÈ3áFÌž7CzQ:åóq¼YBnÎÀXx³„þÝEÞLÇ%Tfî%íy³q{*= ˜X®SÌñfH0II>Ë›%tþî¼$ö¼6$IáÍà5'™‰=o†><>Þ õ|˜½èfØ(
òj7KÜBv¢h<37>ÒøÀÉãf ý
¸vÁͰñ—Dãô¸^$Nµ_p³±
@§â3¸YB¦ O8Þ6è
Æ[þm†*†s+!åVX<>÷£IçzáQ¢Ç6cF6Ãsfæ® m$ý䤀…6O‰Ú í•Ä
_h³±2nò;Ø,΄Šk<C5A0>ÍbºAïš<C3AF>¸Ôäïv®º*LTÊ»f(<ßv™qÍÀ±Ç"<17>sÍÐÌGÚô.®Ó<3®ŽOù'k@\ÔºeÍRìNþÀ=kÚ½ñª*ßÀYRÌ©f(éÂ,/1£šá3ªY@Mºu2£ša¬só<73>E5ƒR/ÍUÕŒ;×ð¯9Ô,àüœk/e1÷ f8W?Dk*5;нWnu5Ãftå<74>Ñ5Ãó­äÕ.¨ü)ç\P3J{äR»5;ž®¥ jvd)TºVÔ ý OnøåQ3d¼Io»5C6Tˉ9Ô ké”ãP3ÔhÉ[{yÔ,R éWäP34Ì7‡X6¨:Ðtjï+1…šEä VipiU3êNƒSµSBJ5ÃAx/—YÔ ÉÇcq<63> ž2ZfLðL¡f8q¡nÏ<S¨:×Ô{b´¨u®9¥´CÍй¦Œ—²AͰ—ò—<c
5¿¸w5/j-j†ï î³qÆj†=Š»§¸CÍÐÖf¬ÞåQƪfhk#y—WÍÐy<MÇ>O©f8îI©ÈêÔªf0k0¬2å2¥š¡<C5A1>‰e‰)Õ,b—ËÔÉ”j†Žc…Qy[̪fÔ§Ï/ŠUÍÐË«ft"L]¤$¦T3$â¢É÷¹QͰÞN…—WÍÐZFRÙ/¯š¡”g¼\¸O©fè£sp<73>¶Ëªf8¥¯(6œr™RÍp Œñ6ùëŒjqF5ãÄÎ$°¨eÍ(<28>ÜùŽhY3PPÓüÉ“)Ö,RÞ#…ŠqpâÃ5ÃÆÛ˜ÓF5C<35>9̽wL©fèÌ3Öó•o5F5ÔÝ“û>8Õ Ù¡ã+'\¦P3,ùPEb
5C«éW~yÔ çð؃ëÔ <0C>ýÇL|ÑZÔ /~Êô¾<j†g=x#lÃÔ,RžyéwH¡fÊ<E28098>[œÌ fÇ;Ø7dmË fhD9õEb
5ÃI5V<ßZÕ 9­T0¶QͨïæÎiF½¤³4Vs¤ÇŽÙÆ™fXhðéŸÄ”i†~h,½3ÍÐYh|­…5Ô¦ú
Q2üÆ4×…š †Ä,jFO9p2žCÍ"Ö莛%¦P³øØZ—GÍ"¶>•¤\<®è v”AͰc0þQ1î j†"îã¾;YÔ §oè?´Õ‡#̘BÍ(±-Ïgšao7„.S¨j"e‡âò¨ÚÍv7Î4ÃA*ZŽÓ;{L3¬IëQäkgM3 ÓP(4cš¡
žRt7¦Y@Å
·G¿¼ižnN—7Í<37>©q%¦L3ªNUN'¬i¨eˆÂÀiÔ oc˜G/5CnõÝ<C3B5>v—Nî[yyÔ,P
ê‹%¦T34Y«|tuyÕŒz;Ó<´®L!ôÕçëš¡òŒ+ƒ.Ïša<C5A1>­nòL±fÁÊr†5C¿(ÒI²Äk†ù±B<C2B1>•ŒeÍðtÓ»ÐÁV5ÃYmùÒ´¬òù±ÏÅ—»eÍPTšî²fȽyË5Ãw-Ýü§eÍŸîiÚ<>;9Ö E§ãVŸÏIž)Ö,àÞ•¸Ç©f<C2A9>ÿ1ˆ4k†Â§Æÿåò¬¶7q¸Ä×´eÍP)ˆ^iÚ¡<C5A1>ÖÃRZ× ‰ûh}Ø6®ò¨ÿÅŒ)× <6E>x¶²®õæªÒCÖºf<C2BA>ºçŽ7¦KH¹f<C2B9>:äÊWȲfh90žGy¿ÌªfH«´ª.Ž>'w<>šá‰¤í¬j†jéöhnF5 ÏÎàåU³@ý¤i”SÍ<53>¼ÝÐÈô”˜ü$ƒ$‰)Õ )ŠØ1<17>ɨfˆè‰×$¦T3ÜtÆçÛòÏ”j†² T*ó÷”j†ý?®?¤˜%éϦ™V5 :AÉ©fè<66>†m_Ñ´Œj§š!v¯±<C2AF>j†~æ·ZëT3Äh™r™RÍ@Lµ»7½UÍÃ~÷±´ªUá£}û)1¥š!6°ÍßSªY ú<C2A0>.]i­jÆ)º©qËF«ša9þô¶ª-Õ;5¸¼jFÝè°ÒNbX Ï<>ŠL\5£X/Ò=Ò¢fôOÆåÏS¨
„ªš)bP3ú°>%¦P3úÃqmNðL¡fˆq7+ŠÔŒÞh4D<34>p™BÍè« núlQ3þ`¥<C2A5>SÍèè7©±ª&!¥šwÓ©fˆ<66>7Ó`U3\ïh¸W¦†¦T3|‡x‡<78>bF5Ãwo¼b3¦T3úÎ…md§šá»Žt5¾Þ­j†9ÛÐ"‰Õ sËXöœiŠgJ5 $,œÒâÒªfáqb.¯ša~_ݧ†¦T3̹ ÕSbJ5Ã\<5C>l­;Õ,<
ä/¯š:à®I¸0£š¡}äàXÕŒnQ±²ØéT³ð«j†¥À4—WÍ0ÇFÞñu¦nÍãj©ÜŠÝšfèÛÛÑO<C391>cÆ4Ã2¡Q¦´Ä”iHU˜|¡5ÍÂ/™>ƒ1Íp0„îˆqRhÊ4ÃŒšN·L™fXÈ<58>ow
Ó-S¦‡8ßNR¤Y°f!ͰLÅ<>i4jI3ìJ·ÒËfX„g4ü<34>Ú™2Íha? øœi†‡…±ø<C2B1>ÞõÖ4Ãó>þ8á2…šá(
[®ÜßÝ¢f4æ{â´¨ž¯°]Éj„EͰ֥ïs؃šQŸô¹áP3ì<33>­•0c
5ƒ¬ƒ”OîzoP3<£O™xt5Ãã6 -n6jQ3<£æ6N M¡fHŽÇú™;Û[Ô ܳEb
Jg\uƒš!oæ>ýp¨vmÆ#t•wÓ fÜ<E28098>Æe5ÞºB†ö¹:røú3ª6ܤîòª8b¥Ú©fØjDÏo¾[ZÕ k)*G+6Y­¸¼j†
ß<EFBFBD>d£ßªf´÷\d<>dQ3jîS£è 5ÃV>žN¹™¼EͰª+]Ö+Þ4úFž+Ó 5 ošá«åúó¦:êWiùìP³ñ.gi~îQ3|ŠH<11>˜AÍR¹/hgš¡[Q—õ«7Í2´šffÓý{5Ã^ׇ.¦5œ¶3ÍAAüÕò¦Y§¼iÆþqœr™¢ŽÎqÛ¿<C39B>7cšeìü&îêH³lž,ið€ªà6¤ê4ZJbâXÒ Ž2ÆxÒ·¤jõïöŽ4£<34>±AÈ,MšeÂz¹»ZÒ Õåm~§„¦H3´žàKƒb†4Ëèô9Þeö,i†¶òl HLfhF4iÏ¿©H34õ½·li†Ž¤8Dâ®öÆ4CfÔdžM­i†ì„†žâ.S¦6pËü<C38B>
<EFBFBD>Ï,Ð
Òºód„¬i†öÂ8³â™ÏšfÔ0<EFBFBD>n@í‡ÇÆÐŽ%ÍpÃÉx˜ÜÙCšÁª@Ö&_š4COÈ“u…Ë“fØLE<45>-i†ïu„ R¤YE­Šlý;Ñ ]°Ó›ÍðõLäKL‰fè@)çÍU¶&<1C>Í<>Ü/Ý7//š!…
L+5F4ÃÍ´3UqyÑ ¥¸CÆ©<C386> ëXZ²±×dH3´jÆ1 ·>·¤ž Ø^!ƒ²}eH³NÏÒd \ž4CÍñpÖÎ{L3Ü×Ç£C;Ó Y”7Â.1ešQýxëßcšõçëò¦¸,¾Ï Çøž´ ž)Ô
<EFBFBD>òì<EFBFBD>éT³×>Ö§]b<>j†r|ŸŽ)—)ՌՌ»Ñü5¥š<C2A5>”„x$ÑÐŒjF›”Ç#1¥ša뗦⩡=ª5<>jIZ´ ,W¤êQb<51>j†„<E280A0>zŸÂZÖ¬RÉ{UhX3$ Â?Þ±Ç5ç<15>]]§yv»fÈ3¨Üó™BÊ5«ü >f,¡Ç5«<35>/Iα®Y¥qvݶ®Y¥þ¿³Òºf•Häñ$‰=®ô0Ú¥åG<ãš¡
OVÆ5«´³äB³f(k7 Y¹Õ¬Ò–÷!Ž˜6Í*öŽ(<28>`­iŒŒêø9͘f•ö²t²¦²$Ž<03>‰»ÄÓ¬©—znÓ-{L³JEL@\Ö4b†G/Aƒ<41>iVѾg(¤I³Šn¬¸OòÃ!Í(ï"<61>hV©¶ž¼»oE3¤d é<>3§¬h†ç(ÜïÊšfèí•J;m²‡4«”ñÇ4iV >Øcšáµ±VëjšUê:†S•"±Ç4£,ôzH³Jw^*Ö¤˜&ÍÐ-l<C´¦YE†Õ̤³¤Y¥ÆU.Gš!7äPº&ÍÐd íåEÁ6¤òFzæü×ËføSIzAÄ€fè?ÆF]bh†N€õγ° ªæñœâ^iÐ Ù&hý&[F4Ã;4“.š¡Ú¾"<22>[b4«ÔX=ðMÒpfxó*'·\N3C
Šä&À¥53¼¯•QW‰Ýšº<>á
åYÏhfÈ_iöl43¼ã½´
Íhfh„†v
²+i4³FBö«¦Jöhfø<°ð McfÔ#m<Ï”>cfF}ðç™á“ʨX\LcfhŸVò­âÌ íj»Ypƒ™5Þ‰)9OèìÁÌ<C381>0CÉhlU̬ÑÊþìòrÚ2ÃGŒ#µÆ73c™¡ñZË-K[fèv€ü¢C.gm™5VÆ{â3Y£ÖÖ—„Ê i685ãDFK™áÚÈc`ÕPfÔ®
ua¥ÌF é¦d)3ºnÂí¹jÊ }è·<´‡2CzNÄËwC™µò¤©]Î2Ã55>ǹ6Rw<52>{ ÑÆ2Ãõ°ñØXfèóp¦Y<C2A6>c-34<33>3Ø!w3CfæÞ?0˜f±åÌ51è´”»gFY?wÛË™áBEšk¸cg† <>œMÎ ]'27Õ ˜æÌÐ{,G#g8YÎ¬ÑÆõ{ØÃ™¡·Ü¸¾¥§<C2A5>åÌ(_HÞÀËqf<71>ñÆý‡Ÿ g†K<£—DX93ä<12>p.
gÖ¨/þ¸ŠåsМ®ÿ1“Ÿ}ÕÌpù<70>uÓÁ ‰V3CK:@£é˜±G3±†»ÏH3Ã7¥²ìÓXÌ Ýêp;•iƒ™!‰ÛЬ˜šq@êçËÌ =YyßhÅÌÐÉ.>WÁÌ<C381>žT©uu؃™!=)ù\)3|¡
.$¾QË ™Kç]f-³N[ë •¨{0³NfÇÛÓ˜¾l€Šk[03´¿ÃÁo=W̬Óv“¤»XË _CÜñšÈ]Ú2Ã×pÜ¥¢œbÌ ­ñPnq¦{0³N3÷¹fÖ±érÆíâ¬fÖuÃ.£™¡y h¹Ö
g†¦yGA¿{83äBhñi2hgÖQ½•QñÆïŠæÌ:ú)çq•¿@{fÔP<C394>ä—i<E28094>åI¦‹.š!O긻®jÐ _ë§§<C2A7>Í:fœ“|•³ R¨p|Æ”²Í<>B…ßÄíõŒh†ï<•÷rk7#šqkÒäå4h†ìª†•
÷b4 ²«âÝSQ{f˜
p¬-4ŠñÌ0Ðç¯=ž:ôaÈìEÎ yWyÍXÍ ó¥ªrK}£™ažÀÍIì £™až7WìJìÑ̨{- ªÄÍŒR²hÄ«f†9¤ÑJ-IìÑÌhÁ©ØF3;©¸é¢Ëifh퇹<E280A1>ÝOË™<C38B>T}$¦ÖÌ0Á ´tª7š&Ôëen!j43týC
p<EFBFBD>Úƒ™¡é`ø~`1³<13>ÎSЉ-f†Ù{eA®0<C2AE>™aöAæÉ½$
fvRÍ»¡¾ÁÌÐmOyÙa13tž |—ÃÌ03¡;påÖ<C3A5>3ÃÌtp‰=˜úbÏ-n03ô œe@—ÃÌЧWU”ÈC™<43>…ÂÕ2ì5VÀrIkÉ <0C>ÉûäΈF2C#A´?âT +™¡ïOGzå¹Rf˜ÏàóEþ| evÒÑûÝÔÜPfh2ø$à[Ê ]Ç]*ðqšµÌÐK€|»Ó–RÀâ|d4"\¯Ëh<C38B>̨!óx Í»%3$€hƒ(m—µdFIe<49>ŸQ$vKfÔȉ«\Fi$³Hó`H%§©•Ý’ÃPAÒRBÈ÷çÌU
™Q¶Ùx°Ùd†XWvÈ®$3d<33>!éRzÉjÈ ¡+Z5L<35>ì†Ì¨Íû¸Såe!3JDCÃonP` 3JDÌ@]V2£VÔ½ Kª!3Dp(<28>¥Ë¶†Ì"q(}ž!ÈŒ2ÔžüL™Q†Úll|YÈŒ2Ô·d¤˜Ì"õr¦q—…ÌÓ
\5d†ú J«c™Qúf¥vd·eFék…[öKì¶ÌÃÁð!Œ£¶Ì«8p:USY”VA•7c
f†$µ11”ÖHìÆÌ(¹m|<7C>‰;¾Ì ±6Ëá/‹™!I
IÌ 1dþ‡Sb
3C
¼<EFBFBD>‰.±3ClÌ"yÞ€4f† 6l)œÒÇYcfˆ<66>€6¦$vkfÔœOˆ²ÄnÏ 1”
IƒMã™!»
ŸWæ„Jã™QVN»„HÔžeÅÍnþ—õÌC|èiZg·gi6ú…kÏ ±e§å2ž<>7~¶ÚVžåË¡ŸçtÏŒòå',SLyf”/‡ííóœfÙí™!ÖŸoã™!ï-H[Š)Ï ±Œ•-oÏŒréÐAåä>Á
4£Tº"÷ŽË€fȈÃî/·NÖœY¤{ÀXsŠØ 93ÄPèÞûÍÝœòáp,K7¿Ërfˆ%5{hÎ ±B½ÜùÛ¬93Äð^IÒ†æÌ"Ý&]B“3C$AšskÎ ±ñÃ]Ê/Ë™QîЭ™Qþ<51>”LIìæÌCA6µf†Ð¸ÙqÓe93äÑaê9D—QœB¸€&û«<3JÌ_â8¯ešqf^™D<E284A2>òÌ(/O±4£ŽòÆ=µh†[¦uþÞMšEjƒ4ÛDÒ ¹wh”sðÁ¸ÓÈžBͨGýø¸OÎh²ªY¤:.ô<%v³fˆ%€7܉øfˆ<66>_CÇþ=!†'û…ÀR²åóAj,eþÞmQ>_䲸åó<C3A5>ŸwyÓºbx¶oùœ(ÚÍ›!g/¢iOâ{“æÍ"uOÂד¯0Í ™xºÔºåúá\P™Z7£\?”9pO£›!†çJjVxYÝ ±3V~๬n†„>Ô£›!†äÅóèn†Øx¦ºoõZ7£DÀD]ó²ÄnÝŒƒtK¿¬n†úb<C3BA>%¿<>J7C ë<>ùp¤u3dô¡iDæRB£!†Y÷<59>G ­!†³ýÄ¿<>nFYè/rä)ŸÝºe ¢–+Èç t3ÄÆ§×»,Õ´néþè™Eb·n†l¿0nhAtl¥!ÄBÃáu3„T1šÑÍ(+HQ%‹ÒÍ(p,Ý{NnFp]7C¨u”ð‡§y3dbcu"_J7C(e¾%6kÂBRåœ!ÊÛ!„-ë8CŠ7CŠ ºÒ”ù/*Þ ±<W<>—åÍÃ9 c¨y3d r“ë4c7o†5­AUóf”x(­å(öðf”xˆ2Rn¨y3J<¬´ò*ºy3J<ÌeæÍÞ 14­
Í›!ƒk€$¦æÍã|ƒ°ðfˆ<66>ÂâUb7o†XÔ­G7£”Ä|ç¬kÝŒ3 ›ÒÍ('qL²'it3JJ<°>*név:ž°ù+§q3v#Ðj4ÍØ<C38D>Ejþ„‰\Ô0…)1Ö>”ÇtYÜ ±ŒŽ—…1E<31>Q¾b@:ß—5nFùŠz' <09>¥p3Ä"_ >»q3Äf<C384>ªËâfuÔž
µ­q3äb¶ž3¦ÆÍS;-n©Œå¶"
nñ”xbŸ¸JìÁÍ<EFBFBD>ˈFÜ2ÀàfˆQ[nµfp3b10}Ë“´ÆÍ<C386>ˆŒÞC\-<2D>±™1žÜegUãfˆ<66>e8>¥7#Oc<ÅÈY¶ÁÍ“JØ7#kå=ò­Ôºe:ŽÉHÒÁ<C392>nF©Žhn•x§Cëf”êÈîfìÖÍ—&´÷©¢M …nұ˾¾ÑÍC÷O.?4¸BÈ!?…÷Ö¸bÀgC8&RvãfHg„ú²Lb7nFi<46>`Áåf¡q3Jƒ|£ÜŒÒ Ë݃Nãf”‰ÚÓ:I4±ÍÀ‰f9xÖ¶r$YWÁ³”méÞî EÛfˆ²jl3Ü»SCè)±Ç6CÏ©qYä<59>m†žSPQOaÔm†žS µþÇ‚›ÕÈír¸Õò _€Àg7Cvd¾)—ÃÍ<C383>™8MbnFí1Æ£~“wEãfÔ~%†I»ÜŒóÿï<1B>ÆÍ¸UYB<59># ݸ§ÈÇ“ËM-n†;¶ŒÎ[0{p3¤˜×ûÀÌêfH¯ÏíÂèf…Ž""%N]N7Cv'ârº2';6ëyb4ºYá·¯&¹Æ´n†fÜâbòÙ£!s2 ¹•ç}£QæäÝ<C3A4>ÐêfÈœä=².±G7+tô_"÷ᶺRyKâ<1C>Ëéf¸ïï´âf¸íÏ<C3AD>ÖËáf¥ë6®7CŠ,ê<>B_q3Üùã<C3B9>î¢,|iÜ ·þ1¹6žUŒmFw~$ ll3ÜùÇ>ËíÐØfH=$o¦¦Ípç'œ-¬¶Y%ì •Ó({l3Üù©ý¡|Ú6«Ti6…kU*·:$!ÏÚf•î”Q|¬m†;?‡Ê1ݳÇ6C«ª§··µÍ<C2B5>„‰¦ÒÌÚ w~ê wÿÚCáÎ<C3A1>¶¦§¼œ¶Í<C2B6>1Yð$ÈecQZdwù´m†;?r¼„%6¶îüÜn6Hì±ÍЩjÌÌçQ§‰vÛf¸ñ<1F>(„Œm†ÿÌ¥»œm†?ÜÊÀÚÆ6Ã<36>é[\•mu3Üø1ã‰Hjt3Üøñ}•uŽÑÍ<C391>:( ü”Ø£áÆÏß5v¼”n†ûþ‰=¾³Ý 9€ÜÎ@BnVOjyF÷ˆËáfÈŸ¤ä  ¡Ç6£ôI© ¸œmÖðL*<2A>&.g5z Œ¢¹XÛ YyX<79>ss[c¡•šÞ<C5A1>mÖèp¹Igk!»®<æ¥ÁÍp|B1<42>Ñý=S÷‰=ºòäZ³•ù{<7B>nÖ¨—3æp~=­!îéžjt3Ê“„gv®ºòÝÆÄÑÎ>³G7kTƒ3• ±G7CÏ)ô˜Òèf¸‰ƒ
ãüG«á&~ð èåp3ÜÃéTãXu3äŸeT{0ùat3$Cò[V¿¼n†<33>æù{<7B>nÖ(Yk%ZÝ wj<SäsÆÝ wêC¼¼n†;u¿;ÛYÞ ù`•ž'}öðfÈyD+@Þ7³¼úG1'Ä<>—æÍp7H[
+oFwcJ&N_ž7ÃÝø®º´ºå5Þ
V7C^ã˜ûeÒòfÔ#
ù+ß wÜ|rïmï<C3AF>]ÎèO4CoÖ‰^§nÈ_ž7C#(œïë¦u3ÜUùÙqÕÍpWÍ÷cžåÍ(;1N‡ÛòfœúÄYõŽ7C«§J¬Wþò¼‰à':êrLófH@<Ñ‘ˆuÚÑ/´)çy3ÜçVçÍ<C3A7><C38D>µ¼Y§š}|ŸÂ—çÍ<C3A7>sFóf”T4Vò¢·Þ ‰„ã;Ûxaey34fªèìÌ<C38C>áÍp—…Hž7C2{Ò—ÇͨõÒ|äÒ¸òǰ¤Û¶ÅÍ<C385>˃vKUF¢p³“žì'—`u3¤B<C2A4>#m«!'Goš7Ã)¢ºˆÛ!³<>|,žs oFmâør1ex3Üv$]ãËófHá4¹{x3ÜZÐ<çhÞ )zÈTäö7ÃÝOŠœey3Îh9Î#MúìáÍÐרñ)Ï—çÍN¹ž¨1©_Þ7Cï"L9' KÆ7CFÝñ(€Ú7£Œ:~79¦|³Ä¶wAÊè—óÍ<C3B3>þ6žé¸}½óÍœ<>cñÍ<C3B1>䆽+®S1¼B÷™¥ãÍ<C3A3>É%óëËñf”åÆ-&}vóf‰²4¨ËÐÂQ&[";•á)Å›!#-âH}ÆnÞŒ³Õ:õjÿr¼ÒÎ"{0 ¹eñdýËñfˆu¤¿áÔoF¹ex®<78>¡(ÝŒð,:¬]p3d<33>!v~4nFb¼[ái3tÚi÷™<C3B7>µÍÐNÉÑ­¯¶OY<4F>2mª®À¾Gùr¶ òñ~´9maKHiRbm3·îŒ*k®çÓ¶µÍ<C2B5>z5ßso tŒ{oœ&Úc¡KÍøÊÔî´m¨Ôx6…2¶<19>„c%Ní±ÍHð_ÊC(5cQ¿ö±aVÕÚføÈ3çQ.¶z/á¿1Øgl3d/e'ðX nƦÎX•ôù{nF'ÆXT2÷ Ü ß†t?8½<38>aƒö ä, †|òfTé÷g8C6Rüâ P¶¼Vâl¦flˆ³û@{Gœ/1Oœq?kKœqkÆkGœ¡ÜùœŽ™#ÎÆlÌ<6C>B7ÄÙ\üìˆ3ØhFœá mþž#Î2z©ÿ q6¾A5í‰3lˉµgsfØg9S?óÄY YP«•8ã“ÀkKœ•&*×JœÝ½ 9[ˆ3¼™QBž8CÕR“˜'Î2õM¿¶ÄíWKÌgÀ§D#[„³ñMÌÜßzÎföÌ8w³;f<>³
l•"+p6._¾œWàl¼WYx°8öÿÚ
œq÷“k œñ}áÚg=ˆκÜÌvÀYšÿ
p6V÷‰û5o€³1‰Ÿ9à,ÌÇÅp6Ï7ÀYGeƧà¬UñVଠj½IÌgµñ!þ8¯åw¾ó¾ÙÜ)Üøf<C3B8>z];ÞŒç
‰yÞlü+<¥l|3n,t­¾YA[‰*×âIƒÈkçÕ$4òÎ7ãÚÔk œÍ<C593>øp†Y3HÌg¥ñÎä8)Nà,*1'œ<>»n){á ‡¼ ¼ÎÆ"¥ÿ™p6žªfÈgIT”•7ÃuTÄ<o6¥â
o#÷Ot3®‡˜ÓÍÊüN®ºÙø4BøÝ ±°anvÊãõF7»<37>Ö<EFBFBD>nÖ«t½Ýàf]r×7¸YBŸÉ©”YÜ,Ô÷Lb7k·Æºêf0y”7 xLÉr¸¥“ϘÃ͈NJs¸•Ÿó{¹àfØÕç~¿ݬOeÕÍb™pÁª<C2AA>7£éu³rß,VÝ,b¥À¿µèf<C3A8><$æt³ñÅåö*Ý, 7…VÜŒ{5^;Ü Çm<>á©ü¸3‡U¼ŸMbãOl3ôŽ•we±ÍÆuÄ»ÔmVq&×&‰æl3dëòHVÛ,0‰síl³6û,nl³x®PÙàf¼÷"1§¡°¤OÍéf'Nùõ¼nF™øS0sºÙ é+HÌéf¼7K±E7CIÒ1cN7æUgÌñfwÖñ†7»³¶¶O Yà,¡­7Ë[p&{—×N8N/Ùg<>{k_;á,4ʘ»vÂ:²ñaÎ0ƒN=l1Î(-ejeÖ8CÿL"gã;©Øä¬P¯fŠ-Ȳ¬ùN¸"gZd˜CÎjšÍýWä (¼|Oä,â¬ÈY<C388>Y”Æ9;<3B>ÐOÉÌ!gÓ ®<>r†2~|-rÖn|¸ éu'ÛeQÎð•É<ÎE9£S sÊYãÆk£œQæ<51>ˆk s&KõkÇœ¡¦¼žgÎî^æLо®svb‡¥IÌ2gÜFaRfŽ9Ã)<29>À\ s¥ íF9Ã<1D>kAÎ*6Ý»Ä,r&rv?è¬ÆÙÉí®<>q†ÿ¦<>f<EFBFBD>s"ÖjœIû'‰YãŒR­âŒYã å7²½à<C2BD>³;!l%Îø 8KÌgØÃåã´Õ8Ø<E280B9>©Ó*sÆšÿd 9âìLõ°!ÎúýXµgxÀç e%Îp.zógŽ8CÚbÿâ,£ôºKÌg‰úâHÌgq̓ܘa%ÎÚƒ ɵg¿g•{B\;â Éx|Zˆ³¡zv‰Y⬠ëýfÌqÖªlƒ¬Â™”K]á ʳNÅÌ g¤ó%‰9á Ç<Œ†¬Â"œÕƒ—!×N8k\?w턳|/<2F>p9ÎÝgØÞšÏg¸¼ùƼøfciÁɰߌRƒ¦}f}3œ6VÑß Y^ü6/¾Ù˜’‘Ñ$1çõ‡FosÀÙ‰-³ù{8£<næ"œQëÀ.1Gœ=ÂèJœ<4A>÷Æž'Î2§fžsÄ™@-׆8k©ÍýJœaßPˆ0GœMçéÚgm,âj•˜%ÎÂch­Ä™Üø¯qvòdxmˆ3쟴ð'ÄÙ<C384>¹»*g «4cN9c+<2B>brvò£üµQÎ:ÒëÊŒ9åŒöÞ¦Wf”3åÓyå Ç©óÚ\”³ÚikôZ•³À‰¡3f•3É}»vÈ:J0Ùå<C399>³"}8¯<38>q†Ê3MÿÌguæC8ã Çûc”Ø.ÆY—¹üÚg”&ÎnÕbœ<62>”é'1kœ<6B>k³Ší»gØË9ÓŸ gg8äIÎ#gc­wŠ9æ<39>3Lcâ%­ÆÙÝ-w5Îð(+§Å8£.Uü¯ÆÙs̰g(ßlw1ÎjÁ³Ü„̬qÆE鲯Ê]S™¿f<C2BF>³€û÷m•9ãìœ<C3AC>{Wã¬#g¹MÍguX¯ÆžAÞoœQ<C593>c™<63>™CÎð…¬Ì!gㆳK¾<4B>ä Åi<Ý.Èúø´<q4œ¡èžÇ9£Æ×Syä ‡e"C.È®Ô&df³s¬<73>;{ r6Ö¹SÛ]<5D>³Êw²kcœ\§òrÞ8Ãfgh­ÆY”<µk‡œ‰árm<72>3n=š%f³qcæ¬Ã<C2AC>
ï<EFBFBD>³[1?ä-ÆÙx@
<EFBFBD>%ò!Òbœ<62>—îbœqeû1!3cœ¡4Aάã¬ó÷ðÚgcµÔú„Ì,r†5BI@³ÈY¦,„ 1­œÍËæÚ(g¨Å=d$^9 œ!1£œáQGÀ¤U9ƒ¥ÄÄ«r6
_å¬aÏ0ý‰rÖÆŸÎ
Wåìä¯k£œ!“…o^«r†Ýl~§Wå TñO<C3B1>3 Ô€yälLT…zm<7A>3C±A°gÔÈjkœa<13>8™kgœÝ Z«q†C£ø'ÄÙÉm`®
q:
G扳©¿ºÄq†vB¿-ÄY_5n¸gÜ£³HÌgãVÜX‰3ä\•ÉŸ9â ·e^<5E>³¦<>±gÔÀ,HÌgèïtLÿÌg<>½\ã À™öÆfIqí<qF úÁ¿¶gU:Wm„³iÈ3f…3€á<E282AC>Ûl®Â:yœ2ÀÙ‰ÞDÇ Ë‡¾Î<>=^8=kœ<>õˆôÚ]<5D>³q¯è|­Àr+e,8öH œ¡ÙÀT p†J¶sâg8ë“Xßg㢊ÜfsÎP(%Ë¡W]Œ“>s¼Y,´é}íx³1µò±õŽ7£†Ê·„Z[y³±vÚmáÍÖU“>s¼ŽåS÷¼™œÏ];ÞŒÿ>‰9àìÑ °+p†Ç¿8c8ãû÷µóÍ$'óÚùf¥K±áâ¡·NI“E³¾{²úféˆrwZ|3”Öœ÷ï9àìéí»g°¦N1Óà r p6>c)_€3”݈)´g<>•x‰YàìI\<5C>3lœü
Z€3Øc|i.¾ÙAMðø¯ó¾YjçDd߬¡Dø,硬CfïÅ7CŸÜëß ©7|õyÞ,H§ÛkÃeâÛ$du3$¿ežkÝ,f~ê¾6ºúÖwnI¿èfè<66>:ß/¯qf˜ÑÍ<C391>'-=KWÝ S´ô÷ºY£ÐEBV7‡œ4¬¸Y¥^9Ub7ózâBñÊù5+n†t!<21>[ܬ Kºìq3Üûd¦ò¸ËØ¢›ÍâfÊ'Yp3´ Rfp3êަ÷Qb7KòPz­¸˜ÛŒg·ùkÆ6;:eðSÈãfõä êkƒqóŒiÝl|UbæC¼U7Ckm<6B>ÝlÜ<6C>ªtC÷ºÙX¦¤8µ.ϛ͸š«I¯cÏ¡d•<64>ÇëfH±-eÆ´n†^=<3D>¿tn†úÑ#<o†uÐqŠÇçy³ñI¡$Ab7ý¦ŽÞŒúgÜ1Ã!â˜WãÍp<„Ló¼Ù“ºòf¨5 táÍPé$Kϵs&Œ.º@¬Â3ÅͰ<C38D>Ò)Üaªò}pÁÍÆr@ŽzÜ ïêÑfÈâfèÉÔó7Ó;$fq³ƒ¼Õù{F7ƒ&p¦ÓÍÐ ´ò~í¢›¡DcÅëfãñ
žuÇáØŽ7;øÁ,IÈðfhJÒ«ÐgŽ7Å>JLófLЦùk7CN“hpž7 <><C383>…W“ý o)AHËU¤H ³w—˜áÍÆ€Ó´:<oPÈUÞ³¼YÄt&K&Ï›© ®•7<1B>ðI¼NÏU)j<>˜áÍ€}M“ÓófÀX¨„ñò¼îÞ½çC((Ï<C38F> ^8Übu³ˆ‰W6 ¼n6>ä¤NùÌêfGœ.´ÇÍ(ëAŠÃÍð@<40>Å£/7C<37>Uç³8Ü •þmK<r-ƒ§Í°GE3×Jeyö˜¡Íp°#Ä"!e@<40>f/Ým(.'A=;ïVál6®ô$Årl6Þn~½VÙ,£<>µ8™^6ÃkIO¸E6Sj^6ÃdšƒÀmV6;<3B><>š§yf`³À»oAb6Ã)pâD—6CA{æÖ÷ l†Oîä¨ l6¨b^ÊÀf<C380>6òC<C3B2>[Ø,„{kØËfØ…€
ž6ÃY26Þ%fp³zÌ2ÛÅ6Wï9á#kQO…#È¿èh³ñÑ'IO]h³H½LÖñ´YÎÔ£JLÓfc¢ÅsæTÏ m†iïPÕÚf‰ÞKà(3¶YÀ×"ó÷ n†,˜&H‡ÇÍ =t­¸Ù¸?£ýõ)1ƒuy<>o[^7;p•ÃŒÝ,¢!Q¸cF7CU*/(æt³FÀBzÝlÌX<C38C>I_ž7Ã5®wÞÛò¼Ù¸šá-¼j,&lë}³‚5‡¼oVAþÈç}3 Ðñfè<66>1­ÏAô™­ÎP¥"ÏÞ7«Oÿ<4F>Å7ë´qÂÓ¾÷Ílœ¤¾õÍ"NOÂÞ7Ëè1}ô­oV *\xEï…3ä‰A<>˜€L¹N¬Ìg±r߉iâl,ÑÁi†Œq†ö IÞ8C£Õ˜d˜Î8;ÆÕ<C386>Ä*sÄYDLÍËgåé
µœq†'àÔK—Óg<>z[òªÐ¥ñØbœa«²õí<C3B5>3L@8˜eãÊRÌg[1M«Ìgc©s”Ž8×}œ“€#ÎP¦^¹EÎBœ<42>4 ™1Cœ<43>+ý¶y½q†ª æ<>³†.S²‡m<E280A1>34šOi¾)Þ8CQÉŸYŒ3<•d¹A9ã —iž8CžN)æˆ3lDU.:]ˆ3”HÈBœ<42>uj \š°gØÅK²ßg‰3ªZFËãɘâlÌÂÔó@b†8£ÂN®U[ˆ³Ú%µþòÄ:0Ž <0B>;¡.ÄYkº&K.Oœ¡!üd=q†Ì.^Ëxà ·¼('G8;¨ÏjØ6JÌg<05>}åœÄgHŠýœø™Î@àõ<C2A0>Ä pñ†E^f/ÀÙ¹Cëµg
=še!j€3´¥CŠ·Hè^8á®ËZ„³Œ”ˆÀó˜Î*êkøC·ÂuNöºg(?iMì0/œÅ;¿sÎjEÎhÜ gOQÐ"œ%${á •“Ó¾öÂj*£êÞ8#<23>…Ó õåÜ_~1ÎÆ_WJÝgÈÏœÜgc%+l!ÎÆj[z÷-IJQ;G1oœQrѼœq†½ÈÀÝíVãl,*¥îy1Î"ÃôÆÙ1®êƒ¿Þ8똦ç8rv «6?¡{ä U%…«”Wäì@U¡òrƉ6abe9ú¿n<C2BF>³J&É(½qò
ôzã -ÂË!/g<>³pΣ<4F>
Y\.OœÅzûž8Cu•n® q6¾×9ˆ3´U³Æ­ Ä×hQ9{œ¹9C<39>i<>½ gOšæªœÉž½Ä,s†&áÒmaÎî½E9Øxº*gã¯îOÌ*gXóuUÎ*
äd˜^9KËÊ5 å,Ϋv£œ…[ØY•3œ±rs»•9Ãy˜”™cÎz£ÛÕµcÎî^fç }v¸Ïíâœ!o4ËÇç<C387>3xÔ‡\IÞ9 HKÂ;gý¸Û_.Î]ó½vÎYÀþänzs†V³Â-,ÎY,t²"1ëœÑ½ò˜>šuÎÆ
ã”ëÌ;gÀŸZI{é ·î&”—Îp߉ò{Ž:ÃzíhYB:«”„Ô%f¨³q} 5ÿ“ž:O0-pGÔ…:K˜Èéö u6Ÿ§äš­Ô™4uF d86ŒÜ¦ÝQg }€¶X°3n'5c;Ê
£Ä v´`ç±3\àÒÑÚcg8É-©NÍbgçIÿ<49>b;C{ë o™ÅΰÈ+Ò—ÖkgHý:YOñÚÙÉ­×gÌhg€Pë!çÎøü†cŽ;»ÿ‡—çΰË+[w׆;ÜžøßôÞþ=œILƒgøögcäì¨Å;4².“ÄŒwV!ä½3¬¾ÐŒbÎ;CŸ±ü'ÞÙxkkäuñâ<C3B1><C3A2>[ú)i‰w†Žê³×ïl¬ Ž(÷Kï<4B>¡ã)÷Yï<59>áœ}4)f¼3ˆåŠðÞÙ¸ î&²Þ;Có»±á×sÞÙX£ðçµzgm¦rç¼3iªÎŸóΪ½w†SY v+°B”˜ñÎÚygD0ÏCŽÅ;CÑwVÐi‰ËÍï y<14>÷
œw©š¡ÖcZhÆ;C·®c^/Î;CŠóüÛ<C3BC>wvJ‡t iï .R? Žâ%­bñΰEºóÎpž°6:%f¼³ˆ%LƒÌygäqñªœwÖŸ„3ë<33>a@Í!K\;CÿýÄ<C3BD>Ç x6nÓ´/1ž¡ånâtÀ<ý¥GçÁ³\ðý
C3àYC1v=¦\¦À³Fe§rÌîÁ3lü£øRB<C¯Rš_¯<CGæ(Øžϰ‡ÓdîMíÅ3°+G˜ÿ¤ÏjÆFQœr™Ï<>#»Åx†ƒzœ&HL˜lb†:ñ GÉ™û®Xñ,R&¹£/äYD®Ÿ^/äYyRŒòL|Ì 1EžáºŸ<C2BA>ò,Q^ÓÍšòl,ÀÑòhrhš<ÃǼi{ò,F²<46>»Ä yO<õ5 ñŒ»Ÿ
}eÄ3”ßu˜x†yiµˆçm×*žakK¶.œx†œ˜ñjÜ=nÏ<>çŸDnöâYú·§­xvâ41Ç3äYDò 3^<SMÔñ šr$¦Ä3è)ØÌâEÏhß©Ÿ3fij1á4:¸ uƒH»£˜ÏÆP°§¸Ïrçc|‰ñ¬UÞò£˜Ïð_<C3B0>=.ƒÏÍËÚÝgU¶¿)æÄ3$,œò<C593>µâÎõªŠN‰ñLšk'‰ñ¬I“UÄŒx†^Lǃ<xñ,â˜UÙœx†…º¤ <0C>LÃ)¯fÄ3JI<4A>MHÔâij| ‰OæßsâLp¬!1Cž¡0QÌ-äÙø^÷ má
7î/ÓæyÞ.Ú<C"!qò¢Ãgcn罌k5Ï*·Rœ1cž!õ9·<í2cžaµ“[öæY<C3A6>v+?ožÁê¸?smž¢pªH<Î<KÈS“e¶7Ï*^Jôož¡ÍwâØgã± e -<>C(;gža_í,ò!óŒò²d<C2B2>:ôŒÛù§z†½ÜÂ„Í z†ûQùË£ga| —Œ/èYn”Ë[$fÔ³VÅ<¸¼z†SUÀî63èYÂô×$bȳ±)~Îß2äÙÉi
LN9ò <0C>
Sç‡Oža)g± <79><17>å7æY lƒ~Š%æÌ34n™wXož¡ú]¦<4F>ãëÙϼ%Ï !5nZ²<5A>gãM 5c†<kl<6B>ð¿iÈ34œñÇs˜'ÏГ?UÁ½y6æÕ²çȳ“[+4‰ò Ù!AìfOžaVÊÜåa!ÏÐ=x.¤-y†{1<>ÜÎß3ä
¦Míɳ6D±¦3äÙ‰§éÀO<£rû(ˆš#ϸ.3žÞ<“Y<E2809C>¶üÎ<Cšá‰*"„<y6Ö'½sÞìBž5ÅâXò¬?…à×Jž¥‡iðä2Bkó <6B>ÅÆræž(=ýZÍ3iÁ%fÌ3(U€cž!1%Wâ
{ól<Òy¨ÄŒy†£“C0cžát¼c<C2BC>|JHgX5Egè:q
çÈ3$ëa_Nb†<xüŽqRi†<+(šìÈ“g÷þàåÉ3œå5®„¾ò ]„ÐûDBš<C¾få|{GžAˆ³ÞÉšò ‰Øcy•%fȳZzV`!ÏÐ.]:=-äÙXÏÔé†{ò I"‡XoN<ë¨ :¶àYP&<Ã9×<šòàY óCfv ž5«…9ðlÌ`üLz­àv<>¥­žÏèŽ&¨”ÏÆL<C386>¥"|Ï*J <04>óâw”ˉg賃=Š9ñl|$…ò䮕<C•Öɉ yA-È¿'Ï
LÁé½y†…ãñÐŒy†·ºr¯ØÅ<+(?Žx9óŒ²T¢ŒÓ˜gØæ7Q®»[Ì3øM,æ?‡Xv†<ÃW¯b©Çº#Ï8Wrož¡¤äø;ó ‡åá¶½y:ØŸÓ53æY£$À°1ϰQ•gãÀÅ<ÃÕ)eyÖž¶ÝÖ<£®Údˆ#äÍ3ÌËùÌ™gã-M†bÍ3¼ã±D6z¼y­]fÌ3ÞÙë3¦Ì3ì9ÅÛTöæÖÓJpnR˘gèP…<D¾"<zaj¥¶EÏ$½%JìQÏ%v<>5Cš¿gÔ3®ªNÌ©g<C2A9>ä/!Êœz6Ÿm®=ã~±¼¢ôèr|æÖ£gl¬"!cž<63>©ºù\+y†²ƒ*·XOžEÉ,”˜!ÏÈ¿›<ž#ÏNä>éÈ3iR%dÈ3ýOKÑg€7#ïN_+y¦7<C2A6><yÆ-y÷äÙ˜Rî…¡7ÏÆ“@Ù“gh ÕEkrâ¶œ
7Ð\Ä3ä$ô.ê—Ï T÷´œx6.¨œ¹+ù"žqî~Úˆg”¬1^6mÅ3ôgÉQ<C389>.'žá¸§ŠæÀ³ñÙv¢<76>*‹é|xÏp‡j¾\¿6àYFõcÿÚxgãÚ8¨8qã<71><C3A3>5g“ÄÅ;+s·hg'ÚíM´ÌXg¨?¸<C3BA>5´=d³{Áΰ‰ËDË vVæýfƒ<66>Aã:D?ñØÎ
â!îšÃÎîYEþ<>a’ø;¾`gÜ3ógc°3ÔÇé­/Ø<7A>QÜ5‡<35><E280A1>?
Ÿ>ÿ›;C<>Ulç„Ð v†vj•·ev†oçxÆ9<18>²ÖٸьïÃIÞ:C3¿Æy¬uÆØ ;Þ:ë’¿ôµ±ÎÆ[ÞÑNîk£<6B>©|ÔE;çj«<6A>¡qÓ„Œv†MŠÙjÁÎxý”¶ØY§"ÂcþžÁÎêúJÝbgxHeuÁÎ<C381>¡§ç°3È?õ¼Ñ2ƒ<32>¡,FLÞ;C“ýsò\;Cý±ðŸà°34©<34><¯;ì õ(I3f°3ôis˜;ÃîbàÌ•;ËhÊÄ<C38A>àì [ß™ScìŒÉ%Æv6Þ°, ò<C3B2>ôn‡\,;ÿd 
v6®•<-A¯<41>!¯9ð™î¢<C3AE>¡ ¶sJà¢<C3A0>á”AÚÀõÐŒvƧ¥<C2A7>õ.§<>¥§ÿÕ¢<C395>õ1“ÓÚF;Kè4<><31>u4iŠçùµÑÎî÷F;CKïùuðÚYÛö׆;;qÈ+†ßâ<C39F>õ˜„l°ÞYÀad.ܶmÏJ¾»µ¯àYo³QøžÉj%~mÀ3¤
LjË<EFBFBD>gmvêÞ€gè´‰ÌÖ¯
x$8c<CØ.þ<>ÏÐm5sBÅž<>§ûP¸®ÏP &µ=ðl,œe3Á{gHŠ€$öµóÎzÈI\Mï<4D>¡ -ÞÙIûEr­8ï¬(Õ{gðn+Ÿº-ÞYÃÓ,§ ¯ÞÙYSä:­Û;¿Š4˯7¼³ðõ¿þéøúo8¹þBQ÷?è?I¿@œ Üÿ‰K¾ÿïú<7F>ñRÿòïØýÂõ<¾IüÇxmiþú¾FF½Ý˜zrvŸ:Æð¯ŒaàþÿuÕÃÓËÿøúÿÂÙýúŸ_ü÷ú·?è<>ü¡¢Ä5J;Y^°þ-/˜è„<1C>A—lË f¢ß°‰½¼`ÿ[^%ËØ\_ïü[^Û"è§³yÁÿíoyA”w¡¬dóþëßò讉¾¶ýS/p·ÆÞjû˯ÅwpÅ/t?hpQë{»Š©©xÀTÄI87²‰´<E280B0>ž‹ÖÝÿ oc-S:pÖ±9'¾ðÆtTMb"•ÿÄ´ô¿ûøÍë y—º!ýä$ñ×CR")?9Güæõ<C3A6>Ì„<C38C>çÍ7èÿø;^°Éxàl¿ïßþ×<43>Å“ËëýûßñzT\Îu~Çßòrxn¢]<5D>åõÂßñz88@~í:…øw¼¶DOPÃúúÿJ'×Ëß—ÞŸmqpô|d,±Ù¿5ážq™gé)ïåéõD×—Ø"<0E>þz~
ùÛoøï^(P*oß|ÂáûëÌß½ Ò¿P.±Î@án¨ojÅúƒNÔ=KNü'nbïèÊ_ËxŒa!¯†Îfæ(<28>ÿP<C3BF> ÏcÉ|TÁÃÈÛÏ=x*Ïçã¥@Ïà?]ôŸ¨`†úÕû©ç[/ô/ÿíÿÿëÿõÿüíÆù÷<C3B9>—²ŸŒ~ Æ;P¸(šŽñxxú'4¦oÿéQy}Dج\Ï;‡¤ôþ˜êËcªØ»§j­,CÒ?yDíõJÌJØ<4A>©Ÿ¼?¢þ<C2A2><11>¿¸<C2BF>A~†¤~ôþ˜Î×Ç„ú!ô m$“þÑÛc:<3A><õ@öàÒó“÷G^Q"´:ÆzÏQæGï<47>)~cL8lºGCÿåýq¤×ÇAI¢z~Ô?yD¯ÏØ _ÁÌ<C381>æGï<47>éõ9»"I¦šùQýäý}cÆF9x6ó£úÉû#z}ÆnµéùÑüèý1½>g7œ 3?š½?¦×çìFêz~Ô?y{Dáx}Ên8zìf4?ú<>A½>k7t˜5+7ý“Òë“v+”t¢§&ó£Ôë3x£Œ0=7éŸüÀ<C3BC>^ŸÂQuzrÒ?ù<>!½>ƒ·‡×³“þÑ êõI¼¡ƒ<C2A1>]¾™ýÀ ¾1<C2BE>·2ë7ý“Ò7¦ñ¹
v~Ò?ú<>A}cG¦Z¹‡Cÿåý<C3A5>ש‡š(õO~`H¯ÏÝà½]ÙýÀ ^Ÿ½;ê7Ì"Nÿä†ôúÜ݃oVqú'?0¤×çîŽ>»vg~ôƒz}öîÈP¶ë8ó£Ôë³woðÏõD©òCz}îî<C3AE>¯ë‰Òüè5gï|®[<5B>ùì –ŸÀùâ£{Uÿüþ âñâ æžè?ž=Ñ÷ð<>ÂüHÞÃ7¦`Œ-! ,£ FÿèÝQ}cƨ"Ü:êÐæ¨ô<C2A8>ÞÕ7&bŒ
×ëÌÙ”Qé½;ªoÌÄ4ª@µÄh`v<>JýèÝQ}c*ƨЪråž JýäÝ1}c.¦1´fŠT­3¥~ôî¨^_JcTÈöEÝâ<C39D>U<14>ÊüèÝQ½¾æQC<>®á•úÑ£JßXXcT\TŒÒò9[™½;ªïÍãƒj¼eTúGïŽê{3;Y.˜šò=³›½;ªïÍì(¹˜šÊ}Y©Ÿ¼;¦ïÍëÔj3Ú¶È ô<C2A0>ÞÕ÷æuê]ºqd8ÌQ©½;ªïÍëèNsŒ©)K”Qé½;ªïÍìÜרsø•úÑ»£úæÌŽžˆ'˜óÔó“wÇôÍyí81]¢$V¥ôæ¨ò÷æu4Có7•:Ïgý£wGõ½y<C2BD>z±£?êƒæ¨Ô<C2A8>ÞÕ÷æu°‰ÊëŽ9[™½;ªïÍë„T4Ìl÷Ãåó“wÇô½yäN,¼©|JýèÝQ}o^'«6Fèç¨Ô<C2A8>ÞÕ÷æuòêò<C3AA>&ÅT˜úÑ»£úÞ¼P]€GQ4s½;ªïÍë5-XÜ¡UF¥ô7³*…ÚžïÙJÿèÍQ•oÎìǸ
cjB™­ŒJÿèÝQ}sfGñ:wùÞ_0?zwTßÙOô Ï¢G˜o•þÉ»cúÞ¼Žöÿ•¶]î1©Ÿ¼;¦ïÍë$EDˆð˜ôOÞÓ÷fõŽÊbTÊå{Lê'ïŽé{szEé3Ìã{Q¬ò7£³8Ž^ts¡§ò7ŸS÷8©ómR?xwDßË!½bgyî??ysLõ{39<71>pªç6ãó“wÇôÍ<C3B4>´—ÅüØï‡õ“wÇôÍ}4»Çüx>O}ÏOÞÓ7WçЀÑV¸Í1韼;¦9¿rüB<C3BC>&¼ÄgQýèÝ1•oŒ‰dvLÙ¨kŸk`õ£wÇT¿3¦ûyø­ÙÑU(Ä¿<>ñšôW¾÷ò_Iÿ güøŒ[ùÄ‹¯ €=üüð‹ß¶ÌA™ØõöÖ}ö¥7ž^\þãG_þþ2Ë|üÁ—ö×{‡}ž½½õ¨úŸ}ñß–ü|z0Qíóááü¾ÐçÓƒùm<C3B9>ÏÇóûòžOç/*{>>œßõ|z0QÏóñᬥ<ŸÂo«x>=˜¿(àùôp~[»óéÁü¶lçÃù«Š<C2AB><C5A0>ç÷Å:ŸÎoët>>˜ßWè||8ë#ÅgðÛâ Oæ/Ê‚>=œß}z0¿-úô`þ¢èãÃù}ùϧ‡óÛŸ<C382>æ÷%?ÎZìóá!ü¾ÌçÓƒù‹ŸOç·¥=ŸÌoz>=˜¿(çùøp~_Èóéáü¶„çãƒù}ñΧ‡ãvm?»mfvmá-RãOöLúÏlòô>;×Èw
úè`\G ×"è³C±­€\o ŶòM<C3B2>>;×ûÇwúð`L××è³CqÝ~|ÿŸf6ûyÿ|v¶Á<C2B6>ëøóÙ¡¸Æ>¾ÕÏgc[ú¸Šíåãšû|t(¾‡<C2BE>ïêóáÁØæ=¾<>ÏgcÛö¸>>ŠíÖãû÷|x0þØû³/o»¹¶AŸŠkäÛ}v0¶+<2B>kôÙ¡Øn@®=Ðg‡âšù¶@L3Í|; ÏÆvýqm€><ÛìÇ·ÿùð`f«Ÿ§íÏGàºû¸v?ŸŠkêãÛü|v0¶<C2B6>kïóÙ¡Ø.>®­Ïg‡âš÷øv>ŒmÚãÛø|v0¶[<5B>kßóá¡Ø&=¾mÏg?»áõƒÍ¾µÍù±là%"êøï¤LÿPZú+{­>]
ç§2Ò_ßúÕƒøÔµà>|ïlå0
0ϼ`ñéüyž<79>à<®Z`éY¥ñC½«^<19>ïU¥FóC=«^<19>ïQ¥FóC½ª^<1A>ëM¥Gó3=ª^<19>ëI¥ó3½©^ëE¥ó3=©^ºÿ¹TÏh~ªÕK£q½§ôh~¦Õ;k<>/
Xj4?Ô ë•ÑøÎWj4?Ôë•ÑøŽWj4?Ôùê¥ÑØNWz0?ÒñꕱøWj0?Ôéê¥Ñ¸ÎVz4?Óáê•ÑøŽVj4?ÔÙê¥Ñ¸NVz4?ÓÑê¥ÑØVz0?ÒÉꕱøÎUj0?ÔÁê•g"ß±êÍOu®zi4®S•ÍÏt¬ze4¾C•ÍuªzééÕv¦Rƒù™U/<2F>Åu¤Òƒù™ÎT/<2F>Æu¢Ò£ù™ŽT/mz¸Tj4?Ô‰ê<E280B0>-=šÏïÀø>Xj4?Ôë•ÑøþWj4?Ôë•Ñø¾Wj4?Ôÿê•Ñø~Wj4?Ô÷ê¥Ñ¸>Wz4?Óïê…ÑøþVÏ`~¨ÏÕ+cq}­ÔX~¦¿Õ cñý¬ž±üP_«WÆâúX©±üL?«ÆâûW=cù¡>V/ŒÅ÷­zÆòCý«^ëWõ ågúV½´ lûTéÝàéWõÒ^£íO¥·¤OÕ+Ï*®/•zTù™þT/=Ãý2ý¨ô3ܯŸèKõÊýÈõ¡R·£ŸéGõú©^ó~ö€³á¨â8â™>tv²ñ>Ì >{v²q>Ìh>{v²ñ=Ìh>{v²q=ìh>zv²zf0=;Ù8v0=;Ùøz4>;Ù¸v4=;ÙßëÑ|üôÞ<C3B4><C39E>˜Ñ|öìd£†˜Ñ|öìd£…˜Ñ|öìdUBì`>yv²ÑAÌ`>{v²QAìh>zv²Ñ@Ìh>{v²Q@ìh>zv²êv0Ÿ<;Ù¨f0Ÿ=;Ùhz4>;Ù(v4=;Ùèf4Ÿ=;YU3˜<33>ž<EFBFBD>l4;˜<>ž<EFBFBD>l<>ž<EFBFBD>3šÏž<C38F>l³$õh>Ÿ$iÏNÌh>{v²±CÌh>{v²1CÌh>{v²±BÌh>{v²1Bìh>zv²Ú z0Ÿ=;YM3<33>ž<EFBFBD>¬ˆËgÏNVÄŒå£g'«ý¡ÇòÙ³“ÕüÐcùìÙÉb}è¡|ôìd5>ìnð'ÏNVÛÃn5~òìd5=Ì£ÊGÏNVËÃ>Ã}òìd5<Ìíè£g'ªðD¯yå•ÿåßC*'>ª>¾ÓüÇ
þÍ?N¨cÙi`,¨ñKç2î cLÿúÇ~ãŸÃ×?—±"‰ñHñ«þÊ)ÅT¾þøÇ×ÿø/ØEü¯_ÿóë<C3B3>ÿþOÿöýõ?ö©ãx(†ÍKFýôg÷ñÀø«<C3B8>ògÿìXÆc_Á1œ_q¬9ÆB~ûwË{ÿ· "ŒµiÄÿÛ "mñÝ ã@n,«j*eý4Ú¯2®ÄñÏÿäðÛ—Œy\såÈÿ© àûïýoÇð»÷~7ˆo¿÷m¬ B­ã%>õÖÿæ?õÎÿf¯]ô¨ù•»zãÇôzÐÿV#PcÓÿ“<C3BF>ó˜<C3B3>{Éé<òW©Çø:¶ùg<C3B9>
óO ãñƒ¬ÏF¿™<14>"ýK¿;ßÈÆ{ÐûÎøwë¯ñ?ˆ©ÞkÿŸ¾ga<9a÷ž¥õ"þûF~…±¸ûÿÛGÇR¯=æÍ'—?øöŒåoéã«V7ã(GŽtßÅ·ÿ÷Wò7W[ã•s¯6&þq1üŸfñ5I°ñ¬<16>žÒ.5¹)ñ¬¿R,)´Ômì¢X-GM¹µ]lüç³ÄPÖXû5¾()eó{
}µjnçö÷Î2žJJk =K[ì±…]¬celCçXÙ†7ÞX<C39E>qkÀ ²‰•qÃ*1n†yŽ© <20>é¨ëïa÷6¢DZþÞˆKWÏ.6VĽǾþ
gÝ%Ž;×.TÆÛZYÿ¼Šd†ÒS>7ËáÂX«å]l|èãŸmÛßë)ôñ¼°ù½11<31>¯B-eóç¥1O<31>w÷ÀM¬<1F>ÖØ¸<C398>§¿/£•kNc°»X멇´ùØkùŽ3¤C}ì¹Mb9匱îbãou x<>Õ±Ó_R— Šåpäq—8w±6féÐÔ7ìŽ<C3AC>µE·Âß°^3ÍðXïX:ÎÍïõ_GjGîió÷õ_©Žij<$ïbµ<62>a|kìü5¾ì˜æ7ßù+¥ñ[­oÆyâø{¬YÕWLÅÎ~޶®¿×Ž1³Ž5]8Öß±ñ¬SsÏëß7b#2f—¾þ}m|ÅÎ#ö´
<EFBFBD>Ûì˜\Êúç<C3BA>ؙǵÔÎÍ0#ºÃÅ1co~o|ÅÆ-*$õ±Ç³<>ИòÕÄzÇÆB2Çñ=*yý¸¸õ3ö®æÕ;4Ö¡<E2809A>ÉE}ÃTlÌU%ôc3Ìük<òu¼×kl|ÃÆz7¤¾ù=lÅŸã†7^ù5>¸1»ÔÍ8Ç]´c©}lþ¼ñ
;¹¨UhüqcriaŽ»k®aL„u·WºZv±vÖ1¹¨/X7lŠuì2„4¾™»Ø¸g<C2B8>?°¥]lÜݨô_°³<C2B0>ÉeóOŽõï˜Ã<CB9C>£÷]lÜõZ;×WëcIÓÆ…[ëúk#–Æ•ò±þuý vzãë·¥‡_G“À¸Êv±ÔJ_‡õ¯C>\}éù~õž<C3B5>D±øîëÈIÙÄÆ¥™Ú™¶¿WVKmó{i,çâòó©ëXŠmL-Ï÷KÇj‰ãrÞO<1B>lž5Çb(<28>©¥nÆ™Çb¨×#<_0_“³<E2809C>Ï´:¾p<C2BE>æ<EFBFBD>^ÐÀ}Ì-ÏÇ®cõ—uŽu¿…åd^cu¬†JÌçóÓ±ñÙtŸÞÅΣŒO½mÆÙ~ÅDi3ßCã™q³9Ëö÷zcryæÕ^Æ<>bc!x´u+¼šÍ»X_³|†¸ÆÎ±ïJ-»Ð¸¯<C2B8>¹¥Ÿ»Ø˜R;ò;|è<Æb7õ©Ó±"¸=ébÀ'ÒÇ•>ž1Š<31>„± ûXy­<>î<0ÖÈXÀŽoAõ<41>±öC\R_ª;2ÞÕ\ŸÅϘù)¥¡VÇ2åTŸòߨގs,cv±ñ|é˾‰µqLA}£îXÆéXR<wdnrDZ4®·ú¬
<EFBFBD>9!—°ùµ2Ö>çQŸ<1B><0E>¿;a¾ãÿËÞ»ìJ<>ûþŠü<C5A0>{hï0€œ! p9Ó;[rqWóÿETÕÌÍÜýfvœ·Q]@W†d„«»©é[n.Ç׺äX8xJRvI Š9Æà↵cäØO+Öû¦š¨ŠO™ò±<C3B2>j*Õ lN(ØrƒàÇ óñº'„­„…Ók¼~ ¬nŸj¾<6A>ÌŠÁ7&'1¸TÆ3ܸ; ¯JäØI+Ö±ßSŽ—ïAýÃè<C383>6[ž?„hLE¨&×î0ü`£ØW æ^pÐ!Ç~Z18i(?o¿Ü:1,tè<74>⯶U‡¦kîæ{°÷à(§|¼ïÖR<C396>9vÖ<76>Á¥ªkη; J$­ÓÃV¬AØ/óþ`†JâLÌ÷Àï
wNw*'‡™ƒzÜ_HEŸ >Ýäþï}Űßáûï–ÑŽ& >žüõP`+fvóþ Ú[1¬ÂÌŽ0”¯\ªŠ;9¶Â
%ldÎiœ¼ƒj(P*Ç[Ÿü)xæ0óû
Då†å0ïMMTÅ* Ø ùŠÁÚÃ"òùp±3Ki 9B§äp‡ÁÜ©pm<70>ï¹ ¼Üð"aó¤Í¿Y±ˆÝœOr…JN°jܼ»Tµ~<7E>˜è—ꃹ‡ÇÒqþL †ß+ =ÜaNzÄ^Ÿ^²,w
KWºÃðڱŽWžð½a<C2BD>µ6‡@QêþX‡8°ˆ
ƒI£gÞ^eê†uø} aÜ)¼¿„°bêRRM,ÃKkÅp¤uÌÇ÷bo<+X<ÐÓíxë+ñîÒaDñfA
ʺÈô^ÅàvYd›«Ñ±;6׊eÏ=rø×°‰K3 †zóK )©(oíq˜o}ÅàÕeï<65>·Î„³7¬Á ƒ<K€Í¨¯îT„<56>$zäˆ[zœÝ0쨕#‚…£±‰*fºÛG1³&Æ!dž¥Ø°ªŽÖŠÕ"ÞÆ¼;Ïà±à¤(¿{|&q4 ŠzåxéŽö²a<C2B2>Ô±¿Ü$ybî”CˆlU<>3q `¹Ð¥õgy' Y÷Z4ža0¨bOs{µÞ8<W±SÖûùÒ<1B>6y,üòpTn¶NܰHïÏnbxëѰBí`5Ü_ª†‰³}°Z«ZBBlW€ÓׇþöR|.ü8°_ýÀ3UR2 2_;1Ÿ»>N¬O ¸ßsÜŠÑúbgãÀj³Ç gJO¶y{Z\'œ)jø#~§?cŒJl¢¹¿œêX
ëˆ_µ"Šœ)\¬–ùÖž_Œ†e¼wØeÇ÷bhÞ0Ú¯ÞO­Š'V³þ&,@þ3ïæHè†d_5ºkÁ0ˆŒ+Ìð 6¦`Ø_Ø\í_1ŸW“aŒ8÷#|Õ$nc¼,}Ï;Xtlæ„^;^:£´Ù°ÄSÐ/Î<>š]Àö 3VtT )£Ã}n/œ<>U
y‰é<EFBFBD>Ïð|à–0 &᫊.•dât?¢W8@¼êÀà“¤Z<C2A4>w޳2WÃjÅ ˜Žíå±»UL€°S©'†<1B>†¥Pa‰OÈqT3°#zMO•@ žTc9¢W4Qô4F—¥Ñ+Þì€ðʾ­O* <«œàºÍwÕžUO­™¦N­ÌðŽïÁb…b™/ˆ{Kõm$)ÀZö
3'
$BC§ÃCªÐõª<19>jGð
&XÐýaü9y€Sʉ½a1»>÷Ö‚“ê,bðÕ
Ñüžä½ ãÛêi¾s,œ®*'ÂÊÒ‰¹hkîÍœ#xU%¬f¬üä ^1Åçõz,šÂ<17>àU¥ÚކíêMÃ"+†Áfè´¡xÄü+hB<¨ù=Ó@p€C«Ì€eõ¥JÏ1d]X^¿÷*füÈ ]UX|RåE,ÃîOGèªJ§aX­¡+hƒ¤glýç%V;¤„:<3A>ºK€åX² þ[3 êÖÀÔ¨x“^·»q.ÃK ãv3,c“û#t…U…SаÆrÏ#t…<74>ÖtM'¸é]Aiª”äDšîvÁ"vÅ0üôÊŒ\á g§? ï
¦!¼Ïù=èvU©ÀxÄÁ˜ßƒ«R
#5M<05>“ÌëJ°ÿüjŽù£A V@8"W|]®VKÆR<C386>±+Ý|a{Áì)Gô
ÏD[ŸˆaÅŠ4±`«<>¥KNÙÜ]ø}õ8Sc ÔÊ|åp‚ªí1LOTŘQóó,ÌðÕ”Ip®R„V™Î¶09xÃ`å°ža,ñ¥ ç0öÌ|ãª^Ïó ë
Ol~ÿ§g/0Tù¼;ÜO˜„¨ëÜ]T:…ÇÚ¸»Ô¨RƒñÜ’?<3F>ÿ¬7/Jen-ì2§®•ÔJ;ºhub 
†­Å%•§BåÉ«?0Ø”X²ó<C2B2>³ôAMi`ø,<2C>ùƃËúPà[qøB<C3B8>Ù,¯
uÕ¡†9œÑ0F¤üÔ8¦¢=g¸VØ©á­nX®ËÜZ<éuk´<óÔ§°ƒZ9“ßÖ×ÜZ0OtGfö|vêªqwX
M<EFBFBD>^`mÏ­D˜fêvåÂÎtIq
+Q2‡`
ùùxÂÙƒg% äÊMíÔ<C3AD>ÎfÁXÜôƒäŠ ƒƒ_<C692>/=Pän˜¶à̧ )Úiž^ñØ%ð[-,i\fÜ^ðÕÂÀ®éG(+ЩÐ{€í£Ó¡,ßZ³ ß
‡v<BYFW¥
.8CYÞ“Þ{<7B>í‡ à„šßÃKW-Æò›@»i¾uæ4 :ze*TFFôì*ð­ÔŠ÷÷ºêLZç<5A>PÜ®®g ¹±üÊrŒ;ȳ.p®°XâÊFˆêçƒ>€<0E>*/VgÃáȺôù=ǘ„`ÄHØã½cÓ½2 ¾a6²êmãk®3Õx¨(°þXv>cY8D]·[€o…ü f
ŸV1¼ú"ç‡b<E280A1>¤ê¹ 9îxíÐû móÏ1¢3”*ÖGl³ºeì°ÆfÙ6¾×5â7n¯ÁiVÿ°`‡5Ö“ŽhV³³X±c ·’$WÎÄ„o ÏÏh\2& #•n|°°
¸² Â<>ã9<C3A3>—δ·¹!†GÔ<47>ØtZ xV~ÝH
4aëÞ5<>W0œíVä06 ^þ7bY<62>¯Á¬?¯³R *ÑÔ œ9"–‡*9`¸xëCÇ<43>B@»«©Çi4l,ƒËG¦ ˜?×:îŽJTíŽ
ת(o”a¸ñ¨QV`ЯÐ,ÃÕnǵ5À`»ùÀ#k•¼Q)æbÓ• ,™i¦<69>&p
© ·hèTÜäˆq¶r™{+àdVƒ lè•É¢Yf+´ñ0<C3B1>XàÔ9¬Ø\ØNuF²``9DÃoÓé¹ ¯+RñìüŒd5aCÓg Ϫ@;<3B>·Êˆ«-Y@øí´É0˜µU ‡c¢
Ç*Á š<>,øcÁÞ*<+ˆUf«²1<>¯Ú_3ŽÅÓ!ª^+
Va4Øs†gÅ?3Ž?Švˆaxë…™ÃDgEÃ4)3^9«Û“K+Œ?üµ0sÃ`S4Yôä»ê}`x(ê¶6&ȶ£À)¯3<C2AF>U±Úùl³Â¨ñ=èr¯º˜e™Æ÷°ïªF<C2AA><+:è~(TœMRy„fBC!éÁ †á †VáK<±a.7)³ÅÚq,x°µéc†;ÊeƱàÌ03lX§†žq,<16>9u­ì?¨0Hgß+]£ZŠá$¤ÉL*0Ö„A}ØíQ1ªgÕ`þ¹ /Ú hÃht7ÔÊpµqÉ^0h†f«H|@ï ±£je„±°éƒ¹ïÀà+¥qþà¤òæni0¤pã[¸ó«ü*X³4´0Dc_ƒ[%žÓ]Br_ÖøðæÃBÑhY†¡ZÃŒb˜¬f‡K9§4£X8µ¢ˆ<C2A2>D«g G½5Á`üĄ́ãÅÁÆ(¦i%fIëxáô㸠ƒ9+În€vÔó Á¯jQ˜ŽÌ4°¤¥Avs\5 Lÿ0X|˜M
ðÇ
(Í Væ,ouu™1,lciEl²U+äŠWï¯Ã­Š0Åêxߦ<>>I@þkÕçßY<C39F><59>ýƶÂ<1B>Uµs‡Õ§Åqk°óª:½Àb”ÌŒýfÂÞ,º<1D>ÑKO3 Û,Ö›:Ö†A½uu«:+Ài <0B>¯áì°¼(”±«ðq^zÃø{uØŸ‰±H]y»ªÕ dA]{<7B>I+~4,ht]1<-:
ãî<_Yé=±E
eD°ðÈ}Pw˜úðã…G¸cM—%0˜Ø÷"O§O^U‡Ëî!Ò×ã7Ú\²‘‘UÏ€šzjv{Q½Á`óA¯¹Àâëjjê÷"R‡ÀÀp`B£ ';zîýMì,x !]
¾¨‹
 Õ¾Hj¨áaŽeÃQžçŽ L<>¨KÜYÆ=îζVÐóΰ¤zÝn<C39D>Æa kÔn3ŪŒn«<6E>
š°ÊgkT(<06>N
s,ÝÖôîP¦<50>¹iܴߌºb·Ùýùн%ÞŠPãìf»?(L¯o<C2AF>X•´õˆ[b P4Á°¿z¦'eû &c†%ñ
•ÖKò†UÎ ˜!,ØkQ¶^upªÆ!¦<>8ùÉ0Vúbï<62>¯eÍ*+VƒÎ4,¶š«bpªTX<1B>K˜
=2†k˜µŠ®<>Â-}õØi½?X‰kÚ¥flM.(ÄŒ2 ?<3F>í`Q,Ü'Eé†qÒ Ÿ¡aŽF½Þl?¬X!ö=œpPþÞ°µÊÊ
gU<1D>˜<CB9C>š» Û<>áöÅŠò¬4LÝb%Ž#<18>^•¾ôh˜&3ƒWõ=«±’Çc3ŒMªŒö^»aØ%¬¬ßsŒ‡ë÷àW±+ÃâJø4â)eƒ°Û Zlƒ¥ÂˆT_c}wq,h£Ç[‡ép»#Ž•Ø#®.±Ìš¾ǶÀ_MÕ0Tmcát/:ÓƒìñXîjs+µŠWBŒ ‰b×Îã{
çK6§žåÂ86ååy¸u„±¸EK
H Ë?õÆJ,Ó 1xK<áíî°ðwåÎ9¥ï•e܆©ígX?æÊxéQΉl˜$”âx鸧1.ø1_Œ¨Ò]3¬h'<27>b‰†µùUx9Ž6ƒA:!ÕâX G`Óaøâ0<C3A2>š„ ƒêq` *À<>8VbøÂÖ°Êà@7­Š%¡YÁàY5ùšÉâö´Ç™ùW¹tìö° Y0e˜D½½tˆ%¸¢¯®ší/<1C>0 uƒ Õbž6| Dº¿¼Œl(}ıb«Þ^<«(õÁÉ-4Œ®ÚôëqÂ{—Lì.X)8 ì{Øöf‡Vó'<Nèh_S¸À¢äH-x #«±ÄòÂ<X.N¢fXo8¯F‹¡¶q óÏK…‰™Y~\ªa8¡Xl½CQŽ$31->³—鎱—+[p4`Ù÷X×™u±°áѳ4ĶÇOÖµ¸Ýn/L¿¸²<C2B8>±0Žj^ÖºÏá";MQ 2prYKúò§é2Œfû 7[iÔØ*fM{l:j‡\~Ñî<C391>¹Î!'ö¼FN@Œ%šVv€ã þF2¥XšQõY±ûhÞ)ÔÏÖÕ šÅ|mÎ^¨ÚŽRÙ,
ÝQG+ðälq`8ý¡Z,Ž˜L-¤Íš,FùJ2Qà\­éT ³×b<]±×è@k<l<>Æ6Ø€ Pž•ûatN)„S"åÈ
,gª®V;cÈbš F1Ø€|?Ù`M(^µ7 fqš5Yp?Šú‡„°4 Y쥳9¯<39>»Ãþ꺟Ã1ª†<C2AA>bIzw³K±Jƒ×Ö˜gñ`Lzãð®*”èdáÉŠ`†E)Õ±ýŶ¢®þ41¼ø2K²<÷žæúñs°ƒºNÈ,±iQmP-öÒ}ä)®>°"#Ï-9ë/K•1˜žP Ž1†`X¤“ná*:¸´sib,gRM×V<E28094>Z(9ƪu!Ä,‰®bâ”ÃI=1!yûŠáuu ¿¢!‡õa_à ȸ°`²ä×»“ÞʪZX1{F1V¼¶ù½ŽS=<3D>PcTÝ9}*p±8r„²`pâÏ=Æäà,Ógr˜¾Áä%¿žÊUov:v`Q Ï™åM†ÍX `°º5¬ë[<5B>ŠÑ
U7
ý¦ ¬ÀVÜBdÔ+~G"Y,©„•jbÂÃjŽšÆÄ XM7PZ_,Ž<>µÚ×àȘI «1Ó·PŒ•ôIu?0êú²Þc  &Ãц+xòÓê_Å$Ñg·+Ší¦·‡ã>¤Ý:\¬ÌˆžS9q5Q4†Á|çØLûžg¼ÂV,@ÇÖ—fßsâ!Ëo&¸XùIÙ_pHX_©YNbRVŠÞ¶ú4"€Áð©Ý9½¿JG̉7 ÝÀñÅ´ôþðÿÁV æ[ÒØýfíôh$‰0<E280B0>f1á¤iUÁ°¿ø˜œ½õB÷Ûë£XõWí­c“¦è¢A<C2A2>žDÔ»c#OÐü {tdƒ·p0±ÈR8çõî`Dô¤•IÄ8”Âil€5½VÙJ ŽÎ<C5BD>Tæ"j·ËÁÁ‰™4œÅS5K “aXÞ8÷UJÆY¨F86{ç«N &Nôdßc„·÷ÿŠöKhzwp¢JT6…8m
±uÞÙ<EFBFBD>ÃþóÒT­7‰#Hý`¬X
öƒže®­Ò‡C,b3ã‰é}Wžý1˜z€Â¦Ó™
𠃟^Ì<>Mœlç;tŠ…¬Ç¹Îój¥«(xÙX4.鞺¨7VÍ&ÄV'Wmkæž´ò›ó‹§]°ÝêßìMÊθð±dƒó#üO ²<>
%,Å8„2Œ?Ï_Яylb^,°ÌÙ Ù6Ú¹ªö<C2AA>ñ4ªͲǯ›$ûŠ“4˜Øz¬Ľï4(Z[¹b-i%@K”AdÆÞÑX/â¨/$F]6RˆxC¨ÚpîÛ·û(à«rDÃýÈ`#JcuL0,Yc¦b4®Ý6v5”Å›§É­×㔜è-¸ -Q«¤ c/nÐPc4«¡<C2AB>ïAeá“¢rVÖ)ëÊØVRæôk…©àª»˜¦Õ’~
O¹ÒØ3LCMo<4D>Õ0…&¿Êz:Ë…Ñ0o˜´Ök$Ë3l׊SóÃk±«<C2B1>F²XÕ‰Ã.©+š+ÏvX+Qå\]_ί€µ˜4Åbë(•ô†UǦ¯ßÃÖ«ëaùAá/Û÷˜QÔB-b8D"CôÑ+f Þ0¦«†²üWPG_ŸKg»*‹¿ƒ`XU<58>^al,uÊòìÁ)Ý|X`ЃÐ)Iå„âaYúÀ:˜h¯Ý1ö¦†8' 66¬—×Î&<26>Ê&¼n˜4´7I0KEµ¥ÏX·zÁ_zJr~kF4Åš\Ï}1LÊU4ÅèbÁ
©:Æâ„ a;e=Ð
u ¸²¤KL4ÇW4_œ^k)t$eÝõ[û¬fue
Ý èžVõÖüÝ[E VSÄŒoÃØU5ˆÅ¬<04>`{ °ú+y»Š¨]²*|` `;‰/pbˆ(õhP³BÁ<£ Ý„„OÕ$Ž*<2A>;ÊOeÇŠª¤_sx<73>8^a<E2809A>!ÈÆÈ%k‡î5)‚ÇýÅÂÂ,‡•ne!rφqÒ@• 1û¥Ø€Õ'zƒ^6)‚õš«tÔ©gá ©f:[“á*é×öeºÏ°
€3»1V>¿›Ï[¸A0OgY7çΙ³"«c<C2AB>S3¹p¬—ø'zwA<18>LJl,®UbX©oÄÆÃ’—>Ký”Ke$Ä0<;Ö©ó{QŽl‡ V9ÙWê|¼`­ÚP Å¢Y€„°¾JtêcW.n(pÏwž8jÏÈNùŠíi
N0èGF¬apËc0š"8YŠab½K Õ<C395>£¡UUxé:Û†G~eE•}
‡>n<>ƒ†óü}]•C+ÙFãôæã fùphŽS‰z±0話[<13>îö \&–¤
ªi<EFBFBD>±Ú7J ¥ †Aÿ÷,1¬Ä*œÈ ¼,wN­`´DbX¬.å8<C3A5>ª/\…¢³mv)a K¯ú=šPE*'|* ïS²š•=.ÚyKlVLzeÑ<Åú0Ùˆ>˜ ^Ì<F+)K veíÝž'¶\¸*A,šŽxuNkBpF3•‘ô{´b´0^¤´ÿyè†áÖh óö˜jehaN­À:vÒF¤x„í"Þ°l
J0ø£E»5*J aÑf†òèÚ/€ÿÂQWBX‰lØÁjAsh…D#Á3¼Ï0)°-œƒ¼ôDÅÅú;yA
Ú0q6
5jÒfiVWlŽÖHb¹Ä®©CBÚ¨ÈÀe"R¯mi0>¾´Æ›þ¦h¢˜ÉÈæbÅwСŠY¢! V¬ñM0X~ê¢ÁX½V ÃjgM•~ϳ­Àâ«<C3A2>®ž‡.<2E>WN[d¹sf…™
Ö<EFBFBD>VSÁÁn£‡M<4D>…õ¤V93+0¢”ØžÌà£:
7 o$J eXMN¬À—³°M8íU7ŒBUX‰¦‡.Ts¤áUâ”c"V0†=ƒ³—<C2B3>åp¬NÞ¹£Ý™Ú6¬p 
ÝE¶@<40>tížÃscφLŒëžg½a1Z©”§'nƒ†ì¬(¬Ès?£¹:Ϋ<C38E>â
ƯØOi¨èi\f¶¥gÀ€•~^·$°¡*
˜ÚÃäÜ2èbzµ ô+{±iµGžp©Yá2ÛÙ<E28098>¥ZûÀºE§<45>QdvúêŽlœ[&¥lY0hÅÀ0„aÔ“YâW±HÙœeCÇIœš_Ë,çJR
¬;yYy
˜¾‡çôPë[&ÏwÇ”
.`°U WF$f™m`x¬ÐÆÃtb€Sç°bsa;ÕÉEå
K¾M§ ç2¼®dHųó3Õ„
MŸ%<«í4Þ*#®¶dá·ÓŠQ?$Ã`ÖV%ˆ*«ƒh²à<C2B2>{«ð¬ V™q¬ÊBÄ4¾VhÍ8O‡¨>x­,4”ÝjX…Ñ`ÏžüÌ8ü(Ú!†á­f~ <13>
Ó¤Ìxå¬nO,­0þð×ÂÌmVõ_ ƒMYÒ dÑ“ïª÷<C2AA>ᡨÛjؘ SØŽ§¼Î@VÅjç³UÌ
£Æ÷ Ë½êZ`eßþ«jð¬è û¡Pqz4Iåš
Ýþñµ&][U
:ÓÐ$èòL­Ò=Õ~¤™fíœZÆÙjŒ^E ȪE¨Ä`¿Kq¡0,°E‡9fÁ8µLúû”}Ásm(û1hk9 <0C>yI3ÿbX“Úmyåœ à¸õzÜ…Ø!bTEŽè,
h†%«óþåÙ¼Ö8‰LM `
ÍIøŠ
u»vN-ãHe¡»f¡u+Ãt6s<36>žf6¿¨VáðŠ&ÇU;FYõàê0ý|R†1ìvŒIÄÞ0QSïœ<C3AF>Žœ¦£eŽÄ`R²ïŒìl¬dõ<64>šœ^aEaÁµ­ô¬
£Qà$zÅÆÑ€‡§
JÄê0¤H;ÁµáMSuž äôœ<C3B4>âdðaQIÒpL'EVUª•Ý9´¬hE¸gf«:逬Q1;ŽdV(‹÷Ú)AŒYø*á+6X³kPsˆV[HøÊ3^X ¤rrhY£R Ñ·ç@VdGÃ"gÆJüŠmõ4¦Ç3ãвƈäd›ÕQ<><±€á#%QB9qT3áJ_œs…ÎïÑÙ¨l ކèíÌÉ!X©•N„z1fiZN<13>ôKœXÙ#ÐuYp ºƒ£‰RÒÕé¥q @„°PºL³¡ŽdQj8h0¥x­þb%!NPjzƒØþD£ê­$øâpÌšA,ô·h÷&O¼BLÞÀûbƒÞ=Ýù '¡¬žù/våö
ùdÈa ¸s™ß•ÙXÒ1JíVIþU VŸJÿ¦tSr¶ ×·Â‰i-ËlFBkz2HŸXqRSΰ<C38E>½0ÎK£<47>fÖ e&z5© íYmKB-ÙÄ¡&ƒ!¤ÛP "³ªkƒ£¢RLÕ=N¡áz“ªçbòqRšNyÂ* ,çÞ Úµ±
Œ+»ÂrÞ°ÓI“¾“Y€ÇH5ŒlŽ,»l‰ÿãÀbꈙ¥(;—õvT½†%»mÑÐ2°kl…pRZ•P#ûõµV¿“ÓEÆã©•ÂùélÿqPZ“rBÑu¸oŸµE<C2B5>X…hšbþÅ,²ègÐÉõ¢ÉÙª9Ùt`Ô'4dôt¨,ÍU«ÃXi”ÚB¯F,N^Zy(gŸ Uï†É¼<>13”éÂùñ=†TÄÎ$Uy´a'
3ŠU`²š
,åœÒŒbáLÔŠ"B­žA,
ôÖƒñ3£Ž£˜¦”˜%­ã…Ó<E280A6>ã&T æ¬8»ØQσ¿ªIFab82ÓÀÙÍqUÔ00ýÃbña65À+< 4ƒX™³d¼AÔÕeư°<C2B0>±ÉV­<56>+^½¿·*«ã}g˜Bú$EZøC X®UŸgu6ö{Û
o4VÕÎVŸfÇ­ÁΫêôQ23ö {³èvF/=Í,l³dXoêXõÖխ꬧-<¾†³ÃNd@ðj PÆ®Â;Äyé
ãïÕa&Æ"uåuìªVƒý uí5&¬XøÑ° ÑuÅð´è4Œ»ót|e¥÷ÄM(”ÁÂ#÷AÝ}`êÃ<C3AA>áŽ5]–À`J1_`ß‹<Eœ>xUQ.»‡Hg\<5C>`ÜhsÉFF:T=jê©ÙíEõBƒÍ½æf¯«©©ßHf F jpÃ<> <09>2œìè¹ô7±³à1„8t)<ø¢.* X0üUûZ ©¡†‡9
Gyž;205¢.qod÷¸;ÛZAÏ;Ãêu»=‡- ¬Q»Í«2º­v6hÂ*Ÿ¬QI <:)X6̱t{`X{лC™Bæ¦qKÒ~3êŠÝf÷ç+öx+B ްíþ 0½¾ubUÒÖ#n‰%@ÑÃþꙞ”í/˜HŒ}ÄO6(TZ/ÉV9ƒ`†°`¯EÙzÕÁ©˜Bâä'ÃXé½?¾5«¬X
:ÿѰØj®ŠÁ©JPam.aº0+llöÈ®avÔ*V¸>F ôiÔ[`§ôþb%®i—ša°}4¹ X3Ê0ü¶ƒE±pŸ¥ÆI'|††9õz°ý°z`…Ø÷pÂAù{ÃÖ*g(+œUu@Z1b&vjZì.l?†ÛG +ʳVÐ0uW,Š•8Ž`<NxUúÒ£ašÌ ^Ô÷¬ÆJ<1C>Í04e\¨b0Ú{í†a—°²z|Ï1®ßƒ_Å® +áÓˆ§”
Ânƒj±
#Rq|<7C>õÝ}ı <C2B1>Ro¦_ÀíŽ8Vb<56>¸º\Ä2kúF Û5UÃ`PµYŽ…Ó½èL²Çc¹«Í­Ô*^ 1þI&Š9\;<3B>ï5œ/Ùœz ãØ”—çáVaKÖÆâ-I4 1,ÿÔGL0Äà-ñ„·»ÃVÀß•;甼Wq¦¶Ÿa þ˜+ã¥G9'²aPŠã¥ã~œÆ¸àÇ|1¢JwͰ¢<C2B0>@Š%ÖæWáå8Ú é„Tc%<1C>MK„áÃjF0 ª#Ä<>?âX‰á [cÀ*ƒÝ´*”„fƒgÕäk&cØÓgæ_åÒ±ÛÃ.dÁ”aYôöÒq –àŠ¾"¸Vlh¶¿p<Â0ÔE &$TyÚð-péþò2²¡ôÇŠ­z{ ð¬¢Ô'C´Ð0ºjÓ¯Ç ï]2I°»`¥à,°ïaÛZ=Ì?œð8¡£ap|Má#µà%Œ¬ÆbË óbE¸x8‰ša½á¼A,†ØÆ%Ì?/F&ffùq©†á,†b±õE9ÌÄ´øÌ^z¤;^Ä^®lÁmÒ€eßc]gÖņGÏÒÛ^\?iX×âv»½0ýâÊÆÂ8ªyXë>k„Xî4E-ÈÀÉe-éË œ¦Ë0ší/Ül¥Q#X`«p˜5YXî±é¨bpaøE»?æ:‡œØ_ð9Q0hZÙŽ'XBøÉ”j`iFÕgÄî£y§Pc<[W ,hóµ9{¡j;Je³4tGa¬À“³Å<C2B3>áô‡j±8V`0µlN<>6k²å+ÉD<C389>sU´¦S1XÌ^kpˆñtÅ^{ ­ñlb°5Û\ c.\dXByVî‡Ñ9¥N‰”G +°œ©ºnXíŒIX iJ,Å`òý g5¡xÕÞ0˜ÅiÖdÁý(êÂÒ€f±—Îæ¼6îû«ë~ ǨvŠ%M8èÝÍ",Å*
t7ÃfF-­Y½Ê>5w\4žªLÕëªpM…ܨ/yJ²¤<C2B2>Æ#ËKRéq¢6'&‰hHÁc<C381>î7ÚÓó!(·¤W œÑ7áˆJ[•ž3Ò´NWÝ²š²Œ“R ¿ ®Š8ÀZ諈¦¹¢Fð|ªL"5ÕØm$ÑRš)( ÇsBš6CZHWýZÃØ‹Õ'Â%ÇRw§áè E"†Œ¿HR/[K±ÌDÃf'…=WÓøùv†ÍØ^)ì»ú˜9!Mµ5°Ê9†Þªlˆ1êÄâE`2Ú,h«!6Ù`oñö¤F)ÂÂÒË5šÉ<È“°‰ekµ2,Û$>`Œ¤:<3A>¢£öµôæ3††»sÞ&Ç£±ê›Þ=G¹vö ”`›ÜÕäHÖÄ<C396>³Õ <06>œDÎØÔX+†=¶ŸXÉ<12>Åò[©éˆ%l*öУ·+aioXãø"¶E[Æ{Òß„Ëdf(o®3Ë8”7 `âpQ?]Bš»àÎb(o_ÎwbAN•&¡3†T89A<39>Gb¬
,\û¾Ê„'™ågX…o×Xçâ«TfÚè1‰­¶±°ò1ª;60¶Õ{ÖÆÃ8ä?J쌣29p°«2
<­ð+´¬pÀÛi\&éÝI쌟õ)V½Žñ&]x#b9â,ƒ©È`hzó6XÉÉ0©*<2A>ÁÐ쀠À¦291®·“Ø}o'a }C4Þ´9{<7B>X<EFBFBD>Ú“uÜz¶$h =¦ÅLü
¹87%'ftiLo5^t»Ø‘|);kÒ"*£aì¾ §wÊÑBn~?Ø› †¦ Š7.Ówˆ5©Æq<kErÊUK=‰1ëâ%xÆù†²¨T NMÃÒè¼»HoΔ<0E> c
¸¿¤’ž¬°¶»ŒÐ¨=c¹<äÐÀ!¦Á´Œ^CšyoêÉ„"ƒ¡éEjvÕ9À¤O=s÷J¢‰w¤e§ÀdŒæ¨Þkdójl@Πay2lÖÓ{ú?°#ÅQ¬1Î.Á3`<60>å•I<E280A2>Ä(i?&5('gÃâ¨TúmbGcÁÐZ.:Ã0Î Íy,z1s*Jñ ^*_;ã9™¹S ËV¢ŒŽGiHB*ƱNYKga@K€8JôŒN§>hõ1v´É\<5C>@CŸ-ÚêG¬I«šSU:¬šDƒ—þ%‡œ M¨šƒ`öabs80愱MGpjFå¤ ¼öàdöbÐÀF‡_³ZI ¬1igÎCI.cÕ$”WtÕ°ÊN<C38A>ÊàxlJH Õ 2¯<32>Óœ½AМÄÌ{ãÏ3J!n.1þÅ̱X<EFBFBD>æ£Sþ\Á;fÓ+çìs¸ZaØPõ4‡fXX[+K‰±TÑ1zhi2œîm½SÝG'C҉щðæˆDÇxÐ%A<>6Ë@¡«ìy±Ìtê ±Ä™iZ‰Nˆc%‹öùÞDúÁëä$)MP¬ÐY☌àe:âŠu3Ù£ö)ZßKóÒ>Œw@{ÈsܦšÑŒÁÁˆ2:bÐ/V JHºÈ*³ŠØ1çâÄ´eÊQð2ÝUMKÅ8<C385>ƒÓƒ5U¡Õ <>ÕyÀ<50>£»<±ÆŽ¡gs56ЩVIÒ6ËmžkìŠmj1#O&s!Àس¿¹«­Ìˆ,^9Ç1þ
4 ms7œCE¨jB:ÔDõñ…s ¶.^¼~-³ŽO:ÈÌø2ÓÂIs7ÃÄ`°ê³Ö¤+He%ëÄôr$q×> ÆÒCbÒT¦Ì^Š=èé Œ^6<08>4<EFBFBD>¾¤1œž Ëð n®n Œ† Œã·ŠäÌd~<7E>bË™ç¹ë™Æ|
 $Vu ¯AäV”îœeô º×Zbôä%ë2kB<6B>B&Æ<ÛX<C39B>r³TNzÜ£µ'ùÈ N“ùµ†A5W©ü"¦-ͺ%u™4Á$T'<27>ÅÕ°4Œ‰Àk«tø±Ên(Nƒ&½á¬ãµI†[ÆH¡2<C2A1><í´)¬I?«1è°3Ƨv4kK}H²]¦è¤â¤ð+0&ÚøhÃÀXÔÐ0§3Ä<19>ãXN<>V¸ÞxÈè-ÐáÃb`5ùß™´a©q†¡ÎaÐÄX³š4=MŒ3ØÛŒjϯé+ÊŒêÕ.M<03>zº÷¤ßƒ" fôÑvŽLÅ0®v©ü
TiŽEAn|<7C>Ãôhf}D²Ê83CgHó{^š4Ùi˜åãk—”Cæ¨ïlX·Q]q:V1WŽC3¤'”Û‹.%Mõ¤‡YH´¨÷Ç$
§~X ‰,$Z“«tºnxS#·˜œbÅ•œ™1Ê!±{—]®†aŸÓ?Ä+gŽ­P!9,
g-ƒg!‰ãV„ÛN±<F{£ÑYp„8Œ°4ùI:°ÐÑZ1ÒHA"ÏñÞ:;'°×'Ÿ<>în¬r<C2AC>Pr¸ƒGXwÀál]­4̨<C2A8>Ä׸-"+Ü5
Bo<EFBFBD>§üý µ9EšÕ ±zŒ\)ýÂCÖ"ÕV8,Mü†*Ϙ[cì*d‰ëañçñ=Ðl a:̬‰í]EáÞöl)
ËN«“DŸÝ:\¬(¶›ÞŽCø<43>vëp±2#zNåÄÕDÑó<>c3í{žñ
‚Í¸Š±·…Å_<C385>5CÐPbo+Ä!I2f&àí³ÇL&:cå0NýRbæ?h‰P²Ž)`´[¬N˜He×ÏÓÀ©àPÃNÈN#”JËYB8XÍÏðU<C3B0>BxÉ ž†tÒ Öu‡^<5E>N]—áW(Ú« ªbð©¤A;½çœ$b2b§2 c`kGÍŸ5<35>ŒÒê@×=“æpb2}ˆ¬ÀÔ»Ö‹á|âÂð<11>ü .*©GXÕÏq:<3A>wÊ)O¶åH=U8:°"…ƒkµD€42|ᔸsT¤†%8+ƒsA  ,-ÁvÁÙÄèá(`ås(ÒðÌ?uÊVc5ÁªŽØ†áç».hx)OP99*ÍzRCzI>VXÉ$I<>Ž ËF¡…Ö_cÍFga¼ž•Ôì2"·ÇÂŒåAsZ†f ½`8tD¹bÝ2×ÀxtIc æY•ØÝLŠÊå–ÙÖÂʘÚÌ~`ðke" 0fl#§çË£&õNW™§EH^ùDc݆?̉ð™ÞaMÊÁ¹¹8 <>qQÁ¤A+>h»ÙÀò0s‰UíRΆ1ö(k5TåˆÔ1j­& ¯Ñ<C2AF>D{»W؉%¶ 1ˆE¬r†<72>×ÕBêø‹¬æû˜ø<CB9C>
ÓïqAò/ò­3½ï9‰FWuå¬4©6iMZë‰9[*0K<30>çkÍM<C38D>Ì#ê£âîZ”²† )ob2!ƒa,bP££%…Xe13ÃX<C383>Ñ~UCÎ|€ì0g+<2B>Í"J<>²b0âd¦`ö1ŽagI0¶eB<65>é9ØWXã6)"0“Íg«“ãÒä@Ä*EŸl$ !ö€x†±ˆÑж™näh•1 cá0`ïŠô3YAÏ0V ÝA`IîYÌКŽ(kédb
0r<EFBFBD>•ªd«³ÖÄ,øÊï±yŠæ¿®ˆÆÄ˜°A0¦®½N²]6À—¦d5?I1®ð3±q
ÓPmÏ«’ËïŽ\<5C>¬“»'Wã¼[Íú\ÉÕD
@@ -3347,46 +3404,46 @@ xref
5050
endobj
360 0 obj
/DescendantFonts [365 0 R]
>>
endobj
365 0 obj
<< /Type /Font
/BaseFont /EAAAAC+mwa_cmr10
/CIDToGIDMap /Identity
/Subtype /CIDFontType2
/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >>
/FontDescriptor 358 0 R
/DW 0
/W [ 0 [365 500 500 500 276 776 555 443 555 333 625 500 722 388 391 500 276 276 443 555 555 750 763 651 526 555 443 526 276 750 276 ] ]
>>
endobj
364 0 obj
<< /Length 366 0 R /Filter /FlateDecode >>
stream
xœ]Kk„0…÷ó+²œ.<06>Ï„2¥à¢br<62>
5†¨ ÿ}cN°Ð€<C390>/9÷$‡ÜèV?ÕºŸYônGÙÐ̺^+KÓ¸XI¬¥{¯<aª—s ÿƒ0‡È7ë4ÓPënd)Tj1AÉXôá~¦Ù®ìø¨Æ–˜¢n³Šl¯ïìøuköÙf1æ‡Ò3ýiå¿ÑíE˜W1¼Ï©VNÔÏëÉ•ÿ)>WC,ñÌq9*šŒ<C5A1>d…¾Óá»Q±ë³Õæþo=
em'¿…Ýå<C39D>•'î(ŽSJ@1(% ÌS"A¹§,¸žÊPWz*rÐD  \HÀ%x¶PO‰µ¤°C"P8Y‡:dà1žùŠ ùJžùrìÇ//@È—%òea
ùʰ;ò•ÈΑ¯žÈW†³ _Þ<C39E>/;ƒ<>/WþJÃÝm—»5éÞ9r±Ö5<C396>ïQß-[Ÿôšöf7£Ùªüó -nΪ
endstream
endobj
366 0 obj
363
endobj
339 0 obj
<< /Type /Pages
/Count 1
/Kids [337 0 R ] >>
endobj
367 0 obj
<<
<< /Length 362 0 R /Filter /FlateDecode >>
stream
xœk`¶``[äÒ*.ô[Ìi
endstream
endobj
362 0 obj
20
endobj
363 0 obj
<<
/Type /Font
/Subtype /Type0
/BaseFont /EAAAAC+mwa_cmr10
/Encoding /Identity-H
/ToUnicode 364 0 R
/DescendantFonts [365 0 R]
>>
endobj
365 0 obj
<< /Type /Font
/BaseFont /EAAAAC+mwa_cmr10
/CIDToGIDMap /Identity
/Subtype /CIDFontType2
/CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >>
/FontDescriptor 358 0 R
/DW 0
/W [ 0 [365 500 500 500 276 776 555 443 555 333 625 500 722 388 391 500 276 276 443 555 555 750 763 651 526 555 443 526 276 750 276 ] ]
>>
endobj
364 0 obj
<< /Length 366 0 R /Filter /FlateDecode >>
stream
xœ]Kk„0…÷ó+²œ.<06>Ï„2¥à¢br<62>
5†¨ ÿ}cN°Ð€<C390>/9÷$‡ÜèV?ÕºŸYônGÙÐ̺^+KÓ¸XI¬¥{¯<aª—s ÿƒ0‡È7ë4ÓPënd)Tj1AÉXôá~¦Ù®ìø¨Æ–˜¢n³Šl¯ïìøuköÙf1æ‡Ò3ýiå¿ÑíE˜W1¼Ï©VNÔÏëÉ•ÿ)>WC,ñÌq9*šŒ<C5A1>d…¾Óá»Q±ë³Õæþo=
em'¿…Ýå<C39D>•'î(ŽSJ@1(% ÌS"A¹§,¸žÊPWz*rÐD  \HÀ%x¶PO‰µ¤°C"P8Y‡:dà1žùŠ ùJžùrìÇ//@È—%òea
ùʰ;ò•ÈΑ¯žÈW†³ _Þ<C39E>/;ƒ<>/WþJÃÝm—»5éÞ9r±Ö5<C396>ïQß-[Ÿôšöf7£Ùªüó -nΪ
endstream
endobj
endobj
366 0 obj
363
endobj
/F1358 345 0 R
339 0 obj
<< /Type /Pages

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.4 KiB

After

Width:  |  Height:  |  Size: 7.9 KiB

View File

@@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-11-09 lun. 10:54 -->
<!-- 2020-11-09 lun. 14:36 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>SVD Control</title>
<meta name="generator" content="Org mode" />
@@ -35,57 +35,57 @@
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org8480cb8">1. Gravimeter - Simscape Model</a>
<li><a href="#org4262bdd">1. Gravimeter - Simscape Model</a>
<ul>
<li><a href="#org669566a">1.1. Introduction</a></li>
<li><a href="#org513c970">1.2. Simscape Model - Parameters</a></li>
<li><a href="#org7e0371b">1.3. System Identification - Without Gravity</a></li>
<li><a href="#org9dfc541">1.4. System Identification - With Gravity</a></li>
<li><a href="#org06067ff">1.5. Analytical Model</a>
<li><a href="#org46fc636">1.1. Introduction</a></li>
<li><a href="#org137a1ed">1.2. Simscape Model - Parameters</a></li>
<li><a href="#org08acfbd">1.3. System Identification - Without Gravity</a></li>
<li><a href="#orge4c219d">1.4. System Identification - With Gravity</a></li>
<li><a href="#org744c6c9">1.5. Analytical Model</a>
<ul>
<li><a href="#org063c200">1.5.1. Parameters</a></li>
<li><a href="#orgec24c80">1.5.2. Generation of the State Space Model</a></li>
<li><a href="#org1590891">1.5.3. Comparison with the Simscape Model</a></li>
<li><a href="#orgb615e54">1.5.4. Analysis</a></li>
<li><a href="#org2243155">1.5.5. Control Section</a></li>
<li><a href="#orgd28ecdb">1.5.6. Greshgorin radius</a></li>
<li><a href="#org24f83eb">1.5.7. Injecting ground motion in the system to have the output</a></li>
<li><a href="#orga42f590">1.5.1. Parameters</a></li>
<li><a href="#org288ddf0">1.5.2. Generation of the State Space Model</a></li>
<li><a href="#orgcd68a21">1.5.3. Comparison with the Simscape Model</a></li>
<li><a href="#orga3239b9">1.5.4. Analysis</a></li>
<li><a href="#orgda0f1ad">1.5.5. Control Section</a></li>
<li><a href="#org7ffae54">1.5.6. Greshgorin radius</a></li>
<li><a href="#org72dd1a0">1.5.7. Injecting ground motion in the system to have the output</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#orgc1560cf">2. Gravimeter - Functions</a>
<li><a href="#org01bdedf">2. Gravimeter - Functions</a>
<ul>
<li><a href="#org814c22c">2.1. <code>align</code></a></li>
<li><a href="#orga936ee3">2.2. <code>pzmap_testCL</code></a></li>
<li><a href="#org4647e37">2.1. <code>align</code></a></li>
<li><a href="#orga0981c0">2.2. <code>pzmap_testCL</code></a></li>
</ul>
</li>
<li><a href="#orgf783e5e">3. Stewart Platform - Simscape Model</a>
<li><a href="#orgd6f892a">3. Stewart Platform - Simscape Model</a>
<ul>
<li><a href="#org698a574">3.1. Simscape Model - Parameters</a></li>
<li><a href="#orgdfc6136">3.2. Identification of the plant</a></li>
<li><a href="#orgadaff5c">3.3. Physical Decoupling using the Jacobian</a></li>
<li><a href="#org6ba1c1a">3.4. Real Approximation of \(G\) at the decoupling frequency</a></li>
<li><a href="#org7e2a42e">3.5. SVD Decoupling</a></li>
<li><a href="#orgc6f3016">3.6. Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</a></li>
<li><a href="#orgedf5c94">3.7. Obtained Decoupled Plants</a></li>
<li><a href="#orgff44b51">3.8. Diagonal Controller</a></li>
<li><a href="#org949d9ca">3.9. Closed-Loop system Performances</a></li>
<li><a href="#org98f27a1">3.1. Simscape Model - Parameters</a></li>
<li><a href="#orgfc4057f">3.2. Identification of the plant</a></li>
<li><a href="#org06bff3b">3.3. Physical Decoupling using the Jacobian</a></li>
<li><a href="#org7208fcb">3.4. Real Approximation of \(G\) at the decoupling frequency</a></li>
<li><a href="#orgdcfefc4">3.5. SVD Decoupling</a></li>
<li><a href="#orgeedb4ac">3.6. Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</a></li>
<li><a href="#orga3edea8">3.7. Obtained Decoupled Plants</a></li>
<li><a href="#orgb371cb1">3.8. Diagonal Controller</a></li>
<li><a href="#orgb6d90eb">3.9. Closed-Loop system Performances</a></li>
</ul>
</li>
</ul>
</div>
</div>
<div id="outline-container-org8480cb8" class="outline-2">
<h2 id="org8480cb8"><span class="section-number-2">1</span> Gravimeter - Simscape Model</h2>
<div id="outline-container-org4262bdd" class="outline-2">
<h2 id="org4262bdd"><span class="section-number-2">1</span> Gravimeter - Simscape Model</h2>
<div class="outline-text-2" id="text-1">
</div>
<div id="outline-container-org669566a" class="outline-3">
<h3 id="org669566a"><span class="section-number-3">1.1</span> Introduction</h3>
<div id="outline-container-org46fc636" class="outline-3">
<h3 id="org46fc636"><span class="section-number-3">1.1</span> Introduction</h3>
<div class="outline-text-3" id="text-1-1">
<div id="org1f9eedf" class="figure">
<div id="orgca5b956" class="figure">
<p><img src="figs/gravimeter_model.png" alt="gravimeter_model.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Model of the gravimeter</p>
@@ -93,8 +93,8 @@
</div>
</div>
<div id="outline-container-org513c970" class="outline-3">
<h3 id="org513c970"><span class="section-number-3">1.2</span> Simscape Model - Parameters</h3>
<div id="outline-container-org137a1ed" class="outline-3">
<h3 id="org137a1ed"><span class="section-number-3">1.2</span> Simscape Model - Parameters</h3>
<div class="outline-text-3" id="text-1-2">
<div class="org-src-container">
<pre class="src src-matlab">open(<span class="org-string">'gravimeter.slx'</span>)
@@ -125,8 +125,8 @@ g = 0; <span class="org-comment">% Gravity [m/s2]</span>
</div>
</div>
<div id="outline-container-org7e0371b" class="outline-3">
<h3 id="org7e0371b"><span class="section-number-3">1.3</span> System Identification - Without Gravity</h3>
<div id="outline-container-org08acfbd" class="outline-3">
<h3 id="org08acfbd"><span class="section-number-3">1.3</span> System Identification - Without Gravity</h3>
<div class="outline-text-3" id="text-1-3">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
@@ -148,7 +148,7 @@ G.OutputName = {<span class="org-string">'Ax1'</span>, <span class="org-string">
</pre>
</div>
<pre class="example" id="org6eb6401">
<pre class="example" id="org2c5c71d">
pole(G)
ans =
-0.000473481142385795 + 21.7596190728632i
@@ -173,7 +173,7 @@ State-space model with 4 outputs, 3 inputs, and 6 states.
<div id="org3874001" class="figure">
<div id="orgddb1793" class="figure">
<p><img src="figs/open_loop_tf.png" alt="open_loop_tf.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Open Loop Transfer Function from 3 Actuators to 4 Accelerometers</p>
@@ -181,8 +181,8 @@ State-space model with 4 outputs, 3 inputs, and 6 states.
</div>
</div>
<div id="outline-container-org9dfc541" class="outline-3">
<h3 id="org9dfc541"><span class="section-number-3">1.4</span> System Identification - With Gravity</h3>
<div id="outline-container-orge4c219d" class="outline-3">
<h3 id="orge4c219d"><span class="section-number-3">1.4</span> System Identification - With Gravity</h3>
<div class="outline-text-3" id="text-1-4">
<div class="org-src-container">
<pre class="src src-matlab">g = 9.80665; <span class="org-comment">% Gravity [m/s2]</span>
@@ -199,7 +199,7 @@ Gg.OutputName = {<span class="org-string">'Ax1'</span>, <span class="org-string"
<p>
We can now see that the system is unstable due to gravity.
</p>
<pre class="example" id="orga5f4271">
<pre class="example" id="org78beae2">
pole(Gg)
ans =
-10.9848275341252 + 0i
@@ -211,7 +211,7 @@ ans =
</pre>
<div id="org5e8aee0" class="figure">
<div id="org70961c1" class="figure">
<p><img src="figs/open_loop_tf_g.png" alt="open_loop_tf_g.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Open Loop Transfer Function from 3 Actuators to 4 Accelerometers with an without gravity</p>
@@ -219,12 +219,12 @@ ans =
</div>
</div>
<div id="outline-container-org06067ff" class="outline-3">
<h3 id="org06067ff"><span class="section-number-3">1.5</span> Analytical Model</h3>
<div id="outline-container-org744c6c9" class="outline-3">
<h3 id="org744c6c9"><span class="section-number-3">1.5</span> Analytical Model</h3>
<div class="outline-text-3" id="text-1-5">
</div>
<div id="outline-container-org063c200" class="outline-4">
<h4 id="org063c200"><span class="section-number-4">1.5.1</span> Parameters</h4>
<div id="outline-container-orga42f590" class="outline-4">
<h4 id="orga42f590"><span class="section-number-4">1.5.1</span> Parameters</h4>
<div class="outline-text-4" id="text-1-5-1">
<p>
Bode options.
@@ -256,8 +256,8 @@ Frequency vector.
</div>
</div>
<div id="outline-container-orgec24c80" class="outline-4">
<h4 id="orgec24c80"><span class="section-number-4">1.5.2</span> Generation of the State Space Model</h4>
<div id="outline-container-org288ddf0" class="outline-4">
<h4 id="org288ddf0"><span class="section-number-4">1.5.2</span> Generation of the State Space Model</h4>
<div class="outline-text-4" id="text-1-5-2">
<p>
Mass matrix
@@ -358,11 +358,11 @@ State-space model with 12 outputs, 6 inputs, and 6 states.
</div>
</div>
<div id="outline-container-org1590891" class="outline-4">
<h4 id="org1590891"><span class="section-number-4">1.5.3</span> Comparison with the Simscape Model</h4>
<div id="outline-container-orgcd68a21" class="outline-4">
<h4 id="orgcd68a21"><span class="section-number-4">1.5.3</span> Comparison with the Simscape Model</h4>
<div class="outline-text-4" id="text-1-5-3">
<div id="orgfa66619" class="figure">
<div id="orgacf77cc" class="figure">
<p><img src="figs/gravimeter_analytical_system_open_loop_models.png" alt="gravimeter_analytical_system_open_loop_models.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Comparison of the analytical and the Simscape models</p>
@@ -370,8 +370,8 @@ State-space model with 12 outputs, 6 inputs, and 6 states.
</div>
</div>
<div id="outline-container-orgb615e54" class="outline-4">
<h4 id="orgb615e54"><span class="section-number-4">1.5.4</span> Analysis</h4>
<div id="outline-container-orga3239b9" class="outline-4">
<h4 id="orga3239b9"><span class="section-number-4">1.5.4</span> Analysis</h4>
<div class="outline-text-4" id="text-1-5-4">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-comment">% figure</span>
@@ -439,8 +439,8 @@ State-space model with 12 outputs, 6 inputs, and 6 states.
</div>
</div>
<div id="outline-container-org2243155" class="outline-4">
<h4 id="org2243155"><span class="section-number-4">1.5.5</span> Control Section</h4>
<div id="outline-container-orgda0f1ad" class="outline-4">
<h4 id="orgda0f1ad"><span class="section-number-4">1.5.5</span> Control Section</h4>
<div class="outline-text-4" id="text-1-5-5">
<div class="org-src-container">
<pre class="src src-matlab">system_dec_10Hz = freqresp(system_dec,2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>10);
@@ -580,8 +580,8 @@ legend(<span class="org-string">'Control OFF'</span>,<span class="org-string">'D
</div>
</div>
<div id="outline-container-orgd28ecdb" class="outline-4">
<h4 id="orgd28ecdb"><span class="section-number-4">1.5.6</span> Greshgorin radius</h4>
<div id="outline-container-org7ffae54" class="outline-4">
<h4 id="org7ffae54"><span class="section-number-4">1.5.6</span> Greshgorin radius</h4>
<div class="outline-text-4" id="text-1-5-6">
<div class="org-src-container">
<pre class="src src-matlab">system_dec_freq = freqresp(system_dec,w);
@@ -627,8 +627,8 @@ ylabel(<span class="org-string">'Greshgorin radius [-]'</span>);
</div>
</div>
<div id="outline-container-org24f83eb" class="outline-4">
<h4 id="org24f83eb"><span class="section-number-4">1.5.7</span> Injecting ground motion in the system to have the output</h4>
<div id="outline-container-org72dd1a0" class="outline-4">
<h4 id="org72dd1a0"><span class="section-number-4">1.5.7</span> Injecting ground motion in the system to have the output</h4>
<div class="outline-text-4" id="text-1-5-7">
<div class="org-src-container">
<pre class="src src-matlab">Fr = logspace(<span class="org-type">-</span>2,3,1e3);
@@ -684,15 +684,15 @@ rot = PHI(<span class="org-type">:</span>,11,11);
</div>
</div>
<div id="outline-container-orgc1560cf" class="outline-2">
<h2 id="orgc1560cf"><span class="section-number-2">2</span> Gravimeter - Functions</h2>
<div id="outline-container-org01bdedf" class="outline-2">
<h2 id="org01bdedf"><span class="section-number-2">2</span> Gravimeter - Functions</h2>
<div class="outline-text-2" id="text-2">
</div>
<div id="outline-container-org814c22c" class="outline-3">
<h3 id="org814c22c"><span class="section-number-3">2.1</span> <code>align</code></h3>
<div id="outline-container-org4647e37" class="outline-3">
<h3 id="org4647e37"><span class="section-number-3">2.1</span> <code>align</code></h3>
<div class="outline-text-3" id="text-2-1">
<p>
<a id="org3643797"></a>
<a id="org787b0b4"></a>
</p>
<p>
@@ -721,11 +721,11 @@ This Matlab function is accessible <a href="gravimeter/align.m">here</a>.
</div>
<div id="outline-container-orga936ee3" class="outline-3">
<h3 id="orga936ee3"><span class="section-number-3">2.2</span> <code>pzmap_testCL</code></h3>
<div id="outline-container-orga0981c0" class="outline-3">
<h3 id="orga0981c0"><span class="section-number-3">2.2</span> <code>pzmap_testCL</code></h3>
<div class="outline-text-3" id="text-2-2">
<p>
<a id="org7c6bace"></a>
<a id="org6adb39c"></a>
</p>
<p>
@@ -774,11 +774,11 @@ This Matlab function is accessible <a href="gravimeter/pzmap_testCL.m">here</a>.
</div>
</div>
<div id="outline-container-orgf783e5e" class="outline-2">
<h2 id="orgf783e5e"><span class="section-number-2">3</span> Stewart Platform - Simscape Model</h2>
<div id="outline-container-orgd6f892a" class="outline-2">
<h2 id="orgd6f892a"><span class="section-number-2">3</span> Stewart Platform - Simscape Model</h2>
<div class="outline-text-2" id="text-3">
<p>
In this analysis, we wish to applied SVD control to the Stewart Platform shown in Figure <a href="#org325e3af">5</a>.
In this analysis, we wish to applied SVD control to the Stewart Platform shown in Figure <a href="#org2113119">5</a>.
</p>
<p>
@@ -791,7 +791,7 @@ Some notes about the system:
</ul>
<div id="org325e3af" class="figure">
<div id="org2113119" class="figure">
<p><img src="figs/SP_assembly.png" alt="SP_assembly.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Stewart Platform CAD View</p>
@@ -801,22 +801,22 @@ Some notes about the system:
The analysis of the SVD control applied to the Stewart platform is performed in the following sections:
</p>
<ul class="org-ul">
<li>Section <a href="#org46c7682">3.1</a>: The parameters of the Simscape model of the Stewart platform are defined</li>
<li>Section <a href="#orgacf8e97">3.2</a>: The plant is identified from the Simscape model and the system coupling is shown</li>
<li>Section <a href="#orgf5489c1">3.3</a>: The plant is first decoupled using the Jacobian</li>
<li>Section <a href="#orgccd7599">3.4</a>: A real approximation of the plant is computed for further decoupling using the Singular Value Decomposition (SVD)</li>
<li>Section <a href="#org5abe937">3.5</a>: The decoupling is performed thanks to the SVD</li>
<li>Section <a href="#org7691f01">3.6</a>: The effectiveness of the decoupling with the Jacobian and SVD are compared using the Gershorin Radii</li>
<li>Section <a href="#orgabc21ab">3.7</a>: The dynamics of the decoupled plants are shown</li>
<li>Section <a href="#org9620c1c">3.8</a>: A diagonal controller is defined to control the decoupled plant</li>
<li>Section <a href="#org823e1cb">3.9</a>: Finally, the closed loop system properties are studied</li>
<li>Section <a href="#org9eff470">3.1</a>: The parameters of the Simscape model of the Stewart platform are defined</li>
<li>Section <a href="#orgb8efc36">3.2</a>: The plant is identified from the Simscape model and the system coupling is shown</li>
<li>Section <a href="#org9d45510">3.3</a>: The plant is first decoupled using the Jacobian</li>
<li>Section <a href="#orgbe757a9">3.4</a>: A real approximation of the plant is computed for further decoupling using the Singular Value Decomposition (SVD)</li>
<li>Section <a href="#orgb593bce">3.5</a>: The decoupling is performed thanks to the SVD</li>
<li>Section <a href="#org9c68bed">3.6</a>: The effectiveness of the decoupling with the Jacobian and SVD are compared using the Gershorin Radii</li>
<li>Section <a href="#orgc065295">3.7</a>: The dynamics of the decoupled plants are shown</li>
<li>Section <a href="#orgaf53d60">3.8</a>: A diagonal controller is defined to control the decoupled plant</li>
<li>Section <a href="#org60a86ad">3.9</a>: Finally, the closed loop system properties are studied</li>
</ul>
</div>
<div id="outline-container-org698a574" class="outline-3">
<h3 id="org698a574"><span class="section-number-3">3.1</span> Simscape Model - Parameters</h3>
<div id="outline-container-org98f27a1" class="outline-3">
<h3 id="org98f27a1"><span class="section-number-3">3.1</span> Simscape Model - Parameters</h3>
<div class="outline-text-3" id="text-3-1">
<p>
<a id="org46c7682"></a>
<a id="org9eff470"></a>
</p>
<div class="org-src-container">
<pre class="src src-matlab">open(<span class="org-string">'drone_platform.slx'</span>);
@@ -864,14 +864,14 @@ Kc = tf(zeros(6));
</div>
<div id="org48cc1aa" class="figure">
<div id="orgf541900" class="figure">
<p><img src="figs/stewart_simscape.png" alt="stewart_simscape.png" />
</p>
<p><span class="figure-number">Figure 6: </span>General view of the Simscape Model</p>
</div>
<div id="orgd93f514" class="figure">
<div id="orge4629ec" class="figure">
<p><img src="figs/stewart_platform_details.png" alt="stewart_platform_details.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Simscape model of the Stewart platform</p>
@@ -879,15 +879,15 @@ Kc = tf(zeros(6));
</div>
</div>
<div id="outline-container-orgdfc6136" class="outline-3">
<h3 id="orgdfc6136"><span class="section-number-3">3.2</span> Identification of the plant</h3>
<div id="outline-container-orgfc4057f" class="outline-3">
<h3 id="orgfc4057f"><span class="section-number-3">3.2</span> Identification of the plant</h3>
<div class="outline-text-3" id="text-3-2">
<p>
<a id="orgacf8e97"></a>
<a id="orgb8efc36"></a>
</p>
<p>
The plant shown in Figure <a href="#org6611cbe">8</a> is identified from the Simscape model.
The plant shown in Figure <a href="#orge3a32c6">8</a> is identified from the Simscape model.
</p>
<p>
@@ -903,10 +903,10 @@ The outputs are the 6 accelerations measured by the inertial unit.
</p>
<div id="org6611cbe" class="figure">
<div id="orge3a32c6" class="figure">
<p><img src="figs/stewart_platform_plant.png" alt="stewart_platform_plant.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Considered plant \(\bm{G} = \begin{bmatrix}G_d\\G\end{bmatrix}\). \(D_w\) is the translation/rotation of the support, \(\tau\) the actuator forces, \(a\) the acceleration/angular acceleration of the top platform</p>
<p><span class="figure-number">Figure 8: </span>Considered plant \(\bm{G} = \begin{bmatrix}G_d\\G_u\end{bmatrix}\). \(D_w\) is the translation/rotation of the support, \(\tau\) the actuator forces, \(a\) the acceleration/angular acceleration of the top platform</p>
</div>
<div class="org-src-container">
@@ -923,6 +923,11 @@ G = linearize(mdl, io);
G.InputName = {<span class="org-string">'Dwx'</span>, <span class="org-string">'Dwy'</span>, <span class="org-string">'Dwz'</span>, <span class="org-string">'Rwx'</span>, <span class="org-string">'Rwy'</span>, <span class="org-string">'Rwz'</span>, ...
<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>};
G.OutputName = {<span class="org-string">'Ax'</span>, <span class="org-string">'Ay'</span>, <span class="org-string">'Az'</span>, <span class="org-string">'Arx'</span>, <span class="org-string">'Ary'</span>, <span class="org-string">'Arz'</span>};
<span class="org-comment">% Plant</span>
Gu = G(<span class="org-type">:</span>, {<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>});
<span class="org-comment">% Disturbance dynamics</span>
Gd = G(<span class="org-type">:</span>, {<span class="org-string">'Dwx'</span>, <span class="org-string">'Dwy'</span>, <span class="org-string">'Dwz'</span>, <span class="org-string">'Rwx'</span>, <span class="org-string">'Rwy'</span>, <span class="org-string">'Rwz'</span>});
</pre>
</div>
@@ -940,7 +945,7 @@ State-space model with 6 outputs, 12 inputs, and 24 states.
<p>
The elements of the transfer matrix \(\bm{G}\) corresponding to the transfer function from actuator forces \(\tau\) to the measured acceleration \(a\) are shown in Figure <a href="#org3e2e269">9</a>.
The elements of the transfer matrix \(\bm{G}\) corresponding to the transfer function from actuator forces \(\tau\) to the measured acceleration \(a\) are shown in Figure <a href="#org602aa13">9</a>.
</p>
<p>
@@ -948,25 +953,25 @@ One can easily see that the system is strongly coupled.
</p>
<div id="org3e2e269" class="figure">
<div id="org602aa13" class="figure">
<p><img src="figs/stewart_platform_coupled_plant.png" alt="stewart_platform_coupled_plant.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Magnitude of all 36 elements of the transfer function matrix \(\bm{G}\)</p>
<p><span class="figure-number">Figure 9: </span>Magnitude of all 36 elements of the transfer function matrix \(G_u\)</p>
</div>
</div>
</div>
<div id="outline-container-orgadaff5c" class="outline-3">
<h3 id="orgadaff5c"><span class="section-number-3">3.3</span> Physical Decoupling using the Jacobian</h3>
<div id="outline-container-org06bff3b" class="outline-3">
<h3 id="org06bff3b"><span class="section-number-3">3.3</span> Physical Decoupling using the Jacobian</h3>
<div class="outline-text-3" id="text-3-3">
<p>
<a id="orgf5489c1"></a>
Consider the control architecture shown in Figure <a href="#orgeef0f77">10</a>.
<a id="org9d45510"></a>
Consider the control architecture shown in Figure <a href="#org1c673db">10</a>.
The Jacobian matrix is used to transform forces/torques applied on the top platform to the equivalent forces applied by each actuator.
</p>
<div id="orgeef0f77" class="figure">
<div id="org1c673db" class="figure">
<p><img src="figs/plant_decouple_jacobian.png" alt="plant_decouple_jacobian.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Decoupled plant \(\bm{G}_x\) using the Jacobian matrix \(J\)</p>
@@ -982,31 +987,27 @@ We define a new plant:
</p>
<div class="org-src-container">
<pre class="src src-matlab">Gx = G<span class="org-type">*</span>blkdiag(eye(6), inv(J<span class="org-type">'</span>));
Gx.InputName = {<span class="org-string">'Dwx'</span>, <span class="org-string">'Dwy'</span>, <span class="org-string">'Dwz'</span>, <span class="org-string">'Rwx'</span>, <span class="org-string">'Rwy'</span>, <span class="org-string">'Rwz'</span>, ...
<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
<pre class="src src-matlab">Gx = Gu<span class="org-type">*</span>inv(J<span class="org-type">'</span>);
Gx.InputName = {<span class="org-string">'Fx'</span>, <span class="org-string">'Fy'</span>, <span class="org-string">'Fz'</span>, <span class="org-string">'Mx'</span>, <span class="org-string">'My'</span>, <span class="org-string">'Mz'</span>};
</pre>
</div>
</div>
</div>
<div id="outline-container-org6ba1c1a" class="outline-3">
<h3 id="org6ba1c1a"><span class="section-number-3">3.4</span> Real Approximation of \(G\) at the decoupling frequency</h3>
<div id="outline-container-org7208fcb" class="outline-3">
<h3 id="org7208fcb"><span class="section-number-3">3.4</span> Real Approximation of \(G\) at the decoupling frequency</h3>
<div class="outline-text-3" id="text-3-4">
<p>
<a id="orgccd7599"></a>
<a id="orgbe757a9"></a>
</p>
<p>
Let&rsquo;s compute a real approximation of the complex matrix \(H_1\) which corresponds to the the transfer function \(G(j\omega_c)\) from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency \(\omega_c\).
Let&rsquo;s compute a real approximation of the complex matrix \(H_1\) which corresponds to the the transfer function \(G_u(j\omega_c)\) from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency \(\omega_c\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>30; <span class="org-comment">% Decoupling frequency [rad/s]</span>
Gc = G({<span class="org-string">'Ax'</span>, <span class="org-string">'Ay'</span>, <span class="org-string">'Az'</span>, <span class="org-string">'Arx'</span>, <span class="org-string">'Ary'</span>, <span class="org-string">'Arz'</span>}, ...
{<span class="org-string">'F1'</span>, <span class="org-string">'F2'</span>, <span class="org-string">'F3'</span>, <span class="org-string">'F4'</span>, <span class="org-string">'F5'</span>, <span class="org-string">'F6'</span>}); <span class="org-comment">% Transfer function to find a real approximation</span>
H1 = evalfr(Gc, <span class="org-constant">j</span><span class="org-type">*</span>wc);
H1 = evalfr(Gu, <span class="org-constant">j</span><span class="org-type">*</span>wc);
</pre>
</div>
@@ -1094,9 +1095,9 @@ H1 = inv(D<span class="org-type">*</span>real(H1<span class="org-type">'*</span>
<p>
Note that the plant \(G\) at \(\omega_c\) is already an almost real matrix.
Note that the plant \(G_u\) at \(\omega_c\) is already an almost real matrix.
This can be seen on the Bode plots where the phase is close to 1.
This can be verified below where only the real value of \(G(\omega_c)\) is shown
This can be verified below where only the real value of \(G_u(\omega_c)\) is shown
</p>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
@@ -1174,11 +1175,11 @@ This can be verified below where only the real value of \(G(\omega_c)\) is shown
</div>
</div>
<div id="outline-container-org7e2a42e" class="outline-3">
<h3 id="org7e2a42e"><span class="section-number-3">3.5</span> SVD Decoupling</h3>
<div id="outline-container-orgdcfefc4" class="outline-3">
<h3 id="orgdcfefc4"><span class="section-number-3">3.5</span> SVD Decoupling</h3>
<div class="outline-text-3" id="text-3-5">
<p>
<a id="org5abe937"></a>
<a id="orgb593bce"></a>
</p>
<p>
@@ -1187,16 +1188,16 @@ First, the Singular Value Decomposition of \(H_1\) is performed:
</p>
<div class="org-src-container">
<pre class="src src-matlab">[U,S,V] = svd(H1);
<pre class="src src-matlab">[U,<span class="org-type">~</span>,V] = svd(H1);
</pre>
</div>
<p>
The obtained matrices \(U\) and \(V\) are used to decouple the system as shown in Figure <a href="#orga151aa3">11</a>.
The obtained matrices \(U\) and \(V\) are used to decouple the system as shown in Figure <a href="#orgfbe015c">11</a>.
</p>
<div id="orga151aa3" class="figure">
<div id="orgfbe015c" class="figure">
<p><img src="figs/plant_decouple_svd.png" alt="plant_decouple_svd.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Decoupled plant \(\bm{G}_{SVD}\) using the Singular Value Decomposition</p>
@@ -1204,22 +1205,32 @@ The obtained matrices \(U\) and \(V\) are used to decouple the system as shown i
<p>
The decoupled plant is then:
\[ G_{SVD}(s) = U^{-1} G(s) V^{-H} \]
\[ G_{SVD}(s) = U^{-1} G_u(s) V^{-H} \]
</p>
<div class="org-src-container">
<pre class="src src-matlab">Gsvd = inv(U)<span class="org-type">*</span>Gu<span class="org-type">*</span>inv(V<span class="org-type">'</span>);
</pre>
</div>
</div>
</div>
<div id="outline-container-orgc6f3016" class="outline-3">
<h3 id="orgc6f3016"><span class="section-number-3">3.6</span> Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</h3>
<div id="outline-container-orgeedb4ac" class="outline-3">
<h3 id="orgeedb4ac"><span class="section-number-3">3.6</span> Verification of the decoupling using the &ldquo;Gershgorin Radii&rdquo;</h3>
<div class="outline-text-3" id="text-3-6">
<p>
<a id="org7691f01"></a>
<a id="org9c68bed"></a>
</p>
<p>
The &ldquo;Gershgorin Radii&rdquo; is computed for the coupled plant \(G(s)\), for the &ldquo;Jacobian plant&rdquo; \(G_x(s)\) and the &ldquo;SVD Decoupled Plant&rdquo; \(G_{SVD}(s)\):
</p>
<p>
The &ldquo;Gershgorin Radii&rdquo; of a matrix \(S\) is defined by:
\[ \zeta_i(j\omega) = \frac{\sum\limits_{j\neq i}|S_{ij}(j\omega)|}{|S_{ii}(j\omega)|} \]
</p>
<p>
This is computed over the following frequencies.
</p>
@@ -1229,7 +1240,7 @@ This is computed over the following frequencies.
</div>
<div id="orgea46431" class="figure">
<div id="org0864583" class="figure">
<p><img src="figs/simscape_model_gershgorin_radii.png" alt="simscape_model_gershgorin_radii.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Gershgorin Radii of the Coupled and Decoupled plants</p>
@@ -1237,30 +1248,30 @@ This is computed over the following frequencies.
</div>
</div>
<div id="outline-container-orgedf5c94" class="outline-3">
<h3 id="orgedf5c94"><span class="section-number-3">3.7</span> Obtained Decoupled Plants</h3>
<div id="outline-container-orga3edea8" class="outline-3">
<h3 id="orga3edea8"><span class="section-number-3">3.7</span> Obtained Decoupled Plants</h3>
<div class="outline-text-3" id="text-3-7">
<p>
<a id="orgabc21ab"></a>
<a id="orgc065295"></a>
</p>
<p>
The bode plot of the diagonal and off-diagonal elements of \(G_{SVD}\) are shown in Figure <a href="#org0947ccc">13</a>.
The bode plot of the diagonal and off-diagonal elements of \(G_{SVD}\) are shown in Figure <a href="#org57489d0">13</a>.
</p>
<div id="org0947ccc" class="figure">
<div id="org57489d0" class="figure">
<p><img src="figs/simscape_model_decoupled_plant_svd.png" alt="simscape_model_decoupled_plant_svd.png" />
</p>
<p><span class="figure-number">Figure 13: </span>Decoupled Plant using SVD</p>
</div>
<p>
Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant \(G_x(s)\) using the Jacobian are shown in Figure <a href="#org14484c8">14</a>.
Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant \(G_x(s)\) using the Jacobian are shown in Figure <a href="#orga4b3cd1">14</a>.
</p>
<div id="org14484c8" class="figure">
<div id="orga4b3cd1" class="figure">
<p><img src="figs/simscape_model_decoupled_plant_jacobian.png" alt="simscape_model_decoupled_plant_jacobian.png" />
</p>
<p><span class="figure-number">Figure 14: </span>Stewart Platform Plant from forces (resp. torques) applied by the legs to the acceleration (resp. angular acceleration) of the platform as well as all the coupling terms between the two (non-diagonal terms of the transfer function matrix)</p>
@@ -1268,15 +1279,12 @@ Similarly, the bode plots of the diagonal elements and off-diagonal elements of
</div>
</div>
<div id="outline-container-orgff44b51" class="outline-3">
<h3 id="orgff44b51"><span class="section-number-3">3.8</span> Diagonal Controller</h3>
<div id="outline-container-orgb371cb1" class="outline-3">
<h3 id="orgb371cb1"><span class="section-number-3">3.8</span> Diagonal Controller</h3>
<div class="outline-text-3" id="text-3-8">
<p>
<a id="org9620c1c"></a>
</p>
<p>
The control diagram for the centralized control is shown in Figure <a href="#org656626f">15</a>.
<a id="orgaf53d60"></a>
The control diagram for the centralized control is shown in Figure <a href="#org457c7b6">15</a>.
</p>
<p>
@@ -1285,19 +1293,19 @@ The Jacobian is used to convert forces in the cartesian frame to forces applied
</p>
<div id="org656626f" class="figure">
<div id="org457c7b6" class="figure">
<p><img src="figs/centralized_control.png" alt="centralized_control.png" />
</p>
<p><span class="figure-number">Figure 15: </span>Control Diagram for the Centralized control</p>
</div>
<p>
The SVD control architecture is shown in Figure <a href="#org0f3cfd0">16</a>.
The SVD control architecture is shown in Figure <a href="#org84af546">16</a>.
The matrices \(U\) and \(V\) are used to decoupled the plant \(G\).
</p>
<div id="org0f3cfd0" class="figure">
<div id="org84af546" class="figure">
<p><img src="figs/svd_control.png" alt="svd_control.png" />
</p>
<p><span class="figure-number">Figure 16: </span>Control Diagram for the SVD control</p>
@@ -1314,31 +1322,31 @@ We choose the controller to be a low pass filter:
</p>
<div class="org-src-container">
<pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>80;
w0 = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>0.1;
<pre class="src src-matlab">wc = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>80; <span class="org-comment">% Crossover Frequency [rad/s]</span>
w0 = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>0.1; <span class="org-comment">% Controller Pole [rad/s]</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">K_cen = diag(1<span class="org-type">./</span>diag(abs(evalfr(Gx(1<span class="org-type">:</span>6, 7<span class="org-type">:</span>12), <span class="org-constant">j</span><span class="org-type">*</span>wc))))<span class="org-type">*</span>(1<span class="org-type">/</span>abs(evalfr(1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0), <span class="org-constant">j</span><span class="org-type">*</span>wc)))<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0);
L_cen = K_cen<span class="org-type">*</span>Gx(1<span class="org-type">:</span>6, 7<span class="org-type">:</span>12);
<pre class="src src-matlab">K_cen = diag(1<span class="org-type">./</span>diag(abs(evalfr(Gx, <span class="org-constant">j</span><span class="org-type">*</span>wc))))<span class="org-type">*</span>(1<span class="org-type">/</span>abs(evalfr(1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0), <span class="org-constant">j</span><span class="org-type">*</span>wc)))<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0);
L_cen = K_cen<span class="org-type">*</span>Gx;
G_cen = feedback(G, pinv(J<span class="org-type">'</span>)<span class="org-type">*</span>K_cen, [7<span class="org-type">:</span>12], [1<span class="org-type">:</span>6]);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">K_svd = diag(1<span class="org-type">./</span>diag(abs(evalfr(Gd, <span class="org-constant">j</span><span class="org-type">*</span>wc))))<span class="org-type">*</span>(1<span class="org-type">/</span>abs(evalfr(1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0), <span class="org-constant">j</span><span class="org-type">*</span>wc)))<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0);
L_svd = K_svd<span class="org-type">*</span>Gd;
<pre class="src src-matlab">K_svd = diag(1<span class="org-type">./</span>diag(abs(evalfr(Gsvd, <span class="org-constant">j</span><span class="org-type">*</span>wc))))<span class="org-type">*</span>(1<span class="org-type">/</span>abs(evalfr(1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0), <span class="org-constant">j</span><span class="org-type">*</span>wc)))<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>w0);
L_svd = K_svd<span class="org-type">*</span>Gsvd;
G_svd = feedback(G, inv(V<span class="org-type">'</span>)<span class="org-type">*</span>K_svd<span class="org-type">*</span>inv(U), [7<span class="org-type">:</span>12], [1<span class="org-type">:</span>6]);
</pre>
</div>
<p>
The obtained diagonal elements of the loop gains are shown in Figure <a href="#orgc313067">17</a>.
The obtained diagonal elements of the loop gains are shown in Figure <a href="#org51e7e94">17</a>.
</p>
<div id="orgc313067" class="figure">
<div id="org51e7e94" class="figure">
<p><img src="figs/stewart_comp_loop_gain_diagonal.png" alt="stewart_comp_loop_gain_diagonal.png" />
</p>
<p><span class="figure-number">Figure 17: </span>Comparison of the diagonal elements of the loop gains for the SVD control architecture and the Jacobian one</p>
@@ -1346,11 +1354,11 @@ The obtained diagonal elements of the loop gains are shown in Figure <a href="#o
</div>
</div>
<div id="outline-container-org949d9ca" class="outline-3">
<h3 id="org949d9ca"><span class="section-number-3">3.9</span> Closed-Loop system Performances</h3>
<div id="outline-container-orgb6d90eb" class="outline-3">
<h3 id="orgb6d90eb"><span class="section-number-3">3.9</span> Closed-Loop system Performances</h3>
<div class="outline-text-3" id="text-3-9">
<p>
<a id="org823e1cb"></a>
<a id="org60a86ad"></a>
</p>
<p>
@@ -1381,11 +1389,11 @@ ans =
<p>
The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure <a href="#org32234b0">18</a>.
The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure <a href="#org5c79b0b">18</a>.
</p>
<div id="org32234b0" class="figure">
<div id="org5c79b0b" class="figure">
<p><img src="figs/stewart_platform_simscape_cl_transmissibility.png" alt="stewart_platform_simscape_cl_transmissibility.png" />
</p>
<p><span class="figure-number">Figure 18: </span>Obtained Transmissibility</p>
@@ -1396,7 +1404,7 @@ The obtained transmissibility in Open-loop, for the centralized control as well
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-11-09 lun. 10:54</p>
<p class="date">Created: 2020-11-09 lun. 14:36</p>
</div>
</body>
</html>

144
index.org
View File

@@ -713,7 +713,7 @@ The analysis of the SVD control applied to the Stewart platform is performed in
- Section [[sec:stewart_diagonal_control]]: A diagonal controller is defined to control the decoupled plant
- Section [[sec:stewart_closed_loop_results]]: Finally, the closed loop system properties are studied
** Matlab Init :noexport:ignore:
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
@@ -820,7 +820,7 @@ The outputs are the 6 accelerations measured by the inertial unit.
#+begin_src latex :file stewart_platform_plant.pdf :tangle no :exports results
\begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$};
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G_u\end{bmatrix}$};
\node[above] at (G.north) {$\bm{G}$};
% Inputs of the controllers
@@ -835,7 +835,7 @@ The outputs are the 6 accelerations measured by the inertial unit.
#+end_src
#+name: fig:stewart_platform_plant
#+caption: Considered plant $\bm{G} = \begin{bmatrix}G_d\\G\end{bmatrix}$. $D_w$ is the translation/rotation of the support, $\tau$ the actuator forces, $a$ the acceleration/angular acceleration of the top platform
#+caption: Considered plant $\bm{G} = \begin{bmatrix}G_d\\G_u\end{bmatrix}$. $D_w$ is the translation/rotation of the support, $\tau$ the actuator forces, $a$ the acceleration/angular acceleration of the top platform
#+RESULTS:
[[file:figs/stewart_platform_plant.png]]
@@ -853,6 +853,11 @@ The outputs are the 6 accelerations measured by the inertial unit.
G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'};
% Plant
Gu = G(:, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'});
% Disturbance dynamics
Gd = G(:, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'});
#+end_src
There are 24 states (6dof for the bottom platform + 6dof for the top platform).
@@ -876,15 +881,15 @@ One can easily see that the system is strongly coupled.
hold on;
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, abs(squeeze(freqresp(G(i_out, 6+i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
plot(freqs, abs(squeeze(freqresp(Gu(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(G(i_out, 6+i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G(i,j)\ i \neq j$');
plot(freqs, abs(squeeze(freqresp(Gu(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G_u(i,j)\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for i_in_out = 1:6
plot(freqs, abs(squeeze(freqresp(G(i_in_out, 6+i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G(%d,%d)$', i_in_out, i_in_out));
plot(freqs, abs(squeeze(freqresp(Gu(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_u(%d,%d)$', i_in_out, i_in_out));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
@@ -898,7 +903,7 @@ One can easily see that the system is strongly coupled.
#+end_src
#+name: fig:stewart_platform_coupled_plant
#+caption: Magnitude of all 36 elements of the transfer function matrix $\bm{G}$
#+caption: Magnitude of all 36 elements of the transfer function matrix $G_u$
#+RESULTS:
[[file:figs/stewart_platform_coupled_plant.png]]
@@ -909,22 +914,16 @@ The Jacobian matrix is used to transform forces/torques applied on the top platf
#+begin_src latex :file plant_decouple_jacobian.pdf :tangle no :exports results
\begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$};
% Inputs of the controllers
\coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
\coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
\node[block, left=0.6 of inputu] (J) {$J^{-T}$};
\node[block] (G) {$G_u$};
\node[block, left=0.6 of G] (J) {$J^{-T}$};
% Connections and labels
\draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$};
\draw[->] (G.east) -- ++( 0.8, 0) node[above left]{$a$};
\draw[->] (J.east) -- (inputu) node[above left]{$\tau$};
\draw[<-] (J.west) -- ++(-0.8, 0) node[above right]{$\mathcal{F}$};
\draw[<-] (J.west) -- ++(-1.0, 0) node[above right]{$\mathcal{F}$};
\draw[->] (J.east) -- (G.west) node[above left]{$\tau$};
\draw[->] (G.east) -- ++( 1.0, 0) node[above left]{$a$};
\begin{scope}[on background layer]
\node[fit={(J.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=8pt] (Gx) {};
\node[fit={(J.south west) (G.north east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gx) {};
\node[below right] at (Gx.north west) {$\bm{G}_x$};
\end{scope}
\end{tikzpicture}
@@ -941,22 +940,18 @@ We define a new plant:
$G_x(s)$ correspond to the transfer function from forces and torques applied to the top platform to the absolute acceleration of the top platform.
#+begin_src matlab
Gx = G*blkdiag(eye(6), inv(J'));
Gx.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
Gx = Gu*inv(J');
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
#+end_src
** Real Approximation of $G$ at the decoupling frequency
<<sec:stewart_real_approx>>
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_u(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
#+begin_src matlab
wc = 2*pi*30; % Decoupling frequency [rad/s]
Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ...
{'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation
H1 = evalfr(Gc, j*wc);
H1 = evalfr(Gu, j*wc);
#+end_src
The real approximation is computed as follows:
@@ -979,12 +974,12 @@ The real approximation is computed as follows:
| 220.6 | -220.6 | 220.6 | -220.6 | 220.6 | -220.6 |
Note that the plant $G$ at $\omega_c$ is already an almost real matrix.
Note that the plant $G_u$ at $\omega_c$ is already an almost real matrix.
This can be seen on the Bode plots where the phase is close to 1.
This can be verified below where only the real value of $G(\omega_c)$ is shown
This can be verified below where only the real value of $G_u(\omega_c)$ is shown
#+begin_src matlab :exports results :results value table replace :tangle no
data2orgtable(real(evalfr(Gc, j*wc)), {}, {}, ' %.1f ');
data2orgtable(real(evalfr(Gu, j*wc)), {}, {}, ' %.1f ');
#+end_src
#+RESULTS:
@@ -1002,31 +997,26 @@ First, the Singular Value Decomposition of $H_1$ is performed:
\[ H_1 = U \Sigma V^H \]
#+begin_src matlab
[U,S,V] = svd(H1);
[U,~,V] = svd(H1);
#+end_src
The obtained matrices $U$ and $V$ are used to decouple the system as shown in Figure [[fig:plant_decouple_svd]].
#+begin_src latex :file plant_decouple_svd.pdf :tangle no :exports results
\begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$};
\node[block] (G) {$G_u$};
% Inputs of the controllers
\coordinate[] (inputd) at ($(G.south west)!0.75!(G.north west)$);
\coordinate[] (inputu) at ($(G.south west)!0.25!(G.north west)$);
\node[block, left=0.6 of inputu] (V) {$V^{-T}$};
\node[block, left=0.6 of G.west] (V) {$V^{-T}$};
\node[block, right=0.6 of G.east] (U) {$U^{-1}$};
% Connections and labels
\draw[<-] (inputd) -- ++(-0.8, 0) node[above right]{$D_w$};
\draw[<-] (V.west) -- ++(-1.0, 0) node[above right]{$u$};
\draw[->] (V.east) -- (G.west) node[above left]{$\tau$};
\draw[->] (G.east) -- (U.west) node[above left]{$a$};
\draw[->] (U.east) -- ++( 0.8, 0) node[above left]{$y$};
\draw[->] (V.east) -- (inputu) node[above left]{$\tau$};
\draw[<-] (V.west) -- ++(-0.8, 0) node[above right]{$u$};
\draw[->] (U.east) -- ++( 1.0, 0) node[above left]{$y$};
\begin{scope}[on background layer]
\node[fit={(V.south west) (G.north-|U.east)}, fill=black!10!white, draw, dashed, inner sep=8pt] (Gsvd) {};
\node[fit={(V.south west) (G.north-|U.east)}, fill=black!10!white, draw, dashed, inner sep=14pt] (Gsvd) {};
\node[below right] at (Gsvd.north west) {$\bm{G}_{SVD}$};
\end{scope}
\end{tikzpicture}
@@ -1038,13 +1028,20 @@ The obtained matrices $U$ and $V$ are used to decouple the system as shown in Fi
[[file:figs/plant_decouple_svd.png]]
The decoupled plant is then:
\[ G_{SVD}(s) = U^{-1} G(s) V^{-H} \]
\[ G_{SVD}(s) = U^{-1} G_u(s) V^{-H} \]
#+begin_src matlab
Gsvd = inv(U)*Gu*inv(V');
#+end_src
** Verification of the decoupling using the "Gershgorin Radii"
<<sec:comp_decoupling>>
The "Gershgorin Radii" is computed for the coupled plant $G(s)$, for the "Jacobian plant" $G_x(s)$ and the "SVD Decoupled Plant" $G_{SVD}(s)$:
The "Gershgorin Radii" of a matrix $S$ is defined by:
\[ \zeta_i(j\omega) = \frac{\sum\limits_{j\neq i}|S_{ij}(j\omega)|}{|S_{ii}(j\omega)|} \]
This is computed over the following frequencies.
#+begin_src matlab
freqs = logspace(-2, 2, 1000); % [Hz]
@@ -1052,29 +1049,23 @@ This is computed over the following frequencies.
#+begin_src matlab :exports none
% Gershgorin Radii for the coupled plant:
Gr_coupled = zeros(length(freqs), size(Gc,2));
H = abs(squeeze(freqresp(Gc, freqs, 'Hz')));
for out_i = 1:size(Gc,2)
Gr_coupled = zeros(length(freqs), size(Gu,2));
H = abs(squeeze(freqresp(Gu, freqs, 'Hz')));
for out_i = 1:size(Gu,2)
Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
% Gershgorin Radii for the decoupled plant using SVD:
Gd = inv(U)*Gc*inv(V');
Gr_decoupled = zeros(length(freqs), size(Gd,2));
H = abs(squeeze(freqresp(Gd, freqs, 'Hz')));
for out_i = 1:size(Gd,2)
Gr_decoupled = zeros(length(freqs), size(Gsvd,2));
H = abs(squeeze(freqresp(Gsvd, freqs, 'Hz')));
for out_i = 1:size(Gsvd,2)
Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
% Gershgorin Radii for the decoupled plant using the Jacobian:
Gj = Gc*inv(J');
Gr_jacobian = zeros(length(freqs), size(Gj,2));
H = abs(squeeze(freqresp(Gj, freqs, 'Hz')));
for out_i = 1:size(Gj,2)
Gr_jacobian = zeros(length(freqs), size(Gx,2));
H = abs(squeeze(freqresp(Gx, freqs, 'Hz')));
for out_i = 1:size(Gx,2)
Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
#+end_src
@@ -1126,15 +1117,15 @@ The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown i
hold on;
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, abs(squeeze(freqresp(Gd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(Gd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
plot(freqs, abs(squeeze(freqresp(Gsvd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
'DisplayName', '$G_{SVD}(i,j),\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for ch_i = 1:6
plot(freqs, abs(squeeze(freqresp(Gd(ch_i, ch_i), freqs, 'Hz'))), ...
plot(freqs, abs(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))), ...
'DisplayName', sprintf('$G_{SVD}(%i,%i)$', ch_i, ch_i));
end
hold off;
@@ -1147,7 +1138,7 @@ The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown i
ax2 = nexttile;
hold on;
for ch_i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd(ch_i, ch_i), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
@@ -1180,7 +1171,7 @@ Similarly, the bode plots of the diagonal elements and off-diagonal elements of
hold on;
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, abs(squeeze(freqresp(Gx(i_out, 6+i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
plot(freqs, abs(squeeze(freqresp(Gx(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
@@ -1228,14 +1219,6 @@ Similarly, the bode plots of the diagonal elements and off-diagonal elements of
** Diagonal Controller
<<sec:stewart_diagonal_control>>
#+begin_src matlab :exports none :tangle no
wc = 2*pi*0.1; % Crossover Frequency [rad/s]
C_g = 50; % DC Gain
Kc = eye(6)*C_g/(s+wc);
#+end_src
The control diagram for the centralized control is shown in Figure [[fig:centralized_control]].
The controller $K_c$ is "working" in an cartesian frame.
@@ -1243,7 +1226,7 @@ The Jacobian is used to convert forces in the cartesian frame to forces applied
#+begin_src latex :file centralized_control.pdf :tangle no :exports results
\begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G\end{bmatrix}$};
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G_u\end{bmatrix}$};
\node[above] at (G.north) {$\bm{G}$};
\node[block, below right=0.6 and -0.5 of G] (K) {$K_c$};
\node[block, below left= 0.6 and -0.5 of G] (J) {$J^{-T}$};
@@ -1271,7 +1254,8 @@ The matrices $U$ and $V$ are used to decoupled the plant $G$.
#+begin_src latex :file svd_control.pdf :tangle no :exports results
\begin{tikzpicture}
\node[block={2cm}{1.5cm}] (G) {$G$};
\node[block={2cm}{1.5cm}] (G) {$\begin{bmatrix}G_d\\G_u\end{bmatrix}$};
\node[above] at (G.north) {$\bm{G}$};
\node[block, below right=0.6 and 0 of G] (U) {$U^{-1}$};
\node[block, below=0.6 of G] (K) {$K_{\text{SVD}}$};
\node[block, below left= 0.6 and 0 of G] (V) {$V^{-T}$};
@@ -1302,19 +1286,19 @@ We choose the controller to be a low pass filter:
$G_0$ is tuned such that the crossover frequency corresponding to the diagonal terms of the loop gain is equal to $\omega_c$
#+begin_src matlab
wc = 2*pi*80;
w0 = 2*pi*0.1;
wc = 2*pi*80; % Crossover Frequency [rad/s]
w0 = 2*pi*0.1; % Controller Pole [rad/s]
#+end_src
#+begin_src matlab
K_cen = diag(1./diag(abs(evalfr(Gx(1:6, 7:12), j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
L_cen = K_cen*Gx(1:6, 7:12);
K_cen = diag(1./diag(abs(evalfr(Gx, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
L_cen = K_cen*Gx;
G_cen = feedback(G, pinv(J')*K_cen, [7:12], [1:6]);
#+end_src
#+begin_src matlab
K_svd = diag(1./diag(abs(evalfr(Gd, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
L_svd = K_svd*Gd;
K_svd = diag(1./diag(abs(evalfr(Gsvd, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
L_svd = K_svd*Gsvd;
G_svd = feedback(G, inv(V')*K_svd*inv(U), [7:12], [1:6]);
#+end_src

View File

@@ -6,42 +6,14 @@ s = zpk('s');
addpath('STEP');
% Jacobian
% First, the position of the "joints" (points of force application) are estimated and the Jacobian computed.
open('drone_platform_jacobian.slx');
sim('drone_platform_jacobian');
Aa = [a1.Data(1,:);
a2.Data(1,:);
a3.Data(1,:);
a4.Data(1,:);
a5.Data(1,:);
a6.Data(1,:)]';
Ab = [b1.Data(1,:);
b2.Data(1,:);
b3.Data(1,:);
b4.Data(1,:);
b5.Data(1,:);
b6.Data(1,:)]';
As = (Ab - Aa)./vecnorm(Ab - Aa);
l = vecnorm(Ab - Aa)';
J = [As' , cross(Ab, As)'];
save('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
% Simscape Model
% Simscape Model - Parameters
% <<sec:stewart_simscape>>
open('drone_platform.slx');
% Definition of spring parameters
% Definition of spring parameters:
kx = 0.5*1e3/3; % [N/m]
ky = 0.5*1e3/3;
@@ -51,31 +23,53 @@ cx = 0.025; % [Nm/rad]
cy = 0.025;
cz = 0.025;
% Gravity:
g = 0;
% We load the Jacobian.
% We load the Jacobian (previously computed from the geometry):
load('./jacobian.mat', 'Aa', 'Ab', 'As', 'l', 'J');
% Identification of the plant
% The dynamics is identified from forces applied by each legs to the measured acceleration of the top platform.
% We initialize other parameters:
U = eye(6);
V = eye(6);
Kc = tf(zeros(6));
% #+name: fig:stewart_platform_plant
% #+caption: Considered plant $\bm{G} = \begin{bmatrix}G_d\\G_u\end{bmatrix}$. $D_w$ is the translation/rotation of the support, $\tau$ the actuator forces, $a$ the acceleration/angular acceleration of the top platform
% #+RESULTS:
% [[file:figs/stewart_platform_plant.png]]
%% Name of the Simulink File
mdl = 'drone_platform';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/u'], 1, 'openinput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1;
io(io_i) = linio([mdl, '/Dw'], 1, 'openinput'); io_i = io_i + 1; % Ground Motion
io(io_i) = linio([mdl, '/V-T'], 1, 'openinput'); io_i = io_i + 1; % Actuator Forces
io(io_i) = linio([mdl, '/Inertial Sensor'], 1, 'openoutput'); io_i = io_i + 1; % Top platform acceleration
G = linearize(mdl, io);
G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'};
% Plant
Gu = G(:, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'});
% Disturbance dynamics
Gd = G(:, {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz'});
% There are 24 states (6dof for the bottom platform + 6dof for the top platform).
@@ -87,176 +81,59 @@ size(G)
% #+RESULTS:
% : State-space model with 6 outputs, 12 inputs, and 24 states.
% The elements of the transfer matrix $\bm{G}$ corresponding to the transfer function from actuator forces $\tau$ to the measured acceleration $a$ are shown in Figure [[fig:stewart_platform_coupled_plant]].
% G = G*blkdiag(inv(J), eye(6));
% G.InputName = {'Dw1', 'Dw2', 'Dw3', 'Dw4', 'Dw5', 'Dw6', ...
% 'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
% Thanks to the Jacobian, we compute the transfer functions in the frame of the legs and in an inertial frame.
Gx = G*blkdiag(eye(6), inv(J'));
Gx.InputName = {'Dwx', 'Dwy', 'Dwz', 'Rwx', 'Rwy', 'Rwz', ...
'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
% Gl = J*G;
% Gl.OutputName = {'A1', 'A2', 'A3', 'A4', 'A5', 'A6'};
% Obtained Dynamics
freqs = logspace(-1, 2, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))), 'DisplayName', '$A_x/F_x$');
plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))), 'DisplayName', '$A_y/F_y$');
plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))), 'DisplayName', '$A_z/F_z$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
legend('location', 'southeast');
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
% #+name: fig:stewart_platform_translations
% #+caption: Stewart Platform Plant from forces applied by the legs to the acceleration of the platform
% #+RESULTS:
% [[file:figs/stewart_platform_translations.png]]
% One can easily see that the system is strongly coupled.
freqs = logspace(-1, 2, 1000);
figure;
ax1 = subplot(2, 1, 1);
% Magnitude
hold on;
plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))), 'DisplayName', '$A_{R_x}/M_x$');
plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))), 'DisplayName', '$A_{R_y}/M_y$');
plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))), 'DisplayName', '$A_{R_z}/M_z$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [rad/(Nm)]'); set(gca, 'XTickLabel',[]);
legend('location', 'southeast');
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
% #+name: fig:stewart_platform_rotations
% #+caption: Stewart Platform Plant from torques applied by the legs to the angular acceleration of the platform
% #+RESULTS:
% [[file:figs/stewart_platform_rotations.png]]
freqs = logspace(-1, 2, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for out_i = 1:5
for in_i = i+1:6
plot(freqs, abs(squeeze(freqresp(Gl(sprintf('A%i', out_i), sprintf('F%i', in_i)), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
end
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, abs(squeeze(freqresp(Gu(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
for ch_i = 1:6
plot(freqs, abs(squeeze(freqresp(Gl(sprintf('A%i', ch_i), sprintf('F%i', ch_i)), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gu(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'DisplayName', '$G_u(i,j)\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for i_in_out = 1:6
plot(freqs, abs(squeeze(freqresp(Gu(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_u(%d,%d)$', i_in_out, i_in_out));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for ch_i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(sprintf('A%i', ch_i), sprintf('F%i', ch_i)), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-360:90:360]);
linkaxes([ax1,ax2],'x');
xlabel('Frequency [Hz]'); ylabel('Magnitude');
ylim([1e-2, 1e5]);
legend('location', 'northwest');
% #+name: fig:stewart_platform_legs
% #+caption: Stewart Platform Plant from forces applied by the legs to displacement of the legs
% #+name: fig:plant_decouple_jacobian
% #+caption: Decoupled plant $\bm{G}_x$ using the Jacobian matrix $J$
% #+RESULTS:
% [[file:figs/stewart_platform_legs.png]]
% [[file:figs/plant_decouple_jacobian.png]]
% We define a new plant:
% \[ G_x(s) = G(s) J^{-T} \]
% $G_x(s)$ correspond to the transfer function from forces and torques applied to the top platform to the absolute acceleration of the top platform.
freqs = logspace(-1, 2, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_x/D_{w,x}$');
plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_y/D_{w,y}$');
plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Dwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$D_z/D_{w,z}$');
% set(gca,'ColorOrderIndex',1)
% plot(freqs, abs(squeeze(freqresp(TR(1,1), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
% plot(freqs, abs(squeeze(freqresp(TR(2,2), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
% plot(freqs, abs(squeeze(freqresp(TR(3,3), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - Translations'); xlabel('Frequency [Hz]');
legend('location', 'northeast');
ax2 = subplot(2, 1, 2);
hold on;
plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Rwx')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_x/R_{w,x}$');
plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'Rwy')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_y/R_{w,y}$');
plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Rwz')/s^2, freqs, 'Hz'))), 'DisplayName', '$R_z/R_{w,z}$');
% set(gca,'ColorOrderIndex',1)
% plot(freqs, abs(squeeze(freqresp(TR(4,4), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
% plot(freqs, abs(squeeze(freqresp(TR(5,5), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
% plot(freqs, abs(squeeze(freqresp(TR(6,6), freqs, 'Hz'))), '--', 'DisplayName', '$D_x/D_{w,x}$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - Rotations'); xlabel('Frequency [Hz]');
legend('location', 'northeast');
linkaxes([ax1,ax2],'x');
Gx = Gu*inv(J');
Gx.InputName = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};
% Real Approximation of $G$ at the decoupling frequency
% Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_c(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
% <<sec:stewart_real_approx>>
% Let's compute a real approximation of the complex matrix $H_1$ which corresponds to the the transfer function $G_u(j\omega_c)$ from forces applied by the actuators to the measured acceleration of the top platform evaluated at the frequency $\omega_c$.
wc = 2*pi*30; % Decoupling frequency [rad/s]
Gc = G({'Ax', 'Ay', 'Az', 'Arx', 'Ary', 'Arz'}, ...
{'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}); % Transfer function to find a real approximation
H1 = evalfr(Gc, j*wc);
H1 = evalfr(Gu, j*wc);
@@ -265,55 +142,58 @@ H1 = evalfr(Gc, j*wc);
D = pinv(real(H1'*H1));
H1 = inv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
% Verification of the decoupling using the "Gershgorin Radii"
% SVD Decoupling
% <<sec:stewart_svd_decoupling>>
% First, the Singular Value Decomposition of $H_1$ is performed:
% \[ H_1 = U \Sigma V^H \]
[U,S,V] = svd(H1);
[U,~,V] = svd(H1);
% Then, the "Gershgorin Radii" is computed for the plant $G_c(s)$ and the "SVD Decoupled Plant" $G_d(s)$:
% \[ G_d(s) = U^T G_c(s) V \]
% #+name: fig:plant_decouple_svd
% #+caption: Decoupled plant $\bm{G}_{SVD}$ using the Singular Value Decomposition
% #+RESULTS:
% [[file:figs/plant_decouple_svd.png]]
% The decoupled plant is then:
% \[ G_{SVD}(s) = U^{-1} G_u(s) V^{-H} \]
Gsvd = inv(U)*Gu*inv(V');
% Verification of the decoupling using the "Gershgorin Radii"
% <<sec:comp_decoupling>>
% The "Gershgorin Radii" is computed for the coupled plant $G(s)$, for the "Jacobian plant" $G_x(s)$ and the "SVD Decoupled Plant" $G_{SVD}(s)$:
% The "Gershgorin Radii" of a matrix $S$ is defined by:
% \[ \zeta_i(j\omega) = \frac{\sum\limits_{j\neq i}|S_{ij}(j\omega)|}{|S_{ii}(j\omega)|} \]
% This is computed over the following frequencies.
freqs = logspace(-2, 2, 1000); % [Hz]
% Gershgorin Radii for the coupled plant:
Gr_coupled = zeros(length(freqs), size(Gc,2));
H = abs(squeeze(freqresp(Gc, freqs, 'Hz')));
for out_i = 1:size(Gc,2)
Gr_coupled = zeros(length(freqs), size(Gu,2));
H = abs(squeeze(freqresp(Gu, freqs, 'Hz')));
for out_i = 1:size(Gu,2)
Gr_coupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
% Gershgorin Radii for the decoupled plant using SVD:
Gd = U'*Gc*V;
Gr_decoupled = zeros(length(freqs), size(Gd,2));
H = abs(squeeze(freqresp(Gd, freqs, 'Hz')));
for out_i = 1:size(Gd,2)
Gr_decoupled = zeros(length(freqs), size(Gsvd,2));
H = abs(squeeze(freqresp(Gsvd, freqs, 'Hz')));
for out_i = 1:size(Gsvd,2)
Gr_decoupled(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
% Gershgorin Radii for the decoupled plant using the Jacobian:
Gj = Gc*inv(J');
Gr_jacobian = zeros(length(freqs), size(Gj,2));
H = abs(squeeze(freqresp(Gj, freqs, 'Hz')));
for out_i = 1:size(Gj,2)
Gr_jacobian = zeros(length(freqs), size(Gx,2));
H = abs(squeeze(freqresp(Gx, freqs, 'Hz')));
for out_i = 1:size(Gx,2)
Gr_jacobian(:, out_i) = squeeze((sum(H(out_i,:,:)) - H(out_i,out_i,:))./H(out_i, out_i, :));
end
@@ -334,31 +214,55 @@ plot(freqs, 0.5*ones(size(freqs)), 'k--', 'DisplayName', 'Limit')
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
hold off;
xlabel('Frequency (Hz)'); ylabel('Gershgorin Radii')
legend('location', 'northeast');
legend('location', 'northwest');
ylim([1e-3, 1e3]);
% Decoupled Plant
% Let's see the bode plot of the decoupled plant $G_d(s)$.
% \[ G_d(s) = U^T G_c(s) V \]
% Obtained Decoupled Plants
% <<sec:stewart_decoupled_plant>>
% The bode plot of the diagonal and off-diagonal elements of $G_{SVD}$ are shown in Figure [[fig:simscape_model_decoupled_plant_svd]].
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
for ch_i = 1:6
plot(freqs, abs(squeeze(freqresp(Gd(ch_i, ch_i), freqs, 'Hz'))), ...
'DisplayName', sprintf('$G(%i, %i)$', ch_i, ch_i));
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
for in_i = 1:5
for out_i = in_i+1:6
plot(freqs, abs(squeeze(freqresp(Gd(out_i, in_i), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off');
end
plot(freqs, abs(squeeze(freqresp(Gsvd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
'DisplayName', '$G_{SVD}(i,j),\ i \neq j$');
set(gca,'ColorOrderIndex',1)
for ch_i = 1:6
plot(freqs, abs(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))), ...
'DisplayName', sprintf('$G_{SVD}(%i,%i)$', ch_i, ch_i));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude'); xlabel('Frequency [Hz]');
legend('location', 'southeast');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
legend('location', 'northwest');
ylim([1e-1, 1e5])
% Phase
ax2 = nexttile;
hold on;
for ch_i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180:90:360]);
linkaxes([ax1,ax2],'x');
@@ -367,53 +271,135 @@ legend('location', 'southeast');
% #+RESULTS:
% [[file:figs/simscape_model_decoupled_plant_svd.png]]
% Similarly, the bode plots of the diagonal elements and off-diagonal elements of the decoupled plant $G_x(s)$ using the Jacobian are shown in Figure [[fig:simscape_model_decoupled_plant_jacobian]].
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
for ch_i = 1:6
plot(freqs, abs(squeeze(freqresp(Gj(ch_i, ch_i), freqs, 'Hz'))), ...
'DisplayName', sprintf('$G(%i, %i)$', ch_i, ch_i));
end
for in_i = 1:5
for out_i = in_i+1:6
plot(freqs, abs(squeeze(freqresp(Gj(out_i, in_i), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2], ...
'HandleVisibility', 'off');
end
for i_in = 1:6
for i_out = [1:i_in-1, i_in+1:6]
plot(freqs, abs(squeeze(freqresp(Gx(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
'HandleVisibility', 'off');
end
end
plot(freqs, abs(squeeze(freqresp(Gx(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5], ...
'DisplayName', '$G_x(i,j),\ i \neq j$');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))), 'DisplayName', '$G_x(1,1) = A_x/F_x$');
plot(freqs, abs(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))), 'DisplayName', '$G_x(2,2) = A_y/F_y$');
plot(freqs, abs(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))), 'DisplayName', '$G_x(3,3) = A_z/F_z$');
plot(freqs, abs(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))), 'DisplayName', '$G_x(4,4) = A_{R_x}/M_x$');
plot(freqs, abs(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))), 'DisplayName', '$G_x(5,5) = A_{R_y}/M_y$');
plot(freqs, abs(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))), 'DisplayName', '$G_x(6,6) = A_{R_z}/M_z$');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude'); xlabel('Frequency [Hz]');
legend('location', 'southeast');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
legend('location', 'northwest');
ylim([1e-2, 2e6])
% Diagonal Controller
% The controller $K$ is a diagonal controller consisting a low pass filters with a crossover frequency $\omega_c$ and a DC gain $C_g$.
% Phase
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ax', 'Fx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ay', 'Fy'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Az', 'Fz'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arx', 'Mx'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Ary', 'My'), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx('Arz', 'Mz'), freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([0, 180]);
yticks([0:45:360]);
wc = 2*pi*0.1; % Crossover Frequency [rad/s]
C_g = 50; % DC Gain
K = eye(6)*C_g/(s+wc);
% #+RESULTS:
% [[file:figs/centralized_control.png]]
G_cen = feedback(G, inv(J')*K, [7:12], [1:6]);
linkaxes([ax1,ax2],'x');
% #+name: fig:svd_control
% #+caption: Control Diagram for the SVD control
% #+RESULTS:
% [[file:figs/svd_control.png]]
% SVD Control
G_svd = feedback(G, pinv(V')*K*pinv(U), [7:12], [1:6]);
% We choose the controller to be a low pass filter:
% \[ K_c(s) = \frac{G_0}{1 + \frac{s}{\omega_0}} \]
% $G_0$ is tuned such that the crossover frequency corresponding to the diagonal terms of the loop gain is equal to $\omega_c$
wc = 2*pi*80; % Crossover Frequency [rad/s]
w0 = 2*pi*0.1; % Controller Pole [rad/s]
K_cen = diag(1./diag(abs(evalfr(Gx, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
L_cen = K_cen*Gx;
G_cen = feedback(G, pinv(J')*K_cen, [7:12], [1:6]);
K_svd = diag(1./diag(abs(evalfr(Gsvd, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
L_svd = K_svd*Gsvd;
G_svd = feedback(G, inv(V')*K_svd*inv(U), [7:12], [1:6]);
% The obtained diagonal elements of the loop gains are shown in Figure [[fig:stewart_comp_loop_gain_diagonal]].
freqs = logspace(-1, 2, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
% Magnitude
ax1 = nexttile([2, 1]);
hold on;
plot(freqs, abs(squeeze(freqresp(L_svd(1, 1), freqs, 'Hz'))), 'DisplayName', '$L_{SVD}(i,i)$');
for i_in_out = 2:6
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
end
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(L_cen(1, 1), freqs, 'Hz'))), ...
'DisplayName', '$L_{J}(i,i)$');
for i_in_out = 2:6
set(gca,'ColorOrderIndex',2)
plot(freqs, abs(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
legend('location', 'northwest');
ylim([5e-2, 2e3])
% Phase
ax2 = nexttile;
hold on;
for i_in_out = 1:6
set(gca,'ColorOrderIndex',1)
plot(freqs, 180/pi*angle(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))));
end
set(gca,'ColorOrderIndex',2)
for i_in_out = 1:6
set(gca,'ColorOrderIndex',2)
plot(freqs, 180/pi*angle(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180:90:360]);
linkaxes([ax1,ax2],'x');
% Closed-Loop system Performances
% <<sec:stewart_closed_loop_results>>
% Results
% Let's first verify the stability of the closed-loop systems:
isstable(G_cen)
@@ -433,69 +419,61 @@ isstable(G_svd)
% #+RESULTS:
% : ans =
% : logical
% : 0
% : 1
% The obtained transmissibility in Open-loop, for the centralized control as well as for the SVD control are shown in Figure [[fig:stewart_platform_simscape_cl_transmissibility]].
freqs = logspace(-3, 3, 1000);
freqs = logspace(-2, 2, 1000);
figure
figure;
tiledlayout(2, 2, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = subplot(2, 3, 1);
ax1 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
plot(freqs, abs(squeeze(freqresp(G_cen('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), 'DisplayName', 'SVD');
plot(freqs, abs(squeeze(freqresp(G_svd('Ax', 'Dwx')/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G( 'Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz'))), 'HandleVisibility', 'off');
plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - $D_x/D_{w,x}$'); xlabel('Frequency [Hz]');
ylabel('$D_x/D_{w,x}$, $D_y/D_{w, y}$'); set(gca, 'XTickLabel',[]);
legend('location', 'southwest');
ax2 = subplot(2, 3, 2);
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Ay', 'Dwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Ay', 'Dwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Ay', 'Dwy')/s^2, freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - $D_y/D_{w,y}$'); xlabel('Frequency [Hz]');
ax3 = subplot(2, 3, 3);
ax2 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Az', 'Dwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Az', 'Dwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Az', 'Dwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Az', 'Dwz')/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - $D_z/D_{w,z}$'); xlabel('Frequency [Hz]');
ylabel('$D_z/D_{w,z}$'); set(gca, 'XTickLabel',[]);
ax4 = subplot(2, 3, 4);
ax3 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Arx', 'Rwx')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Arx', 'Rwx')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - $R_x/R_{w,x}$'); xlabel('Frequency [Hz]');
ax5 = subplot(2, 3, 5);
hold on;
plot(freqs, abs(squeeze(freqresp(G_svd('Arx', 'Rwx')/s^2, freqs, 'Hz'))), '--');
set(gca,'ColorOrderIndex',1)
plot(freqs, abs(squeeze(freqresp(G( 'Ary', 'Rwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Ary', 'Rwy')/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - $R_y/R_{w,y}$'); xlabel('Frequency [Hz]');
ylabel('$R_x/R_{w,x}$, $R_y/R_{w,y}$'); xlabel('Frequency [Hz]');
ax6 = subplot(2, 3, 6);
ax4 = nexttile;
hold on;
plot(freqs, abs(squeeze(freqresp(G( 'Arz', 'Rwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_cen('Arz', 'Rwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Arz', 'Rwz')/s^2, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_svd('Arz', 'Rwz')/s^2, freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Transmissibility - $R_z/R_{w,z}$'); xlabel('Frequency [Hz]');
ylabel('$R_z/R_{w,z}$'); xlabel('Frequency [Hz]');
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');
linkaxes([ax1,ax2,ax3,ax4],'xy');
xlim([freqs(1), freqs(end)]);
ylim([1e-3, 1e2]);