Use luatex, verify glossary

This commit is contained in:
Thomas Dehaeze 2024-04-12 09:32:02 +02:00
parent bba8128daa
commit 893fabe70b
8 changed files with 679 additions and 368 deletions

View File

@ -19,7 +19,7 @@
# 3: dvi conversion, as specified by the $dvipdf variable (useless) # 3: dvi conversion, as specified by the $dvipdf variable (useless)
# 4: lualatex, as specified by the $lualatex variable (best) # 4: lualatex, as specified by the $lualatex variable (best)
# 5: xelatex, as specified by the $xelatex variable (second best) # 5: xelatex, as specified by the $xelatex variable (second best)
$pdf_mode = 1; $pdf_mode = 4;
# Treat undefined references and citations as well as multiply defined references as # Treat undefined references and citations as well as multiply defined references as
# ERRORS instead of WARNINGS. # ERRORS instead of WARNINGS.

View File

@ -149,11 +149,28 @@
\setlength{\mtcindent}{0pt} \setlength{\mtcindent}{0pt}
% \usepackage[nottoc]{tocbibind} % \usepackage[nottoc]{tocbibind}
\usepackage[lf]{ebgaramond} \ifxetexorluatex
\usepackage{unicode-math}
\setmainfont{EB Garamond}
\setmathfont{Garamond Math}
% \usepackage{crimson} % Load some missing symbols from another font.
\setmathfont{STIX Two Math}[%
\usepackage[oldstyle, scale=0.7]{sourcecodepro} range = {
\sharp,
\natural,
\flat,
\clubsuit,
\spadesuit,
\checkmark
}
]
\setmonofont[Scale=MatchLowercase]{Source Code Pro}
\else
\usepackage[lf]{ebgaramond} % https://tug.org/FontCatalogue/quattrocento/
\usepackage[oldstyle,scale=0.7]{sourcecodepro} % https://tug.org/FontCatalogue/sourcecodepro/
\singlespacing
\fi
\usepackage[usenames,dvipsnames]{xcolor} \usepackage[usenames,dvipsnames]{xcolor}

141
phd-thesis.bib Normal file
View File

@ -0,0 +1,141 @@
@phdthesis{li01_simul_fault_vibrat_isolat_point,
author = {Li, Xiaochun},
keywords = {parallel robot},
school = {University of Wyoming},
title = {Simultaneous, Fault-tolerant Vibration Isolation and
Pointing Control of Flexure Jointed Hexapods},
year = 2001,
}
@phdthesis{bishop02_devel_precis_point_contr_vibrat,
author = {Bishop Jr, Ronald M},
school = {Naval Postgraduate School, Monterey, California},
title = {Development of Precision Pointing Controllers with and
without Vibration Suppression for the {NPS} Precision Pointing
Hexapod},
year = 2002,
keywords = {parallel robot},
}
@phdthesis{hanieh03_activ_stewar,
author = {Hanieh, Ahmed Abu},
keywords = {parallel robot},
school = {Universit{\'e} Libre de Bruxelles, Brussels, Belgium},
title = {Active isolation and damping of vibrations via Stewart
platform},
year = 2003,
}
@phdthesis{afzali-far16_vibrat_dynam_isotr_hexap_analy_studies,
author = {Afzali-Far, Behrouz},
school = {Lund University},
title = {Vibrations and Dynamic Isotropy in Hexapods-Analytical
Studies},
year = 2016,
keywords = {parallel robot},
}
@phdthesis{naves20_desig,
author = {Mark Naves},
school = {Univeristy of Twente},
title = {Design and optimization of large stroke flexure mechanisms},
year = 2020,
keywords = {flexure},
}
@phdthesis{rankers98_machin,
author = {Rankers, Adrian Mathias},
keywords = {favorite},
school = {University of Twente},
title = {Machine dynamics in mechatronic systems: An engineering
approach.},
year = 1998,
}
@phdthesis{monkhorst04_dynam_error_budget,
author = {Wouter Monkhorst},
school = {Delft University},
title = {Dynamic Error Budgeting, a design approach},
year = 2004,
}
@phdthesis{jabben07_mechat,
author = {Jabben, Leon},
school = {Delft University},
title = {Mechatronic design of a magnetically suspended rotating
platform},
year = 2007,
keywords = {maglev},
}
@inproceedings{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb,
author = {Dehaeze, T. and Collette, C.},
title = {Active Damping of Rotating Platforms using Integral Force
Feedback},
booktitle = {Proceedings of the International Conference on Modal
Analysis Noise and Vibration Engineering (ISMA)},
year = 2020,
}
@article{dehaeze21_activ_dampin_rotat_platf_using,
author = {Thomas Dehaeze and Christophe Collette},
title = {Active Damping of Rotating Platforms Using Integral Force
Feedback},
journal = {Engineering Research Express},
year = 2021,
doi = {10.1088/2631-8695/abe803},
url = {https://doi.org/10.1088/2631-8695/abe803},
month = {Feb},
keywords = {nass, esrf},
}
@inproceedings{brumund21_multib_simul_reduc_order_flexib_bodies_fea,
author = {Philipp Brumund and Thomas Dehaeze},
title = {Multibody Simulations with Reduced Order Flexible Bodies
obtained by FEA},
booktitle = {MEDSI'20},
year = 2021,
language = {english},
publisher = {JACoW Publishing},
series = {Mechanical Engineering Design of Synchrotron Radiation
Equipment and Instrumentation},
venue = {Chicago, USA},
keywords = {nass, esrf},
}
@inproceedings{dehaeze21_mechat_approac_devel_nano_activ_stabil_system,
author = {Dehaeze, T. and Bonnefoy, J. and Collette, C.},
title = {Mechatronics Approach for the Development of a
Nano-Active-Stabilization-System},
booktitle = {MEDSI'20},
year = 2021,
language = {english},
publisher = {JACoW Publishing},
series = {Mechanical Engineering Design of Synchrotron Radiation
Equipment and Instrumentation},
venue = {Chicago, USA},
keywords = {nass, esrf},
}

View File

@ -19,9 +19,12 @@
#+BIND: org-latex-bib-compiler "biber" #+BIND: org-latex-bib-compiler "biber"
#+TODO: TODO(t) MAKE(m) COPY(c) | DONE(d)
#+LATEX_HEADER: \input{config.tex} #+LATEX_HEADER: \input{config.tex}
#+LATEX_HEADER_EXTRA: \input{config_extra.tex} #+LATEX_HEADER_EXTRA: \input{config_extra.tex}
#+LATEX_HEADER_EXTRA: \addbibresource{ref.bib} #+LATEX_HEADER_EXTRA: \addbibresource{ref.bib}
#+LATEX_HEADER_EXTRA: \addbibresource{phd-thesis.bib}
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}") #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :imagemagick t :fit yes
@ -93,12 +96,13 @@
| phi | \ensuremath{\phi} | A woody bush | | phi | \ensuremath{\phi} | A woody bush |
#+name: acronyms #+name: acronyms
| key | abbreviation | full form | | key | abbreviation | full form |
|------+--------------+----------------------------------| |------+--------------+-----------------------------------------|
| mimo | MIMO | Multiple-Inputs Multiple-Outputs | | mimo | MIMO | Multiple-Inputs Multiple-Outputs |
| siso | SISO | Single-Input Single-Output | | siso | SISO | Single-Input Single-Output |
| nass | NASS | Nano Active Stabilization System | | nass | NASS | Nano Active Stabilization System |
| lti | LTI | Linear Time Invariant | | lti | LTI | Linear Time Invariant |
| esrf | ESRF | European Synchrotron Radiation Facility |
* Title Page :ignore: * Title Page :ignore:
@ -137,6 +141,8 @@
:UNNUMBERED: notoc :UNNUMBERED: notoc
:END: :END:
\gls{phi}
* Résumé * Résumé
:PROPERTIES: :PROPERTIES:
:UNNUMBERED: notoc :UNNUMBERED: notoc
@ -160,7 +166,7 @@
* Introduction * Introduction
** Context of this thesis / Background and Motivation ** Context of this thesis / Background and Motivation
- ESRF (Figure [[fig:esrf_picture]]) - \gls{esrf} (Figure [[fig:esrf_picture]])
#+name: fig:esrf_picture #+name: fig:esrf_picture
#+caption: European Synchrotron Radiation Facility #+caption: European Synchrotron Radiation Facility
@ -356,6 +362,7 @@ Alternative: =id31_microstation_cad_view.png= (CAD view)
- Few words about science made on ID31 and why nano-meter accuracy is required - Few words about science made on ID31 and why nano-meter accuracy is required
- Typical experiments (tomography, ...), various samples (up to 50kg) - Typical experiments (tomography, ...), various samples (up to 50kg)
- Where to explain the goal of each stage? (e.g. micro-hexapod: static positioning, Ty and Rz: scans, ...)
- Example of picture obtained (Figure [[fig:id31_tomography_result]]) - Example of picture obtained (Figure [[fig:id31_tomography_result]])
#+name: fig:id31_tomography_result #+name: fig:id31_tomography_result
@ -365,6 +372,8 @@ Alternative: =id31_microstation_cad_view.png= (CAD view)
- Explain wanted positioning accuracy and why micro-station cannot have this accuracy (backlash, play, thermal expansion, ...) - Explain wanted positioning accuracy and why micro-station cannot have this accuracy (backlash, play, thermal expansion, ...)
- Speak about the metrology concept, and why it is not included in this thesis
** Challenge definition ** Challenge definition
#+name: fig:nass_concept_schematic #+name: fig:nass_concept_schematic
@ -406,6 +415,7 @@ Alternative: =id31_microstation_cad_view.png= (CAD view)
cite:hanieh03_activ_stewar cite:hanieh03_activ_stewar
cite:afzali-far16_vibrat_dynam_isotr_hexap_analy_studies cite:afzali-far16_vibrat_dynam_isotr_hexap_analy_studies
cite:naves20_desig cite:naves20_desig
[[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org]]
- Positioning stations - Positioning stations
- Mechatronic approach? - Mechatronic approach?
cite:rankers98_machin cite:rankers98_machin
@ -523,25 +533,32 @@ Alternative: =id31_microstation_cad_view.png= (CAD view)
#+RESULTS: #+RESULTS:
[[file:figs/nass_mechatronics_approach.png]] [[file:figs/nass_mechatronics_approach.png]]
*Goals*:
- Design \gls{nass} such that it is easy to control (and maintain).
Have good performances by design and not by complex control strategies.
*Models*:
- Uniaxial Model:
- Effect of limited support compliance
- Effect of change of payload
- Rotating Model
- Gyroscopic effects
- Multi Body Model
- Finite Element Models
* Conceptual Design Development * Conceptual Design Development
\minitoc \minitoc
**** Abstract **** Abstract
Schematic that summarizes this phase. #+name: fig:chapter1_overview
Uniaxial => Rotation => Multi body => Simulations #+caption: Figure caption
#+attr_latex: :width \linewidth
[[file:figs/chapter1_overview.png]]
** Constrains on the system ** COPY Uni-axial Model
# [[file:/home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A1-nass-uniaxial-model/nass-uniaxial-model.org][NASS - Uniaxial Model]]
- Size
- Payload
- Connections to samples
- ... should justify the nano-hexapod design
- choice of parallel architecture
- [ ] Picture/schematic of the micro-station with indicated location of Nano-Hexapod
** Uni-axial Model
*** Introduction :ignore: *** Introduction :ignore:
- Explain what we want to capture with this model - Explain what we want to capture with this model
@ -639,7 +656,14 @@ Uniaxial => Rotation => Multi body => Simulations
#+RESULTS: #+RESULTS:
[[file:figs/mass_spring_damper_nass.png]] [[file:figs/mass_spring_damper_nass.png]]
*** Noise Budgeting *** Micro Station Model
*** Nano Hexapod Model
*** Disturbance Identification
*** Open Loop Dynamic Noise Budgeting
- List all disturbances with their spectral densities
- Show how they have been measured
- Say that repeatable errors can be calibrated (show measurement of Hans-Peter?)
#+name: fig:measurement_microstation_vibration_picture #+name: fig:measurement_microstation_vibration_picture
#+caption: Setup used to measure the micro-station vibrations during operation #+caption: Setup used to measure the micro-station vibrations during operation
@ -651,21 +675,6 @@ Uniaxial => Rotation => Multi body => Simulations
#+attr_latex: :width 0.49\linewidth #+attr_latex: :width 0.49\linewidth
[[file:example-image-b.png]] [[file:example-image-b.png]]
*** Effect of support compliance
[[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty_support.org::+TITLE: Effect of Uncertainty on the support's dynamics on the isolation platform dynamics][study]]
- *goal*: make the nano-hexapod independent of the support compliance
- Simple 2DoF model
- Generalized to any support compliance
- *conclusion*: frequency of nano-hexapod resonances should be lower than first suspension mode of the support
*** Effect of payload dynamics
[[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty_payload.org::+TITLE: Effect of Uncertainty on the payload's dynamics on the isolation platform dynamics][study]]
- *goal*: be robust to a change of payload
- Simple 2DoF model
- Generalized to any payload dynamics
*** Active Damping *** Active Damping
Conclusion: IFF is better for this application Conclusion: IFF is better for this application
@ -683,12 +692,32 @@ Conclusion: IFF is better for this application
- Sensitivity to disturbances - Sensitivity to disturbances
** Effect of rotation *** Position Feedback Controller
*** Effect of support compliance
- *goal*: make the nano-hexapod independent of the support compliance
- Simple 2DoF model
- Generalized to any support compliance
- *conclusion*: frequency of nano-hexapod resonances should be lower than first suspension mode of the support
*** Effect of payload dynamics
- *goal*: be robust to a change of payload
- Simple 2DoF model
- Generalized to any payload dynamics
*** Conclusion
** COPY Effect of rotation
# [[file:/home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A2-nass-rotating-3dof-model/nass-rotating-3dof-model.org][NASS - Rotating 3DoF Model]]
*** Introduction :ignore: *** Introduction :ignore:
[[cite:&dehaeze20_activ_dampin_rotat_platf_integ_force_feedb;&dehaeze21_activ_dampin_rotat_platf_using]] Papers:
- [[cite:dehaeze20_activ_dampin_rotat_platf_integ_force_feedb]]
- [[cite:dehaeze21_activ_dampin_rotat_platf_using]]
*** X-Y rotating platform model *** System Description and Analysis
- x-y-Rz model - x-y-Rz model
- explain why this is representing the NASS - explain why this is representing the NASS
@ -759,19 +788,22 @@ Conclusion: IFF is better for this application
#+RESULTS: #+RESULTS:
[[file:figs/2dof_rotating_system.png]] [[file:figs/2dof_rotating_system.png]]
*** Effect of rotational velocity on the system dynamics *** Integral Force Feedback
- Campbell diagram
*** Decentralized Integral Force Feedback
- Control diagram - Control diagram
- Root Locus: unstable with pure IFF - Root Locus: unstable with pure IFF
*** Two proposed modification of IFF *** IFF with an High Pass Filter
- Comparison of parallel stiffness and change of controller *** IFF with a stiffness in parallel with the force sensor
- Transmissibility
*** Relative Damping Control
*** Comparison of Active Damping Techniques
*** Rotating Nano-Hexapod
*** Nano Active Stabilization System with rotation
*** Conclusion *** Conclusion
@ -780,7 +812,56 @@ Conclusion: IFF is better for this application
- Conclusion: minimum stiffness is required - Conclusion: minimum stiffness is required
- APA is a nice architecture for parallel stiffness + integrated force sensor (have to speak about IFF before that) - APA is a nice architecture for parallel stiffness + integrated force sensor (have to speak about IFF before that)
** Multi Body Model - Nano Hexapod ** TODO Micro Station - Modal Analysis
# [[file:/home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A3-micro-station-modal-analysis/modal-analysis.org][Micro Station - Modal Analysis]]
*** Introduction :ignore:
Conclusion:
- complex dynamics: need multi-body model of the micro-station to represent the limited compliance...
*** Measurement Setup
*** Frequency Analysis
*** Modal Analysis
** TODO Micro Station - Multi Body Model
# [[file:/home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A4-simscape-micro-station/simscape-micro-station.org][Simscape - Micro-Station]]
*** Introduction :ignore:
#+name: fig:simscape_first_model_screenshot
#+caption: 3D view of the multi-body model of the micro-station
#+attr_latex: :width 0.7\linewidth
[[file:figs/simscape_first_model_screenshot.jpg]]
*** Kinematics
[[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/kinematics.org::+TITLE: Kinematics of the station]]
- Small overview of each stage and associated stiffnesses / inertia
- schematic that shows to considered DoF
- import from CAD
*** Modal Analysis and Dynamic Modeling
# [[file:~/Cloud/work-projects/ID31-NASS/matlab/micro-station-modal-analysis/modal-analysis.org][modal-analysis]]
- Picture of the experimental setup
- Location of accelerometers
- Show obtained modes
- Validation of rigid body assumption
- Explain how this helps tuning the multi-body model
*** Disturbances and Positioning errors
*** Validation of the Model
- Most important metric: support compliance
- Compare model and measurement
** TODO Nano Hexapod - Multi Body Model
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A5-simscape-nano-hexapod/simscape-nano-hexapod.org][Simscape - Nano-Hexapod]]
*** Introduction :ignore: *** Introduction :ignore:
- What we want to capture with this model - What we want to capture with this model
@ -809,6 +890,8 @@ Conclusion: IFF is better for this application
#+end_subfigure #+end_subfigure
#+end_figure #+end_figure
Configurable Simscape Model: [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org]]
- Explain the different frames, etc...
- Little review - Little review
- explain key elements: - explain key elements:
@ -829,52 +912,37 @@ Conclusion: IFF is better for this application
- Piezoelectric effects - Piezoelectric effects
- mass spring damper representation (2dof) - mass spring damper representation (2dof)
- Compare the model and the experiment - Compare the model and the experiment
- Here, just a basic 2DoF model of the APA is used
*** Dynamics *** Dynamics of the Nano-Hexapod
- Effect of joints stiffnesses - Effect of joints stiffnesses
- [ ] The APA model should maybe not be used here, same for the nice top and bottom plates. Here the detailed design is not yet performed
#+name: fig:simscape_nano_hexapod #+name: fig:simscape_nano_hexapod
#+caption: 3D view of the multi-body model of the Nano-Hexapod (simplified) #+caption: 3D view of the multi-body model of the Nano-Hexapod (simplified)
#+attr_latex: :width \linewidth #+attr_latex: :width \linewidth
[[file:figs/simscape_nano_hexapod.png]] [[file:figs/simscape_nano_hexapod.png]]
** Multi Body Model - Micro Station ** TODO Control Architecture - Concept Validation
*** Introduction :ignore: # [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A6-simscape-nass/simscape-nass.org][Simscape - NASS]]
#+name: fig:simscape_first_model_screenshot
#+caption: 3D view of the multi-body model of the micro-station
#+attr_latex: :width 0.7\linewidth
[[file:figs/simscape_first_model_screenshot.jpg]]
*** Kinematics
- Small overview of each stage and associated stiffnesses / inertia
- schematic that shows to considered DoF
- import from CAD
*** Modal Analysis
[[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-measurements/modal-analysis/index.org][study]]
- Picture of the experimental setup
- Location of accelerometers
- Show obtained modes
- Validation of rigid body assumption
- Explain how this helps tuning the multi-body model
*** Validation of the Model
- Most important metric: support compliance
- Compare model and measurement
** Control Architecture
*** Introduction :ignore: *** Introduction :ignore:
Discussion of: Discussion of:
- Transformation matrices / control architecture - Transformation matrices / control architecture (computation of the position error in the frame of the nano-hexapod)
- Control of parallel architectures
- Control in the frame of struts or cartesian? - Control in the frame of struts or cartesian?
- Effect of rotation on IFF? => APA - Effect of rotation on IFF? => APA
- HAC-LAC - HAC-LAC
- New noise budgeting?
*** Control Kinematics
- Explain how the position error can be expressed in the frame of the nano-hexapod
- block diagram
- Explain how to go from external metrology to the frame of the nano-hexapod
*** High Authority Control - Low Authority Control (HAC-LAC) *** High Authority Control - Low Authority Control (HAC-LAC)
@ -893,12 +961,6 @@ Discussion of:
- Root Locus - Root Locus
- Damping optimization - Damping optimization
*** Control Kinematics
- Explain how the position error can be expressed in the frame of the nano-hexapod
- block diagram
- Explain how to go from external metrology to the frame of the nano-hexapod
*** Decoupled Dynamics *** Decoupled Dynamics
- Centralized HAC - Centralized HAC
@ -910,46 +972,36 @@ Discussion of:
- Decoupled plant - Decoupled plant
- Controller design - Controller design
** Simulations - Concept Validation ** Conceptual Design - Conclusion
*** Introduction :ignore:
- Tomography experiment
- Open VS Closed loop results
- *Conclusion*: concept validation
nano hexapod architecture with APA
decentralized IFF + centralized HAC
#+name: fig:simscape_nass_final
#+caption: 3D view of the multi-body model including the micro-station, the nano-hexapod and the associated metrology
#+attr_latex: :width \linewidth
[[file:figs/simscape_nass_final.png]]
** Conclusion
* Detailed Design * Detailed Design
\minitoc \minitoc
**** Abstract **** Abstract
CAD view of the nano-hexapod with key components: #+name: fig:chapter2_overview
- plates #+caption: Figure caption
- flexible joints #+attr_latex: :width \linewidth
- APA [[file:figs/chapter2_overview.png]]
- required instrumentation (ADC, DAC, Speedgoat, Amplifiers, Force Sensor instrumentation, ...)
** TODO Nano-Hexapod Kinematics - Optimal Geometry?
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B1-nass-geometry/nass-geometry.org][NASS - Geometry]]
- [ ] Maybe this can be just merged with the last section in this chapter?
** Optimal Nano-Hexapod geometry
*** Introduction :ignore: *** Introduction :ignore:
- [ ] Geometry?
- [ ] Cubic architecture?
- [ ] Kinematics
- [ ] Trade-off for the strut orientation
- [ ] Sensors required
*** Optimal strut orientation *** Optimal strut orientation
*** Cubic Architecture: a Special Case? *** Cubic Architecture: a Special Case?
** Including Flexible elements in the Multi-body model [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/cubic-configuration.org]]
** TODO Nano-Hexapod Dynamics - Including Flexible elements in the Multi-body model
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B2-nass-fem/nass-fem.org][NASS - FEM]]
- [ ] Should this be an appendix?
*** Introduction :ignore: *** Introduction :ignore:
Reduced order flexible bodies [[cite:brumund21_multib_simul_reduc_order_flexib_bodies_fea]] Reduced order flexible bodies [[cite:brumund21_multib_simul_reduc_order_flexib_bodies_fea]]
- Used with APA, Flexible joints, Plates - Used with APA, Flexible joints, Plates
@ -969,17 +1021,24 @@ Reduced order flexible bodies [[cite:brumund21_multib_simul_reduc_order_flexib_b
- Test bench - Test bench
- Obtained transfer functions and comparison with Simscape model with reduced order flexible body - Obtained transfer functions and comparison with Simscape model with reduced order flexible body
** Amplified Piezoelectric Actuator ** TODO Actuator Choice
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B3-nass-actuator-choice/nass-actuator-choice.org][NASS - Actuator]]
*** Introduction :ignore: *** Introduction :ignore:
[[file:~/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa/index.org::+TITLE: Test Bench - Amplified Piezoelectric Actuator][study 1]], [[file:~/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa300ml/test-bench-apa300ml.org::+TITLE: Nano-Hexapod Struts - Test Bench][study 2]]
- From previous study: APA seems a nice choice
- First tests with the APA95ML: validation of a basic model (maybe already presented)
- Optimal stiffness?
- Talk about piezoelectric actuator? bandwidth? noise?
- Specifications: stiffness, stroke, ... => choice of the APA
- FEM of the APA
- Validation with flexible APA in the simscape model
#+name: fig:apa_schmeatic #+name: fig:apa_schmeatic
#+caption: Schematical representation of an Amplified Piezoelectric Actuator #+caption: Schematical representation of an Amplified Piezoelectric Actuator
#+attr_latex: :width 0.49\linewidth #+attr_latex: :width 0.49\linewidth
[[file:example-image-a.png]] [[file:example-image-a.png]]
- First tests with the APA95ML
*** Model *** Model
Piezoelectric equations Piezoelectric equations
@ -1015,9 +1074,18 @@ Piezoelectric equations
- Tuned Simscape model - Tuned Simscape model
- IFF results: OK - IFF results: OK
** Flexible Joints ** TODO Design of Nano-Hexapod Flexible Joints
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B4-nass-flexible-joints/nass-flexible-joints.org][NASS - Flexible Joints]]
*** Introduction :ignore: *** Introduction :ignore:
- Perfect flexible joint
- Imperfection of the flexible joint: Model
- Study of the effect of limited stiffness in constrain directions and non-null stiffness in other directions
- Obtained Specification
- Design optimisation (FEM)
- Implementation of flexible elements in the Simscape model: close to simplified model
*** Effect of flexible joint characteristics on obtained dynamics *** Effect of flexible joint characteristics on obtained dynamics
- Based on Simscape model - Based on Simscape model
@ -1028,6 +1096,7 @@ Piezoelectric equations
*** Flexible joint geometry optimization *** Flexible joint geometry optimization
- Chosen geometry - Chosen geometry
- Show different existing geometry for flexible joints used on hexapods
- Optimisation with Ansys - Optimisation with Ansys
- Validation with Simscape model - Validation with Simscape model
@ -1038,15 +1107,22 @@ Piezoelectric equations
- Test bench - Test bench
- Obtained results - Obtained results
** Instrumentation ** TODO Choice of Instrumentation
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B5-nass-instrumentation/nass-instrumentation.org][NASS - Instrumentation]]
*** Introduction :ignore: *** Introduction :ignore:
*** DAC - Discussion of the choice of other elements:
- Encoder
- DAC
- ADC (reading of the force sensors)
- real time controller
- Voltage amplifiers
- Give some requirements + chosen elements + measurements / validation
*** DAC and ADC
*** ADC - Force sensor
Force sensor
*** Voltage amplifier ([[https://research.tdehaeze.xyz/test-bench-pd200/][link]]) *** Voltage amplifier ([[https://research.tdehaeze.xyz/test-bench-pd200/][link]])
@ -1057,67 +1133,68 @@ Force sensor
*** Encoder ([[https://research.tdehaeze.xyz/test-bench-vionic/][link]]) *** Encoder ([[https://research.tdehaeze.xyz/test-bench-vionic/][link]])
- Noise measurement - Noise measurement
** Obtained Design ** TODO Obtained Design
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B6-nass-design/nass-design.org][NASS - Design]]
- Explain again the different specifications in terms of space, payload, etc..
- CAD view of the nano-hexapod - CAD view of the nano-hexapod
- Chosen geometry, materials, ease of mounting, cabling, ... - Chosen geometry, materials, ease of mounting, cabling, ...
- Validation on Simscape with accurate model?
** Detailed Design - Conclusion
* Experimental Validation * Experimental Validation
\minitoc \minitoc
**** Abstract **** Abstract
#+name: fig:chapter3_overview
#+caption: Figure caption
#+attr_latex: :width \linewidth
[[file:figs/chapter3_overview.png]]
Schematic representation of the experimental validation process. Schematic representation of the experimental validation process.
- APA - APA
- Strut - Strut
- Nano-hexapod on suspended table - Nano-hexapod on suspended table
- Nano-hexapod with Spindle - Nano-hexapod with Spindle
** Amplified Piezoelectric Actuator ([[https://research.tdehaeze.xyz/test-bench-apa300ml/][link]]) ** COPY Amplified Piezoelectric Actuator
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C1-test-bench-apa/test-bench-apa.org][Test Bench - APA]]
APA alone: ** TODO Flexible Joints
- *Goal*: Tune model of APA # [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C2-test-bench-flexible-joints/test-bench-flexible-joints.org][Test Bench - Flexible Joints]]
- [ ] FRF and fit with FEM model
- [ ] Show all six FRF and how close they are
- [ ] IFF
** Struts ** TODO Struts
SCHEDULED: <2024-04-15 Mon>
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C3-test-bench-struts/test-bench-struts.org][Test Bench - Struts]]
Strut (APA + joints): ** TODO Nano-Hexapod
- [ ] FRF, tune model # [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C4-test-bench-nano-hexapod/test-bench-nano-hexapod.org][Test Bench - Nano Hexapod]]
- [ ] Issue with encoder (comparison with axial motion)
- [ ] IFF
** Nano-Hexapod ** TODO Rotating Nano-Hexapod
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C5-test-bench-nass-spindle/test-bench-nass-spindle.org][Test Bench - NASS Spindle]]
Mounting ** TODO ID31 Micro Station
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C6-test-bench-id31/test-bench-id31.org][Test Bench - ID31]]
Test bench on top of soft table:
- *Goal*: Tune model of nano-hexapod, validation of dynamics
- modal analysis soft table (first mode at xxx Hz => rigid body in Simscape)
- FRF + comp model (multiple masses)
- IFF and robustness to change of mass
** Rotating Nano-Hexapod
- *Goal*: validation of control strategy with rotation
- Interferometers to have more stroke
#+name: fig:rot_nano_hexapod_bench_schematic
#+caption: Schematic of the rotating nano-hexapod test bench
#+attr_latex: :width 0.49\linewidth
[[file:example-image-a.png]]
** ID31 Micro Station
- *Goal*: full validation without the full metrology
** Experimental Validation - Conclusion
* Conclusion and Future Work * Conclusion and Future Work
** Alternative Architecture
[[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/alternative-micro-station-architecture.org]]
* Appendix :ignore: * Appendix :ignore:
#+latex: \appendix #+latex: \appendix
* Mathematical Tools for Mechatronics
** Feedback Control
** Dynamical Noise Budgeting
*** Power Spectral Density
*** Cumulative Amplitude Spectrum
* Stewart Platform - Kinematics * Stewart Platform - Kinematics
* Comments on something
* Bibliography :ignore: * Bibliography :ignore:
#+latex: \printbibliography[heading=bibintoc,title={Bibliography}] #+latex: \printbibliography[heading=bibintoc,title={Bibliography}]
@ -1140,7 +1217,9 @@ Test bench on top of soft table:
#+end_export #+end_export
* Glossary :ignore: * Glossary :ignore:
#+latex: \printglossary[type=\acronymtype] #+latex: \printglossary[type=\acronymtype]
#+latex: \printglossary[type=\glossarytype]
#+latex: \printglossary #+latex: \printglossary
* Footnotes * Footnotes

Binary file not shown.

View File

@ -1,4 +1,4 @@
% Created 2023-01-31 Tue 23:33 % Created 2024-04-12 Fri 09:30
% Intended LaTeX compiler: pdflatex % Intended LaTeX compiler: pdflatex
\documentclass[a4paper, twoside, 11pt, onecolumn, bibliography=totoc, openright, appendixprefix=true]{scrreprt} \documentclass[a4paper, twoside, 11pt, onecolumn, bibliography=totoc, openright, appendixprefix=true]{scrreprt}
@ -7,12 +7,14 @@
\newacronym{siso}{SISO}{Single-Input Single-Output} \newacronym{siso}{SISO}{Single-Input Single-Output}
\newacronym{nass}{NASS}{Nano Active Stabilization System} \newacronym{nass}{NASS}{Nano Active Stabilization System}
\newacronym{lti}{LTI}{Linear Time Invariant} \newacronym{lti}{LTI}{Linear Time Invariant}
\newacronym{esrf}{ESRF}{European Synchrotron Radiation Facility}
\newglossaryentry{ka}{name=\ensuremath{k_a},description={{Actuator Stiffness in}}} \newglossaryentry{ka}{name=\ensuremath{k_a},description={{Actuator Stiffness in}}}
\newglossaryentry{phi}{name=\ensuremath{\phi},description={{A woody bush}}} \newglossaryentry{phi}{name=\ensuremath{\phi},description={{A woody bush}}}
\input{config_extra.tex} \input{config_extra.tex}
\addbibresource{ref.bib} \addbibresource{ref.bib}
\addbibresource{phd-thesis.bib}
\author{Dehaeze Thomas} \author{Dehaeze Thomas}
\date{2023-01-31} \date{2024-04-12}
\title{Mechatronic approach for the design of a Nano Active Stabilization System} \title{Mechatronic approach for the design of a Nano Active Stabilization System}
\subtitle{PhD Thesis} \subtitle{PhD Thesis}
\hypersetup{ \hypersetup{
@ -20,7 +22,7 @@
pdftitle={Mechatronic approach for the design of a Nano Active Stabilization System}, pdftitle={Mechatronic approach for the design of a Nano Active Stabilization System},
pdfkeywords={}, pdfkeywords={},
pdfsubject={}, pdfsubject={},
pdfcreator={Emacs 28.2 (Org mode 9.5.2)}, pdfcreator={Emacs 29.3 (Org mode 9.6)},
pdflang={English}} pdflang={English}}
\usepackage{biblatex} \usepackage{biblatex}
@ -56,6 +58,7 @@
\newpage \newpage
\chapter*{Abstract} \chapter*{Abstract}
\gls{phi}
\chapter*{Résumé} \chapter*{Résumé}
@ -71,7 +74,7 @@
\section{Context of this thesis / Background and Motivation} \section{Context of this thesis / Background and Motivation}
\begin{itemize} \begin{itemize}
\item ESRF (Figure \ref{fig:esrf_picture}) \item \gls{esrf} (Figure \ref{fig:esrf_picture})
\end{itemize} \end{itemize}
\begin{figure}[htbp] \begin{figure}[htbp]
@ -98,13 +101,14 @@ Alternative: \texttt{id31\_microstation\_cad\_view.png} (CAD view)
\begin{figure}[htbp] \begin{figure}[htbp]
\centering \centering
\includegraphics[scale=1,width=0.49\linewidth]{figs/id31_beamline_schematic.png} \includegraphics[scale=1,width=\linewidth]{figs/id31_beamline_schematic.png}
\caption{\label{fig:id31_beamline_schematic}ID31 Beamline Schematic. With light source, nano-focusing optics, sample stage and detector.} \caption{\label{fig:id31_beamline_schematic}ID31 Beamline Schematic. With light source, nano-focusing optics, sample stage and detector.}
\end{figure} \end{figure}
\begin{itemize} \begin{itemize}
\item Few words about science made on ID31 and why nano-meter accuracy is required \item Few words about science made on ID31 and why nano-meter accuracy is required
\item Typical experiments (tomography, \ldots{}), various samples (up to 50kg) \item Typical experiments (tomography, \ldots{}), various samples (up to 50kg)
\item Where to explain the goal of each stage? (e.g. micro-hexapod: static positioning, Ty and Rz: scans, \ldots{})
\item Example of picture obtained (Figure \ref{fig:id31_tomography_result}) \item Example of picture obtained (Figure \ref{fig:id31_tomography_result})
\end{itemize} \end{itemize}
@ -116,6 +120,8 @@ Alternative: \texttt{id31\_microstation\_cad\_view.png} (CAD view)
\begin{itemize} \begin{itemize}
\item Explain wanted positioning accuracy and why micro-station cannot have this accuracy (backlash, play, thermal expansion, \ldots{}) \item Explain wanted positioning accuracy and why micro-station cannot have this accuracy (backlash, play, thermal expansion, \ldots{})
\item Speak about the metrology concept, and why it is not included in this thesis
\end{itemize} \end{itemize}
\section{Challenge definition} \section{Challenge definition}
@ -161,6 +167,7 @@ First hexapod with control bandwidth higher than the suspension modes that accep
\cite{hanieh03_activ_stewar} \cite{hanieh03_activ_stewar}
\cite{afzali-far16_vibrat_dynam_isotr_hexap_analy_studies} \cite{afzali-far16_vibrat_dynam_isotr_hexap_analy_studies}
\cite{naves20_desig} \cite{naves20_desig}
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org}
\item Positioning stations \item Positioning stations
\item Mechatronic approach? \item Mechatronic approach?
\cite{rankers98_machin} \cite{rankers98_machin}
@ -184,29 +191,40 @@ Because of this, the designer wants to be able to predict the performance of the
\caption{\label{fig:nass_mechatronics_approach}Overview of the mechatronic approach used for the Nano-Active-Stabilization-System} \caption{\label{fig:nass_mechatronics_approach}Overview of the mechatronic approach used for the Nano-Active-Stabilization-System}
\end{figure} \end{figure}
\textbf{Goals}:
\begin{itemize}
\item Design \gls{nass} such that it is easy to control (and maintain).
Have good performances by design and not by complex control strategies.
\end{itemize}
\textbf{Models}:
\begin{itemize}
\item Uniaxial Model:
\begin{itemize}
\item Effect of limited support compliance
\item Effect of change of payload
\end{itemize}
\item Rotating Model
\begin{itemize}
\item Gyroscopic effects
\end{itemize}
\item Multi Body Model
\item Finite Element Models
\end{itemize}
\chapter{Conceptual Design Development} \chapter{Conceptual Design Development}
\minitoc \minitoc
\paragraph{Abstract} \paragraph{Abstract}
Schematic that summarizes this phase. \begin{figure}[htbp]
Uniaxial => Rotation => Multi body => Simulations \centering
\includegraphics[scale=1,width=\linewidth]{figs/chapter1_overview.png}
\section{Constrains on the system} \caption{\label{fig:chapter1_overview}Figure caption}
\end{figure}
\begin{itemize}
\item Size
\item Payload
\item Connections to samples
\item \ldots{} should justify the nano-hexapod design
\begin{itemize}
\item choice of parallel architecture
\end{itemize}
\item[{$\square$}] Picture/schematic of the micro-station with indicated location of Nano-Hexapod
\end{itemize}
\section{Uni-axial Model} \section{Uni-axial Model}
\begin{itemize} \begin{itemize}
\item Explain what we want to capture with this model \item Explain what we want to capture with this model
\item Schematic of the uniaxial model (with X-ray) \item Schematic of the uniaxial model (with X-ray)
@ -222,7 +240,16 @@ Uniaxial => Rotation => Multi body => Simulations
\caption{\label{fig:mass_spring_damper_nass}3-DoF uniaxial mass-spring-damper model of the NASS} \caption{\label{fig:mass_spring_damper_nass}3-DoF uniaxial mass-spring-damper model of the NASS}
\end{figure} \end{figure}
\subsection{Noise Budgeting} \subsection{Micro Station Model}
\subsection{Nano Hexapod Model}
\subsection{Disturbance Identification}
\subsection{Open Loop Dynamic Noise Budgeting}
\begin{itemize}
\item List all disturbances with their spectral densities
\item Show how they have been measured
\item Say that repeatable errors can be calibrated (show measurement of Hans-Peter?)
\end{itemize}
\begin{figure}[htbp] \begin{figure}[htbp]
\centering \centering
@ -236,25 +263,6 @@ Uniaxial => Rotation => Multi body => Simulations
\caption{\label{fig:asd_ground_motion_ustation_dist}Amplitude Spectral density of the measured disturbance sources} \caption{\label{fig:asd_ground_motion_ustation_dist}Amplitude Spectral density of the measured disturbance sources}
\end{figure} \end{figure}
\subsection{Effect of support compliance}
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty\_support.org}{study}
\begin{itemize}
\item \textbf{goal}: make the nano-hexapod independent of the support compliance
\item Simple 2DoF model
\item Generalized to any support compliance
\item \textbf{conclusion}: frequency of nano-hexapod resonances should be lower than first suspension mode of the support
\end{itemize}
\subsection{Effect of payload dynamics}
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty\_payload.org}{study}
\begin{itemize}
\item \textbf{goal}: be robust to a change of payload
\item Simple 2DoF model
\item Generalized to any payload dynamics
\end{itemize}
\subsection{Active Damping} \subsection{Active Damping}
Conclusion: IFF is better for this application Conclusion: IFF is better for this application
@ -276,10 +284,35 @@ Conclusion: IFF is better for this application
\end{itemize} \end{itemize}
\section{Effect of rotation} \subsection{Position Feedback Controller}
\cite{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb,dehaeze21_activ_dampin_rotat_platf_using} \subsection{Effect of support compliance}
\subsection{X-Y rotating platform model} \begin{itemize}
\item \textbf{goal}: make the nano-hexapod independent of the support compliance
\item Simple 2DoF model
\item Generalized to any support compliance
\item \textbf{conclusion}: frequency of nano-hexapod resonances should be lower than first suspension mode of the support
\end{itemize}
\subsection{Effect of payload dynamics}
\begin{itemize}
\item \textbf{goal}: be robust to a change of payload
\item Simple 2DoF model
\item Generalized to any payload dynamics
\end{itemize}
\subsection{Conclusion}
\section{Effect of rotation}
Papers:
\begin{itemize}
\item \cite{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb}
\item \cite{dehaeze21_activ_dampin_rotat_platf_using}
\end{itemize}
\subsection{System Description and Analysis}
\begin{itemize} \begin{itemize}
\item x-y-Rz model \item x-y-Rz model
@ -294,25 +327,24 @@ Conclusion: IFF is better for this application
\caption{\label{fig:2dof_rotating_system}Mass spring damper model of an X-Y stage on top of a rotating stage} \caption{\label{fig:2dof_rotating_system}Mass spring damper model of an X-Y stage on top of a rotating stage}
\end{figure} \end{figure}
\subsection{Effect of rotational velocity on the system dynamics} \subsection{Integral Force Feedback}
\begin{itemize}
\item Campbell diagram
\end{itemize}
\subsection{Decentralized Integral Force Feedback}
\begin{itemize} \begin{itemize}
\item Control diagram \item Control diagram
\item Root Locus: unstable with pure IFF \item Root Locus: unstable with pure IFF
\end{itemize} \end{itemize}
\subsection{Two proposed modification of IFF} \subsection{IFF with an High Pass Filter}
\begin{itemize} \subsection{IFF with a stiffness in parallel with the force sensor}
\item Comparison of parallel stiffness and change of controller
\item Transmissibility \subsection{Relative Damping Control}
\end{itemize}
\subsection{Comparison of Active Damping Techniques}
\subsection{Rotating Nano-Hexapod}
\subsection{Nano Active Stabilization System with rotation}
\subsection{Conclusion} \subsection{Conclusion}
@ -323,7 +355,56 @@ Conclusion: IFF is better for this application
\item APA is a nice architecture for parallel stiffness + integrated force sensor (have to speak about IFF before that) \item APA is a nice architecture for parallel stiffness + integrated force sensor (have to speak about IFF before that)
\end{itemize} \end{itemize}
\section{Multi Body Model - Nano Hexapod} \section{Micro Station - Modal Analysis}
Conclusion:
\begin{itemize}
\item complex dynamics: need multi-body model of the micro-station to represent the limited compliance\ldots{}
\end{itemize}
\subsection{Measurement Setup}
\subsection{Frequency Analysis}
\subsection{Modal Analysis}
\section{Micro Station - Multi Body Model}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.7\linewidth]{figs/simscape_first_model_screenshot.jpg}
\caption{\label{fig:simscape_first_model_screenshot}3D view of the multi-body model of the micro-station}
\end{figure}
\subsection{Kinematics}
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/kinematics.org}
\begin{itemize}
\item Small overview of each stage and associated stiffnesses / inertia
\item schematic that shows to considered DoF
\item import from CAD
\end{itemize}
\subsection{Modal Analysis and Dynamic Modeling}
\begin{itemize}
\item Picture of the experimental setup
\item Location of accelerometers
\item Show obtained modes
\item Validation of rigid body assumption
\item Explain how this helps tuning the multi-body model
\end{itemize}
\subsection{Disturbances and Positioning errors}
\subsection{Validation of the Model}
\begin{itemize}
\item Most important metric: support compliance
\item Compare model and measurement
\end{itemize}
\section{Nano Hexapod - Multi Body Model}
\begin{itemize} \begin{itemize}
\item What we want to capture with this model \item What we want to capture with this model
\item Explain what is a multi body model (rigid body, springs, etc\ldots{}) \item Explain what is a multi body model (rigid body, springs, etc\ldots{})
@ -333,7 +414,26 @@ Conclusion: IFF is better for this application
\subsection{Stewart Platform Architecture} \subsection{Stewart Platform Architecture}
\begin{figure}
\begin{subfigure}{0.49\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.8\linewidth]{stewart_architecture_example.png}
\end{center}
\subcaption{Initial position}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.8\linewidth]{stewart_architecture_example_pose.png}
\end{center}
\subcaption{After some motion}
\end{subfigure}
\caption{\label{fig:stewart_platform_architecture}Stewart Platform Architecture}
\end{figure}
Configurable Simscape Model: \url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org}
\begin{itemize} \begin{itemize}
\item Explain the different frames, etc\ldots{}
\item Little review \item Little review
\item explain key elements: \item explain key elements:
\begin{itemize} \begin{itemize}
@ -359,12 +459,15 @@ Conclusion: IFF is better for this application
\item Piezoelectric effects \item Piezoelectric effects
\item mass spring damper representation (2dof) \item mass spring damper representation (2dof)
\item Compare the model and the experiment \item Compare the model and the experiment
\item Here, just a basic 2DoF model of the APA is used
\end{itemize} \end{itemize}
\subsection{Dynamics} \subsection{Dynamics of the Nano-Hexapod}
\begin{itemize} \begin{itemize}
\item Effect of joints stiffnesses \item Effect of joints stiffnesses
\item[{$\square$}] The APA model should maybe not be used here, same for the nice top and bottom plates. Here the detailed design is not yet performed
\end{itemize} \end{itemize}
\begin{figure}[htbp] \begin{figure}[htbp]
@ -373,46 +476,24 @@ Conclusion: IFF is better for this application
\caption{\label{fig:simscape_nano_hexapod}3D view of the multi-body model of the Nano-Hexapod (simplified)} \caption{\label{fig:simscape_nano_hexapod}3D view of the multi-body model of the Nano-Hexapod (simplified)}
\end{figure} \end{figure}
\section{Multi Body Model - Micro Station} \section{Control Architecture - Concept Validation}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.7\linewidth]{figs/simscape_first_model_screenshot.jpg}
\caption{\label{fig:simscape_first_model_screenshot}3D view of the multi-body model of the micro-station}
\end{figure}
\subsection{Kinematics}
\begin{itemize}
\item Small overview of each stage and associated stiffnesses / inertia
\item schematic that shows to considered DoF
\item import from CAD
\end{itemize}
\subsection{Modal Analysis}
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-measurements/modal-analysis/index.org}{study}
\begin{itemize}
\item Picture of the experimental setup
\item Location of accelerometers
\item Show obtained modes
\item Validation of rigid body assumption
\item Explain how this helps tuning the multi-body model
\end{itemize}
\subsection{Validation of the Model}
\begin{itemize}
\item Most important metric: support compliance
\item Compare model and measurement
\end{itemize}
\section{Control Architecture}
Discussion of: Discussion of:
\begin{itemize} \begin{itemize}
\item Transformation matrices / control architecture \item Transformation matrices / control architecture (computation of the position error in the frame of the nano-hexapod)
\item Control of parallel architectures
\item Control in the frame of struts or cartesian? \item Control in the frame of struts or cartesian?
\item Effect of rotation on IFF? => APA \item Effect of rotation on IFF? => APA
\item HAC-LAC \item HAC-LAC
\item New noise budgeting?
\end{itemize}
\subsection{Control Kinematics}
\begin{itemize}
\item Explain how the position error can be expressed in the frame of the nano-hexapod
\item block diagram
\item Explain how to go from external metrology to the frame of the nano-hexapod
\end{itemize} \end{itemize}
\subsection{High Authority Control - Low Authority Control (HAC-LAC)} \subsection{High Authority Control - Low Authority Control (HAC-LAC)}
@ -438,14 +519,6 @@ Discussion of:
\item Damping optimization \item Damping optimization
\end{itemize} \end{itemize}
\subsection{Control Kinematics}
\begin{itemize}
\item Explain how the position error can be expressed in the frame of the nano-hexapod
\item block diagram
\item Explain how to go from external metrology to the frame of the nano-hexapod
\end{itemize}
\subsection{Decoupled Dynamics} \subsection{Decoupled Dynamics}
\begin{itemize} \begin{itemize}
@ -461,52 +534,34 @@ Discussion of:
\item Controller design \item Controller design
\end{itemize} \end{itemize}
\section{Simulations - Concept Validation} \section{Conceptual Design - Conclusion}
\begin{itemize}
\item Tomography experiment
\item Open VS Closed loop results
\item \textbf{Conclusion}: concept validation
nano hexapod architecture with APA
decentralized IFF + centralized HAC
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/simscape_nass_final.png}
\caption{\label{fig:simscape_nass_final}3D view of the multi-body model including the micro-station, the nano-hexapod and the associated metrology}
\end{figure}
\section{Conclusion}
\chapter{Detailed Design} \chapter{Detailed Design}
\minitoc \minitoc
\paragraph{Abstract} \paragraph{Abstract}
CAD view of the nano-hexapod with key components: \begin{figure}[htbp]
\begin{itemize} \centering
\item plates \includegraphics[scale=1,width=\linewidth]{figs/chapter2_overview.png}
\item flexible joints \caption{\label{fig:chapter2_overview}Figure caption}
\item APA \end{figure}
\item required instrumentation (ADC, DAC, Speedgoat, Amplifiers, Force Sensor instrumentation, \ldots{})
\end{itemize}
\section{Optimal Nano-Hexapod geometry} \section{Nano-Hexapod Kinematics - Optimal Geometry?}
\begin{itemize} \begin{itemize}
\item[{$\square$}] Geometry? \item[{$\square$}] Maybe this can be just merged with the last section in this chapter?
\begin{itemize}
\item[{$\square$}] Cubic architecture?
\item[{$\square$}] Kinematics
\item[{$\square$}] Trade-off for the strut orientation
\end{itemize}
\item[{$\square$}] Sensors required
\end{itemize} \end{itemize}
\subsection{Optimal strut orientation} \subsection{Optimal strut orientation}
\subsection{Cubic Architecture: a Special Case?} \subsection{Cubic Architecture: a Special Case?}
\section{Including Flexible elements in the Multi-body model} \url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/cubic-configuration.org}
\section{Nano-Hexapod Dynamics - Including Flexible elements in the Multi-body model}
\begin{itemize}
\item[{$\square$}] Should this be an appendix?
\end{itemize}
Reduced order flexible bodies \cite{brumund21_multib_simul_reduc_order_flexib_bodies_fea} Reduced order flexible bodies \cite{brumund21_multib_simul_reduc_order_flexib_bodies_fea}
\begin{itemize} \begin{itemize}
\item Used with APA, Flexible joints, Plates \item Used with APA, Flexible joints, Plates
@ -533,8 +588,17 @@ Reduced order flexible bodies \cite{brumund21_multib_simul_reduc_order_flexib_bo
\item Obtained transfer functions and comparison with Simscape model with reduced order flexible body \item Obtained transfer functions and comparison with Simscape model with reduced order flexible body
\end{itemize} \end{itemize}
\section{Amplified Piezoelectric Actuator} \section{Actuator Choice}
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa/index.org}{study 1}, \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa300ml/test-bench-apa300ml.org}{study 2}
\begin{itemize}
\item From previous study: APA seems a nice choice
\item First tests with the APA95ML: validation of a basic model (maybe already presented)
\item Optimal stiffness?
\item Talk about piezoelectric actuator? bandwidth? noise?
\item Specifications: stiffness, stroke, \ldots{} => choice of the APA
\item FEM of the APA
\item Validation with flexible APA in the simscape model
\end{itemize}
\begin{figure}[htbp] \begin{figure}[htbp]
\centering \centering
@ -542,10 +606,6 @@ Reduced order flexible bodies \cite{brumund21_multib_simul_reduc_order_flexib_bo
\caption{\label{fig:apa_schmeatic}Schematical representation of an Amplified Piezoelectric Actuator} \caption{\label{fig:apa_schmeatic}Schematical representation of an Amplified Piezoelectric Actuator}
\end{figure} \end{figure}
\begin{itemize}
\item First tests with the APA95ML
\end{itemize}
\subsection{Model} \subsection{Model}
Piezoelectric equations Piezoelectric equations
@ -568,6 +628,12 @@ Piezoelectric equations
\item (2 DoF, FEM, \ldots{}) \item (2 DoF, FEM, \ldots{})
\end{itemize} \end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/root_locus_iff_rot_stiffness.png}
\caption{\label{fig:root_locus_iff_rot_stiffness}Limitation of the attainable damping due to the APA design}
\end{figure}
\subsection{Experimental System Identification} \subsection{Experimental System Identification}
\begin{itemize} \begin{itemize}
@ -585,7 +651,17 @@ Piezoelectric equations
\item IFF results: OK \item IFF results: OK
\end{itemize} \end{itemize}
\section{Flexible Joints} \section{Design of Nano-Hexapod Flexible Joints}
\begin{itemize}
\item Perfect flexible joint
\item Imperfection of the flexible joint: Model
\item Study of the effect of limited stiffness in constrain directions and non-null stiffness in other directions
\item Obtained Specification
\item Design optimisation (FEM)
\item Implementation of flexible elements in the Simscape model: close to simplified model
\end{itemize}
\subsection{Effect of flexible joint characteristics on obtained dynamics} \subsection{Effect of flexible joint characteristics on obtained dynamics}
\begin{itemize} \begin{itemize}
@ -594,10 +670,12 @@ Piezoelectric equations
\item Obtained specifications (trade-off) \item Obtained specifications (trade-off)
\end{itemize} \end{itemize}
\subsection{Flexible joint geometry optimization} \subsection{Flexible joint geometry optimization}
\begin{itemize} \begin{itemize}
\item Chosen geometry \item Chosen geometry
\item Show different existing geometry for flexible joints used on hexapods
\item Optimisation with Ansys \item Optimisation with Ansys
\item Validation with Simscape model \item Validation with Simscape model
\end{itemize} \end{itemize}
@ -611,13 +689,25 @@ Piezoelectric equations
\item Obtained results \item Obtained results
\end{itemize} \end{itemize}
\section{Instrumentation} \section{Choice of Instrumentation}
\subsection{DAC}
\begin{itemize}
\item Discussion of the choice of other elements:
\begin{itemize}
\item Encoder
\item DAC
\item ADC (reading of the force sensors)
\item real time controller
\item Voltage amplifiers
\end{itemize}
\item Give some requirements + chosen elements + measurements / validation
\end{itemize}
\subsection{ADC} \subsection{DAC and ADC}
Force sensor \begin{itemize}
\item Force sensor
\end{itemize}
\subsection{Voltage amplifier (\href{https://research.tdehaeze.xyz/test-bench-pd200/}{link})} \subsection{Voltage amplifier (\href{https://research.tdehaeze.xyz/test-bench-pd200/}{link})}
@ -632,17 +722,25 @@ Force sensor
\item Noise measurement \item Noise measurement
\end{itemize} \end{itemize}
\section{Obtained Mechanical Design} \section{Obtained Design}
\begin{itemize} \begin{itemize}
\item Explain again the different specifications in terms of space, payload, etc..
\item CAD view of the nano-hexapod \item CAD view of the nano-hexapod
\item Chosen geometry, materials, ease of mounting, cabling, \ldots{} \item Chosen geometry, materials, ease of mounting, cabling, \ldots{}
\item Validation on Simscape with accurate model?
\end{itemize} \end{itemize}
\section{Detailed Design - Conclusion}
\chapter{Experimental Validation} \chapter{Experimental Validation}
\minitoc \minitoc
\paragraph{Abstract} \paragraph{Abstract}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/chapter3_overview.png}
\caption{\label{fig:chapter3_overview}Figure caption}
\end{figure}
Schematic representation of the experimental validation process. Schematic representation of the experimental validation process.
\begin{itemize} \begin{itemize}
\item APA \item APA
@ -651,62 +749,36 @@ Schematic representation of the experimental validation process.
\item Nano-hexapod with Spindle \item Nano-hexapod with Spindle
\end{itemize} \end{itemize}
\section{Amplified Piezoelectric Actuator (\href{https://research.tdehaeze.xyz/test-bench-apa300ml/}{link})} \section{Amplified Piezoelectric Actuator}
APA alone: \section{Flexible Joints}
\begin{itemize}
\item \textbf{Goal}: Tune model of APA
\item[{$\square$}] FRF and fit with FEM model
\item[{$\square$}] Show all six FRF and how close they are
\item[{$\square$}] IFF
\end{itemize}
\section{Struts} \section{Struts}
Strut (APA + joints):
\begin{itemize}
\item[{$\square$}] FRF, tune model
\item[{$\square$}] Issue with encoder (comparison with axial motion)
\item[{$\square$}] IFF
\end{itemize}
\section{Nano-Hexapod} \section{Nano-Hexapod}
Mounting
Test bench on top of soft table:
\begin{itemize}
\item \textbf{Goal}: Tune model of nano-hexapod, validation of dynamics
\item modal analysis soft table (first mode at xxx Hz => rigid body in Simscape)
\item FRF + comp model (multiple masses)
\item IFF and robustness to change of mass
\end{itemize}
\section{Rotating Nano-Hexapod} \section{Rotating Nano-Hexapod}
\begin{itemize}
\item \textbf{Goal}: validation of control strategy with rotation
\item Interferometers to have more stroke
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.49\linewidth]{example-image-a.png}
\caption{\label{fig:rot_nano_hexapod_bench_schematic}Schematic of the rotating nano-hexapod test bench}
\end{figure}
\section{ID31 Micro Station} \section{ID31 Micro Station}
\begin{itemize} \section{Experimental Validation - Conclusion}
\item \textbf{Goal}: full validation without the full metrology
\end{itemize}
\chapter{Conclusion and Future Work} \chapter{Conclusion and Future Work}
\section{Alternative Architecture}
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/alternative-micro-station-architecture.org}
\appendix \appendix
\chapter{Mathematical Tools for Mechatronics}
\section{Feedback Control}
\section{Dynamical Noise Budgeting}
\subsection{Power Spectral Density}
\subsection{Cumulative Amplitude Spectrum}
\chapter{Stewart Platform - Kinematics} \chapter{Stewart Platform - Kinematics}
\chapter{Comments on something}
\printbibliography[heading=bibintoc,title={Bibliography}] \printbibliography[heading=bibintoc,title={Bibliography}]
\chapter*{List of Publications} \chapter*{List of Publications}
@ -722,5 +794,6 @@ Test bench on top of soft table:
\end{refsection} \end{refsection}
\printglossary[type=\acronymtype] \printglossary[type=\acronymtype]
\printglossary[type=\glossarytype]
\printglossary \printglossary
\end{document} \end{document}

View File

@ -32,12 +32,3 @@
month = {2}, month = {2},
keywords = {publication}, keywords = {publication},
} }
@book{taghirad13_paral,
author = {Taghirad, Hamid},
title = {Parallel robots : mechanics and control},
year = {2013},
publisher = {CRC Press},
address = {Boca Raton, FL},
isbn = {9781466555778},
}

View File

@ -249,19 +249,29 @@ Note that this is marked as deprecated for koma-script.
* Fonts * Fonts
https://tug.org/FontCatalogue/quattrocento/
#+begin_src latex #+begin_src latex
\usepackage[lf]{ebgaramond} \ifxetexorluatex
#+end_src \usepackage{unicode-math}
\setmainfont{EB Garamond}
\setmathfont{Garamond Math}
https://tug.org/FontCatalogue/crimsonproregular/ % Load some missing symbols from another font.
#+begin_src latex \setmathfont{STIX Two Math}[%
% \usepackage{crimson} range = {
#+end_src \sharp,
\natural,
https://tug.org/FontCatalogue/sourcecodepro/ \flat,
#+begin_src latex \clubsuit,
\usepackage[oldstyle, scale=0.7]{sourcecodepro} \spadesuit,
\checkmark
}
]
\setmonofont[Scale=MatchLowercase]{Source Code Pro}
\else
\usepackage[lf]{ebgaramond} % https://tug.org/FontCatalogue/quattrocento/
\usepackage[oldstyle,scale=0.7]{sourcecodepro} % https://tug.org/FontCatalogue/sourcecodepro/
\singlespacing
\fi
#+end_src #+end_src
* Colors * Colors