Use luatex, verify glossary
This commit is contained in:
parent
bba8128daa
commit
893fabe70b
@ -19,7 +19,7 @@
|
||||
# 3: dvi conversion, as specified by the $dvipdf variable (useless)
|
||||
# 4: lualatex, as specified by the $lualatex variable (best)
|
||||
# 5: xelatex, as specified by the $xelatex variable (second best)
|
||||
$pdf_mode = 1;
|
||||
$pdf_mode = 4;
|
||||
|
||||
# Treat undefined references and citations as well as multiply defined references as
|
||||
# ERRORS instead of WARNINGS.
|
||||
|
25
config.tex
25
config.tex
@ -149,11 +149,28 @@
|
||||
\setlength{\mtcindent}{0pt}
|
||||
% \usepackage[nottoc]{tocbibind}
|
||||
|
||||
\usepackage[lf]{ebgaramond}
|
||||
\ifxetexorluatex
|
||||
\usepackage{unicode-math}
|
||||
\setmainfont{EB Garamond}
|
||||
\setmathfont{Garamond Math}
|
||||
|
||||
% \usepackage{crimson}
|
||||
|
||||
\usepackage[oldstyle, scale=0.7]{sourcecodepro}
|
||||
% Load some missing symbols from another font.
|
||||
\setmathfont{STIX Two Math}[%
|
||||
range = {
|
||||
\sharp,
|
||||
\natural,
|
||||
\flat,
|
||||
\clubsuit,
|
||||
\spadesuit,
|
||||
\checkmark
|
||||
}
|
||||
]
|
||||
\setmonofont[Scale=MatchLowercase]{Source Code Pro}
|
||||
\else
|
||||
\usepackage[lf]{ebgaramond} % https://tug.org/FontCatalogue/quattrocento/
|
||||
\usepackage[oldstyle,scale=0.7]{sourcecodepro} % https://tug.org/FontCatalogue/sourcecodepro/
|
||||
\singlespacing
|
||||
\fi
|
||||
|
||||
\usepackage[usenames,dvipsnames]{xcolor}
|
||||
|
||||
|
141
phd-thesis.bib
Normal file
141
phd-thesis.bib
Normal file
@ -0,0 +1,141 @@
|
||||
@phdthesis{li01_simul_fault_vibrat_isolat_point,
|
||||
author = {Li, Xiaochun},
|
||||
keywords = {parallel robot},
|
||||
school = {University of Wyoming},
|
||||
title = {Simultaneous, Fault-tolerant Vibration Isolation and
|
||||
Pointing Control of Flexure Jointed Hexapods},
|
||||
year = 2001,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@phdthesis{bishop02_devel_precis_point_contr_vibrat,
|
||||
author = {Bishop Jr, Ronald M},
|
||||
school = {Naval Postgraduate School, Monterey, California},
|
||||
title = {Development of Precision Pointing Controllers with and
|
||||
without Vibration Suppression for the {NPS} Precision Pointing
|
||||
Hexapod},
|
||||
year = 2002,
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@phdthesis{hanieh03_activ_stewar,
|
||||
author = {Hanieh, Ahmed Abu},
|
||||
keywords = {parallel robot},
|
||||
school = {Universit{\'e} Libre de Bruxelles, Brussels, Belgium},
|
||||
title = {Active isolation and damping of vibrations via Stewart
|
||||
platform},
|
||||
year = 2003,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@phdthesis{afzali-far16_vibrat_dynam_isotr_hexap_analy_studies,
|
||||
author = {Afzali-Far, Behrouz},
|
||||
school = {Lund University},
|
||||
title = {Vibrations and Dynamic Isotropy in Hexapods-Analytical
|
||||
Studies},
|
||||
year = 2016,
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@phdthesis{naves20_desig,
|
||||
author = {Mark Naves},
|
||||
school = {Univeristy of Twente},
|
||||
title = {Design and optimization of large stroke flexure mechanisms},
|
||||
year = 2020,
|
||||
keywords = {flexure},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@phdthesis{rankers98_machin,
|
||||
author = {Rankers, Adrian Mathias},
|
||||
keywords = {favorite},
|
||||
school = {University of Twente},
|
||||
title = {Machine dynamics in mechatronic systems: An engineering
|
||||
approach.},
|
||||
year = 1998,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@phdthesis{monkhorst04_dynam_error_budget,
|
||||
author = {Wouter Monkhorst},
|
||||
school = {Delft University},
|
||||
title = {Dynamic Error Budgeting, a design approach},
|
||||
year = 2004,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@phdthesis{jabben07_mechat,
|
||||
author = {Jabben, Leon},
|
||||
school = {Delft University},
|
||||
title = {Mechatronic design of a magnetically suspended rotating
|
||||
platform},
|
||||
year = 2007,
|
||||
keywords = {maglev},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@inproceedings{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb,
|
||||
author = {Dehaeze, T. and Collette, C.},
|
||||
title = {Active Damping of Rotating Platforms using Integral Force
|
||||
Feedback},
|
||||
booktitle = {Proceedings of the International Conference on Modal
|
||||
Analysis Noise and Vibration Engineering (ISMA)},
|
||||
year = 2020,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{dehaeze21_activ_dampin_rotat_platf_using,
|
||||
author = {Thomas Dehaeze and Christophe Collette},
|
||||
title = {Active Damping of Rotating Platforms Using Integral Force
|
||||
Feedback},
|
||||
journal = {Engineering Research Express},
|
||||
year = 2021,
|
||||
doi = {10.1088/2631-8695/abe803},
|
||||
url = {https://doi.org/10.1088/2631-8695/abe803},
|
||||
month = {Feb},
|
||||
keywords = {nass, esrf},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@inproceedings{brumund21_multib_simul_reduc_order_flexib_bodies_fea,
|
||||
author = {Philipp Brumund and Thomas Dehaeze},
|
||||
title = {Multibody Simulations with Reduced Order Flexible Bodies
|
||||
obtained by FEA},
|
||||
booktitle = {MEDSI'20},
|
||||
year = 2021,
|
||||
language = {english},
|
||||
publisher = {JACoW Publishing},
|
||||
series = {Mechanical Engineering Design of Synchrotron Radiation
|
||||
Equipment and Instrumentation},
|
||||
venue = {Chicago, USA},
|
||||
keywords = {nass, esrf},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@inproceedings{dehaeze21_mechat_approac_devel_nano_activ_stabil_system,
|
||||
author = {Dehaeze, T. and Bonnefoy, J. and Collette, C.},
|
||||
title = {Mechatronics Approach for the Development of a
|
||||
Nano-Active-Stabilization-System},
|
||||
booktitle = {MEDSI'20},
|
||||
year = 2021,
|
||||
language = {english},
|
||||
publisher = {JACoW Publishing},
|
||||
series = {Mechanical Engineering Design of Synchrotron Radiation
|
||||
Equipment and Instrumentation},
|
||||
venue = {Chicago, USA},
|
||||
keywords = {nass, esrf},
|
||||
}
|
||||
|
391
phd-thesis.org
391
phd-thesis.org
@ -19,9 +19,12 @@
|
||||
|
||||
#+BIND: org-latex-bib-compiler "biber"
|
||||
|
||||
#+TODO: TODO(t) MAKE(m) COPY(c) | DONE(d)
|
||||
|
||||
#+LATEX_HEADER: \input{config.tex}
|
||||
#+LATEX_HEADER_EXTRA: \input{config_extra.tex}
|
||||
#+LATEX_HEADER_EXTRA: \addbibresource{ref.bib}
|
||||
#+LATEX_HEADER_EXTRA: \addbibresource{phd-thesis.bib}
|
||||
|
||||
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
|
||||
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
||||
@ -93,12 +96,13 @@
|
||||
| phi | \ensuremath{\phi} | A woody bush |
|
||||
|
||||
#+name: acronyms
|
||||
| key | abbreviation | full form |
|
||||
|------+--------------+----------------------------------|
|
||||
| mimo | MIMO | Multiple-Inputs Multiple-Outputs |
|
||||
| siso | SISO | Single-Input Single-Output |
|
||||
| nass | NASS | Nano Active Stabilization System |
|
||||
| lti | LTI | Linear Time Invariant |
|
||||
| key | abbreviation | full form |
|
||||
|------+--------------+-----------------------------------------|
|
||||
| mimo | MIMO | Multiple-Inputs Multiple-Outputs |
|
||||
| siso | SISO | Single-Input Single-Output |
|
||||
| nass | NASS | Nano Active Stabilization System |
|
||||
| lti | LTI | Linear Time Invariant |
|
||||
| esrf | ESRF | European Synchrotron Radiation Facility |
|
||||
|
||||
* Title Page :ignore:
|
||||
|
||||
@ -137,6 +141,8 @@
|
||||
:UNNUMBERED: notoc
|
||||
:END:
|
||||
|
||||
\gls{phi}
|
||||
|
||||
* Résumé
|
||||
:PROPERTIES:
|
||||
:UNNUMBERED: notoc
|
||||
@ -160,7 +166,7 @@
|
||||
* Introduction
|
||||
** Context of this thesis / Background and Motivation
|
||||
|
||||
- ESRF (Figure [[fig:esrf_picture]])
|
||||
- \gls{esrf} (Figure [[fig:esrf_picture]])
|
||||
|
||||
#+name: fig:esrf_picture
|
||||
#+caption: European Synchrotron Radiation Facility
|
||||
@ -356,6 +362,7 @@ Alternative: =id31_microstation_cad_view.png= (CAD view)
|
||||
|
||||
- Few words about science made on ID31 and why nano-meter accuracy is required
|
||||
- Typical experiments (tomography, ...), various samples (up to 50kg)
|
||||
- Where to explain the goal of each stage? (e.g. micro-hexapod: static positioning, Ty and Rz: scans, ...)
|
||||
- Example of picture obtained (Figure [[fig:id31_tomography_result]])
|
||||
|
||||
#+name: fig:id31_tomography_result
|
||||
@ -365,6 +372,8 @@ Alternative: =id31_microstation_cad_view.png= (CAD view)
|
||||
|
||||
- Explain wanted positioning accuracy and why micro-station cannot have this accuracy (backlash, play, thermal expansion, ...)
|
||||
|
||||
- Speak about the metrology concept, and why it is not included in this thesis
|
||||
|
||||
** Challenge definition
|
||||
|
||||
#+name: fig:nass_concept_schematic
|
||||
@ -406,6 +415,7 @@ Alternative: =id31_microstation_cad_view.png= (CAD view)
|
||||
cite:hanieh03_activ_stewar
|
||||
cite:afzali-far16_vibrat_dynam_isotr_hexap_analy_studies
|
||||
cite:naves20_desig
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org]]
|
||||
- Positioning stations
|
||||
- Mechatronic approach?
|
||||
cite:rankers98_machin
|
||||
@ -523,25 +533,32 @@ Alternative: =id31_microstation_cad_view.png= (CAD view)
|
||||
#+RESULTS:
|
||||
[[file:figs/nass_mechatronics_approach.png]]
|
||||
|
||||
*Goals*:
|
||||
- Design \gls{nass} such that it is easy to control (and maintain).
|
||||
Have good performances by design and not by complex control strategies.
|
||||
|
||||
|
||||
*Models*:
|
||||
- Uniaxial Model:
|
||||
- Effect of limited support compliance
|
||||
- Effect of change of payload
|
||||
- Rotating Model
|
||||
- Gyroscopic effects
|
||||
- Multi Body Model
|
||||
- Finite Element Models
|
||||
|
||||
* Conceptual Design Development
|
||||
\minitoc
|
||||
**** Abstract
|
||||
|
||||
Schematic that summarizes this phase.
|
||||
Uniaxial => Rotation => Multi body => Simulations
|
||||
#+name: fig:chapter1_overview
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/chapter1_overview.png]]
|
||||
|
||||
** Constrains on the system
|
||||
** COPY Uni-axial Model
|
||||
# [[file:/home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A1-nass-uniaxial-model/nass-uniaxial-model.org][NASS - Uniaxial Model]]
|
||||
|
||||
- Size
|
||||
- Payload
|
||||
- Connections to samples
|
||||
- ... should justify the nano-hexapod design
|
||||
- choice of parallel architecture
|
||||
|
||||
- [ ] Picture/schematic of the micro-station with indicated location of Nano-Hexapod
|
||||
|
||||
** Uni-axial Model
|
||||
*** Introduction :ignore:
|
||||
|
||||
- Explain what we want to capture with this model
|
||||
@ -639,7 +656,14 @@ Uniaxial => Rotation => Multi body => Simulations
|
||||
#+RESULTS:
|
||||
[[file:figs/mass_spring_damper_nass.png]]
|
||||
|
||||
*** Noise Budgeting
|
||||
*** Micro Station Model
|
||||
*** Nano Hexapod Model
|
||||
*** Disturbance Identification
|
||||
*** Open Loop Dynamic Noise Budgeting
|
||||
|
||||
- List all disturbances with their spectral densities
|
||||
- Show how they have been measured
|
||||
- Say that repeatable errors can be calibrated (show measurement of Hans-Peter?)
|
||||
|
||||
#+name: fig:measurement_microstation_vibration_picture
|
||||
#+caption: Setup used to measure the micro-station vibrations during operation
|
||||
@ -651,21 +675,6 @@ Uniaxial => Rotation => Multi body => Simulations
|
||||
#+attr_latex: :width 0.49\linewidth
|
||||
[[file:example-image-b.png]]
|
||||
|
||||
*** Effect of support compliance
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty_support.org::+TITLE: Effect of Uncertainty on the support's dynamics on the isolation platform dynamics][study]]
|
||||
|
||||
- *goal*: make the nano-hexapod independent of the support compliance
|
||||
- Simple 2DoF model
|
||||
- Generalized to any support compliance
|
||||
- *conclusion*: frequency of nano-hexapod resonances should be lower than first suspension mode of the support
|
||||
|
||||
*** Effect of payload dynamics
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty_payload.org::+TITLE: Effect of Uncertainty on the payload's dynamics on the isolation platform dynamics][study]]
|
||||
|
||||
- *goal*: be robust to a change of payload
|
||||
- Simple 2DoF model
|
||||
- Generalized to any payload dynamics
|
||||
|
||||
*** Active Damping
|
||||
|
||||
Conclusion: IFF is better for this application
|
||||
@ -683,12 +692,32 @@ Conclusion: IFF is better for this application
|
||||
- Sensitivity to disturbances
|
||||
|
||||
|
||||
** Effect of rotation
|
||||
*** Position Feedback Controller
|
||||
*** Effect of support compliance
|
||||
|
||||
- *goal*: make the nano-hexapod independent of the support compliance
|
||||
- Simple 2DoF model
|
||||
- Generalized to any support compliance
|
||||
- *conclusion*: frequency of nano-hexapod resonances should be lower than first suspension mode of the support
|
||||
|
||||
*** Effect of payload dynamics
|
||||
|
||||
- *goal*: be robust to a change of payload
|
||||
- Simple 2DoF model
|
||||
- Generalized to any payload dynamics
|
||||
|
||||
*** Conclusion
|
||||
|
||||
** COPY Effect of rotation
|
||||
# [[file:/home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A2-nass-rotating-3dof-model/nass-rotating-3dof-model.org][NASS - Rotating 3DoF Model]]
|
||||
|
||||
*** Introduction :ignore:
|
||||
|
||||
[[cite:&dehaeze20_activ_dampin_rotat_platf_integ_force_feedb;&dehaeze21_activ_dampin_rotat_platf_using]]
|
||||
Papers:
|
||||
- [[cite:dehaeze20_activ_dampin_rotat_platf_integ_force_feedb]]
|
||||
- [[cite:dehaeze21_activ_dampin_rotat_platf_using]]
|
||||
|
||||
*** X-Y rotating platform model
|
||||
*** System Description and Analysis
|
||||
|
||||
- x-y-Rz model
|
||||
- explain why this is representing the NASS
|
||||
@ -759,19 +788,22 @@ Conclusion: IFF is better for this application
|
||||
#+RESULTS:
|
||||
[[file:figs/2dof_rotating_system.png]]
|
||||
|
||||
*** Effect of rotational velocity on the system dynamics
|
||||
|
||||
- Campbell diagram
|
||||
|
||||
*** Decentralized Integral Force Feedback
|
||||
*** Integral Force Feedback
|
||||
|
||||
- Control diagram
|
||||
- Root Locus: unstable with pure IFF
|
||||
|
||||
*** Two proposed modification of IFF
|
||||
*** IFF with an High Pass Filter
|
||||
|
||||
- Comparison of parallel stiffness and change of controller
|
||||
- Transmissibility
|
||||
*** IFF with a stiffness in parallel with the force sensor
|
||||
|
||||
*** Relative Damping Control
|
||||
|
||||
*** Comparison of Active Damping Techniques
|
||||
|
||||
*** Rotating Nano-Hexapod
|
||||
|
||||
*** Nano Active Stabilization System with rotation
|
||||
|
||||
*** Conclusion
|
||||
|
||||
@ -780,7 +812,56 @@ Conclusion: IFF is better for this application
|
||||
- Conclusion: minimum stiffness is required
|
||||
- APA is a nice architecture for parallel stiffness + integrated force sensor (have to speak about IFF before that)
|
||||
|
||||
** Multi Body Model - Nano Hexapod
|
||||
** TODO Micro Station - Modal Analysis
|
||||
# [[file:/home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A3-micro-station-modal-analysis/modal-analysis.org][Micro Station - Modal Analysis]]
|
||||
*** Introduction :ignore:
|
||||
|
||||
Conclusion:
|
||||
- complex dynamics: need multi-body model of the micro-station to represent the limited compliance...
|
||||
|
||||
*** Measurement Setup
|
||||
|
||||
*** Frequency Analysis
|
||||
|
||||
*** Modal Analysis
|
||||
|
||||
** TODO Micro Station - Multi Body Model
|
||||
# [[file:/home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A4-simscape-micro-station/simscape-micro-station.org][Simscape - Micro-Station]]
|
||||
|
||||
*** Introduction :ignore:
|
||||
|
||||
#+name: fig:simscape_first_model_screenshot
|
||||
#+caption: 3D view of the multi-body model of the micro-station
|
||||
#+attr_latex: :width 0.7\linewidth
|
||||
[[file:figs/simscape_first_model_screenshot.jpg]]
|
||||
|
||||
*** Kinematics
|
||||
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/kinematics.org::+TITLE: Kinematics of the station]]
|
||||
|
||||
- Small overview of each stage and associated stiffnesses / inertia
|
||||
- schematic that shows to considered DoF
|
||||
- import from CAD
|
||||
|
||||
*** Modal Analysis and Dynamic Modeling
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/matlab/micro-station-modal-analysis/modal-analysis.org][modal-analysis]]
|
||||
|
||||
- Picture of the experimental setup
|
||||
- Location of accelerometers
|
||||
- Show obtained modes
|
||||
- Validation of rigid body assumption
|
||||
- Explain how this helps tuning the multi-body model
|
||||
|
||||
*** Disturbances and Positioning errors
|
||||
|
||||
*** Validation of the Model
|
||||
|
||||
- Most important metric: support compliance
|
||||
- Compare model and measurement
|
||||
|
||||
** TODO Nano Hexapod - Multi Body Model
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A5-simscape-nano-hexapod/simscape-nano-hexapod.org][Simscape - Nano-Hexapod]]
|
||||
|
||||
*** Introduction :ignore:
|
||||
|
||||
- What we want to capture with this model
|
||||
@ -809,6 +890,8 @@ Conclusion: IFF is better for this application
|
||||
#+end_subfigure
|
||||
#+end_figure
|
||||
|
||||
Configurable Simscape Model: [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org]]
|
||||
- Explain the different frames, etc...
|
||||
|
||||
- Little review
|
||||
- explain key elements:
|
||||
@ -829,52 +912,37 @@ Conclusion: IFF is better for this application
|
||||
- Piezoelectric effects
|
||||
- mass spring damper representation (2dof)
|
||||
- Compare the model and the experiment
|
||||
- Here, just a basic 2DoF model of the APA is used
|
||||
|
||||
*** Dynamics
|
||||
*** Dynamics of the Nano-Hexapod
|
||||
|
||||
- Effect of joints stiffnesses
|
||||
|
||||
- [ ] The APA model should maybe not be used here, same for the nice top and bottom plates. Here the detailed design is not yet performed
|
||||
|
||||
#+name: fig:simscape_nano_hexapod
|
||||
#+caption: 3D view of the multi-body model of the Nano-Hexapod (simplified)
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/simscape_nano_hexapod.png]]
|
||||
|
||||
** Multi Body Model - Micro Station
|
||||
*** Introduction :ignore:
|
||||
** TODO Control Architecture - Concept Validation
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A6-simscape-nass/simscape-nass.org][Simscape - NASS]]
|
||||
|
||||
#+name: fig:simscape_first_model_screenshot
|
||||
#+caption: 3D view of the multi-body model of the micro-station
|
||||
#+attr_latex: :width 0.7\linewidth
|
||||
[[file:figs/simscape_first_model_screenshot.jpg]]
|
||||
|
||||
*** Kinematics
|
||||
|
||||
- Small overview of each stage and associated stiffnesses / inertia
|
||||
- schematic that shows to considered DoF
|
||||
- import from CAD
|
||||
|
||||
*** Modal Analysis
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-measurements/modal-analysis/index.org][study]]
|
||||
|
||||
- Picture of the experimental setup
|
||||
- Location of accelerometers
|
||||
- Show obtained modes
|
||||
- Validation of rigid body assumption
|
||||
- Explain how this helps tuning the multi-body model
|
||||
|
||||
*** Validation of the Model
|
||||
|
||||
- Most important metric: support compliance
|
||||
- Compare model and measurement
|
||||
|
||||
** Control Architecture
|
||||
*** Introduction :ignore:
|
||||
|
||||
Discussion of:
|
||||
- Transformation matrices / control architecture
|
||||
- Transformation matrices / control architecture (computation of the position error in the frame of the nano-hexapod)
|
||||
- Control of parallel architectures
|
||||
- Control in the frame of struts or cartesian?
|
||||
- Effect of rotation on IFF? => APA
|
||||
- HAC-LAC
|
||||
- New noise budgeting?
|
||||
|
||||
*** Control Kinematics
|
||||
|
||||
- Explain how the position error can be expressed in the frame of the nano-hexapod
|
||||
- block diagram
|
||||
- Explain how to go from external metrology to the frame of the nano-hexapod
|
||||
|
||||
*** High Authority Control - Low Authority Control (HAC-LAC)
|
||||
|
||||
@ -893,12 +961,6 @@ Discussion of:
|
||||
- Root Locus
|
||||
- Damping optimization
|
||||
|
||||
*** Control Kinematics
|
||||
|
||||
- Explain how the position error can be expressed in the frame of the nano-hexapod
|
||||
- block diagram
|
||||
- Explain how to go from external metrology to the frame of the nano-hexapod
|
||||
|
||||
*** Decoupled Dynamics
|
||||
|
||||
- Centralized HAC
|
||||
@ -910,46 +972,36 @@ Discussion of:
|
||||
- Decoupled plant
|
||||
- Controller design
|
||||
|
||||
** Simulations - Concept Validation
|
||||
*** Introduction :ignore:
|
||||
|
||||
- Tomography experiment
|
||||
- Open VS Closed loop results
|
||||
- *Conclusion*: concept validation
|
||||
nano hexapod architecture with APA
|
||||
decentralized IFF + centralized HAC
|
||||
|
||||
#+name: fig:simscape_nass_final
|
||||
#+caption: 3D view of the multi-body model including the micro-station, the nano-hexapod and the associated metrology
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/simscape_nass_final.png]]
|
||||
|
||||
** Conclusion
|
||||
|
||||
** Conceptual Design - Conclusion
|
||||
|
||||
* Detailed Design
|
||||
\minitoc
|
||||
**** Abstract
|
||||
|
||||
CAD view of the nano-hexapod with key components:
|
||||
- plates
|
||||
- flexible joints
|
||||
- APA
|
||||
- required instrumentation (ADC, DAC, Speedgoat, Amplifiers, Force Sensor instrumentation, ...)
|
||||
#+name: fig:chapter2_overview
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/chapter2_overview.png]]
|
||||
|
||||
** TODO Nano-Hexapod Kinematics - Optimal Geometry?
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B1-nass-geometry/nass-geometry.org][NASS - Geometry]]
|
||||
|
||||
- [ ] Maybe this can be just merged with the last section in this chapter?
|
||||
|
||||
** Optimal Nano-Hexapod geometry
|
||||
*** Introduction :ignore:
|
||||
- [ ] Geometry?
|
||||
- [ ] Cubic architecture?
|
||||
- [ ] Kinematics
|
||||
- [ ] Trade-off for the strut orientation
|
||||
- [ ] Sensors required
|
||||
|
||||
*** Optimal strut orientation
|
||||
|
||||
|
||||
*** Cubic Architecture: a Special Case?
|
||||
|
||||
** Including Flexible elements in the Multi-body model
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/cubic-configuration.org]]
|
||||
|
||||
** TODO Nano-Hexapod Dynamics - Including Flexible elements in the Multi-body model
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B2-nass-fem/nass-fem.org][NASS - FEM]]
|
||||
|
||||
- [ ] Should this be an appendix?
|
||||
|
||||
*** Introduction :ignore:
|
||||
Reduced order flexible bodies [[cite:brumund21_multib_simul_reduc_order_flexib_bodies_fea]]
|
||||
- Used with APA, Flexible joints, Plates
|
||||
@ -969,17 +1021,24 @@ Reduced order flexible bodies [[cite:brumund21_multib_simul_reduc_order_flexib_b
|
||||
- Test bench
|
||||
- Obtained transfer functions and comparison with Simscape model with reduced order flexible body
|
||||
|
||||
** Amplified Piezoelectric Actuator
|
||||
** TODO Actuator Choice
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B3-nass-actuator-choice/nass-actuator-choice.org][NASS - Actuator]]
|
||||
|
||||
*** Introduction :ignore:
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa/index.org::+TITLE: Test Bench - Amplified Piezoelectric Actuator][study 1]], [[file:~/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa300ml/test-bench-apa300ml.org::+TITLE: Nano-Hexapod Struts - Test Bench][study 2]]
|
||||
|
||||
- From previous study: APA seems a nice choice
|
||||
- First tests with the APA95ML: validation of a basic model (maybe already presented)
|
||||
- Optimal stiffness?
|
||||
- Talk about piezoelectric actuator? bandwidth? noise?
|
||||
- Specifications: stiffness, stroke, ... => choice of the APA
|
||||
- FEM of the APA
|
||||
- Validation with flexible APA in the simscape model
|
||||
|
||||
#+name: fig:apa_schmeatic
|
||||
#+caption: Schematical representation of an Amplified Piezoelectric Actuator
|
||||
#+attr_latex: :width 0.49\linewidth
|
||||
[[file:example-image-a.png]]
|
||||
|
||||
- First tests with the APA95ML
|
||||
|
||||
*** Model
|
||||
|
||||
Piezoelectric equations
|
||||
@ -1015,9 +1074,18 @@ Piezoelectric equations
|
||||
- Tuned Simscape model
|
||||
- IFF results: OK
|
||||
|
||||
** Flexible Joints
|
||||
** TODO Design of Nano-Hexapod Flexible Joints
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B4-nass-flexible-joints/nass-flexible-joints.org][NASS - Flexible Joints]]
|
||||
|
||||
*** Introduction :ignore:
|
||||
|
||||
- Perfect flexible joint
|
||||
- Imperfection of the flexible joint: Model
|
||||
- Study of the effect of limited stiffness in constrain directions and non-null stiffness in other directions
|
||||
- Obtained Specification
|
||||
- Design optimisation (FEM)
|
||||
- Implementation of flexible elements in the Simscape model: close to simplified model
|
||||
|
||||
*** Effect of flexible joint characteristics on obtained dynamics
|
||||
|
||||
- Based on Simscape model
|
||||
@ -1028,6 +1096,7 @@ Piezoelectric equations
|
||||
*** Flexible joint geometry optimization
|
||||
|
||||
- Chosen geometry
|
||||
- Show different existing geometry for flexible joints used on hexapods
|
||||
- Optimisation with Ansys
|
||||
- Validation with Simscape model
|
||||
|
||||
@ -1038,15 +1107,22 @@ Piezoelectric equations
|
||||
- Test bench
|
||||
- Obtained results
|
||||
|
||||
** Instrumentation
|
||||
** TODO Choice of Instrumentation
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B5-nass-instrumentation/nass-instrumentation.org][NASS - Instrumentation]]
|
||||
|
||||
*** Introduction :ignore:
|
||||
|
||||
*** DAC
|
||||
- Discussion of the choice of other elements:
|
||||
- Encoder
|
||||
- DAC
|
||||
- ADC (reading of the force sensors)
|
||||
- real time controller
|
||||
- Voltage amplifiers
|
||||
- Give some requirements + chosen elements + measurements / validation
|
||||
|
||||
*** DAC and ADC
|
||||
|
||||
*** ADC
|
||||
|
||||
Force sensor
|
||||
- Force sensor
|
||||
|
||||
*** Voltage amplifier ([[https://research.tdehaeze.xyz/test-bench-pd200/][link]])
|
||||
|
||||
@ -1057,67 +1133,68 @@ Force sensor
|
||||
*** Encoder ([[https://research.tdehaeze.xyz/test-bench-vionic/][link]])
|
||||
- Noise measurement
|
||||
|
||||
** Obtained Design
|
||||
** TODO Obtained Design
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B6-nass-design/nass-design.org][NASS - Design]]
|
||||
|
||||
- Explain again the different specifications in terms of space, payload, etc..
|
||||
- CAD view of the nano-hexapod
|
||||
- Chosen geometry, materials, ease of mounting, cabling, ...
|
||||
- Validation on Simscape with accurate model?
|
||||
|
||||
** Detailed Design - Conclusion
|
||||
* Experimental Validation
|
||||
\minitoc
|
||||
**** Abstract
|
||||
|
||||
#+name: fig:chapter3_overview
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/chapter3_overview.png]]
|
||||
|
||||
Schematic representation of the experimental validation process.
|
||||
- APA
|
||||
- Strut
|
||||
- Nano-hexapod on suspended table
|
||||
- Nano-hexapod with Spindle
|
||||
|
||||
** Amplified Piezoelectric Actuator ([[https://research.tdehaeze.xyz/test-bench-apa300ml/][link]])
|
||||
** COPY Amplified Piezoelectric Actuator
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C1-test-bench-apa/test-bench-apa.org][Test Bench - APA]]
|
||||
|
||||
APA alone:
|
||||
- *Goal*: Tune model of APA
|
||||
- [ ] FRF and fit with FEM model
|
||||
- [ ] Show all six FRF and how close they are
|
||||
- [ ] IFF
|
||||
** TODO Flexible Joints
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C2-test-bench-flexible-joints/test-bench-flexible-joints.org][Test Bench - Flexible Joints]]
|
||||
|
||||
** Struts
|
||||
** TODO Struts
|
||||
SCHEDULED: <2024-04-15 Mon>
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C3-test-bench-struts/test-bench-struts.org][Test Bench - Struts]]
|
||||
|
||||
Strut (APA + joints):
|
||||
- [ ] FRF, tune model
|
||||
- [ ] Issue with encoder (comparison with axial motion)
|
||||
- [ ] IFF
|
||||
** TODO Nano-Hexapod
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C4-test-bench-nano-hexapod/test-bench-nano-hexapod.org][Test Bench - Nano Hexapod]]
|
||||
|
||||
** Nano-Hexapod
|
||||
** TODO Rotating Nano-Hexapod
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C5-test-bench-nass-spindle/test-bench-nass-spindle.org][Test Bench - NASS Spindle]]
|
||||
|
||||
Mounting
|
||||
|
||||
Test bench on top of soft table:
|
||||
- *Goal*: Tune model of nano-hexapod, validation of dynamics
|
||||
- modal analysis soft table (first mode at xxx Hz => rigid body in Simscape)
|
||||
- FRF + comp model (multiple masses)
|
||||
- IFF and robustness to change of mass
|
||||
|
||||
** Rotating Nano-Hexapod
|
||||
|
||||
- *Goal*: validation of control strategy with rotation
|
||||
- Interferometers to have more stroke
|
||||
|
||||
#+name: fig:rot_nano_hexapod_bench_schematic
|
||||
#+caption: Schematic of the rotating nano-hexapod test bench
|
||||
#+attr_latex: :width 0.49\linewidth
|
||||
[[file:example-image-a.png]]
|
||||
|
||||
** ID31 Micro Station
|
||||
|
||||
- *Goal*: full validation without the full metrology
|
||||
** TODO ID31 Micro Station
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C6-test-bench-id31/test-bench-id31.org][Test Bench - ID31]]
|
||||
|
||||
** Experimental Validation - Conclusion
|
||||
* Conclusion and Future Work
|
||||
|
||||
** Alternative Architecture
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/alternative-micro-station-architecture.org]]
|
||||
|
||||
* Appendix :ignore:
|
||||
#+latex: \appendix
|
||||
|
||||
* Mathematical Tools for Mechatronics
|
||||
** Feedback Control
|
||||
|
||||
|
||||
** Dynamical Noise Budgeting
|
||||
*** Power Spectral Density
|
||||
|
||||
*** Cumulative Amplitude Spectrum
|
||||
|
||||
* Stewart Platform - Kinematics
|
||||
* Comments on something
|
||||
* Bibliography :ignore:
|
||||
#+latex: \printbibliography[heading=bibintoc,title={Bibliography}]
|
||||
|
||||
@ -1140,7 +1217,9 @@ Test bench on top of soft table:
|
||||
#+end_export
|
||||
|
||||
* Glossary :ignore:
|
||||
|
||||
#+latex: \printglossary[type=\acronymtype]
|
||||
#+latex: \printglossary[type=\glossarytype]
|
||||
#+latex: \printglossary
|
||||
|
||||
* Footnotes
|
||||
|
BIN
phd-thesis.pdf
BIN
phd-thesis.pdf
Binary file not shown.
447
phd-thesis.tex
447
phd-thesis.tex
@ -1,4 +1,4 @@
|
||||
% Created 2023-01-31 Tue 23:33
|
||||
% Created 2024-04-12 Fri 09:30
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[a4paper, twoside, 11pt, onecolumn, bibliography=totoc, openright, appendixprefix=true]{scrreprt}
|
||||
|
||||
@ -7,12 +7,14 @@
|
||||
\newacronym{siso}{SISO}{Single-Input Single-Output}
|
||||
\newacronym{nass}{NASS}{Nano Active Stabilization System}
|
||||
\newacronym{lti}{LTI}{Linear Time Invariant}
|
||||
\newacronym{esrf}{ESRF}{European Synchrotron Radiation Facility}
|
||||
\newglossaryentry{ka}{name=\ensuremath{k_a},description={{Actuator Stiffness in}}}
|
||||
\newglossaryentry{phi}{name=\ensuremath{\phi},description={{A woody bush}}}
|
||||
\input{config_extra.tex}
|
||||
\addbibresource{ref.bib}
|
||||
\addbibresource{phd-thesis.bib}
|
||||
\author{Dehaeze Thomas}
|
||||
\date{2023-01-31}
|
||||
\date{2024-04-12}
|
||||
\title{Mechatronic approach for the design of a Nano Active Stabilization System}
|
||||
\subtitle{PhD Thesis}
|
||||
\hypersetup{
|
||||
@ -20,7 +22,7 @@
|
||||
pdftitle={Mechatronic approach for the design of a Nano Active Stabilization System},
|
||||
pdfkeywords={},
|
||||
pdfsubject={},
|
||||
pdfcreator={Emacs 28.2 (Org mode 9.5.2)},
|
||||
pdfcreator={Emacs 29.3 (Org mode 9.6)},
|
||||
pdflang={English}}
|
||||
\usepackage{biblatex}
|
||||
|
||||
@ -56,6 +58,7 @@
|
||||
\newpage
|
||||
|
||||
\chapter*{Abstract}
|
||||
\gls{phi}
|
||||
|
||||
\chapter*{Résumé}
|
||||
|
||||
@ -71,7 +74,7 @@
|
||||
\section{Context of this thesis / Background and Motivation}
|
||||
|
||||
\begin{itemize}
|
||||
\item ESRF (Figure \ref{fig:esrf_picture})
|
||||
\item \gls{esrf} (Figure \ref{fig:esrf_picture})
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
@ -98,13 +101,14 @@ Alternative: \texttt{id31\_microstation\_cad\_view.png} (CAD view)
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=0.49\linewidth]{figs/id31_beamline_schematic.png}
|
||||
\includegraphics[scale=1,width=\linewidth]{figs/id31_beamline_schematic.png}
|
||||
\caption{\label{fig:id31_beamline_schematic}ID31 Beamline Schematic. With light source, nano-focusing optics, sample stage and detector.}
|
||||
\end{figure}
|
||||
|
||||
\begin{itemize}
|
||||
\item Few words about science made on ID31 and why nano-meter accuracy is required
|
||||
\item Typical experiments (tomography, \ldots{}), various samples (up to 50kg)
|
||||
\item Where to explain the goal of each stage? (e.g. micro-hexapod: static positioning, Ty and Rz: scans, \ldots{})
|
||||
\item Example of picture obtained (Figure \ref{fig:id31_tomography_result})
|
||||
\end{itemize}
|
||||
|
||||
@ -116,6 +120,8 @@ Alternative: \texttt{id31\_microstation\_cad\_view.png} (CAD view)
|
||||
|
||||
\begin{itemize}
|
||||
\item Explain wanted positioning accuracy and why micro-station cannot have this accuracy (backlash, play, thermal expansion, \ldots{})
|
||||
|
||||
\item Speak about the metrology concept, and why it is not included in this thesis
|
||||
\end{itemize}
|
||||
|
||||
\section{Challenge definition}
|
||||
@ -161,6 +167,7 @@ First hexapod with control bandwidth higher than the suspension modes that accep
|
||||
\cite{hanieh03_activ_stewar}
|
||||
\cite{afzali-far16_vibrat_dynam_isotr_hexap_analy_studies}
|
||||
\cite{naves20_desig}
|
||||
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org}
|
||||
\item Positioning stations
|
||||
\item Mechatronic approach?
|
||||
\cite{rankers98_machin}
|
||||
@ -184,29 +191,40 @@ Because of this, the designer wants to be able to predict the performance of the
|
||||
\caption{\label{fig:nass_mechatronics_approach}Overview of the mechatronic approach used for the Nano-Active-Stabilization-System}
|
||||
\end{figure}
|
||||
|
||||
\textbf{Goals}:
|
||||
\begin{itemize}
|
||||
\item Design \gls{nass} such that it is easy to control (and maintain).
|
||||
Have good performances by design and not by complex control strategies.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\textbf{Models}:
|
||||
\begin{itemize}
|
||||
\item Uniaxial Model:
|
||||
\begin{itemize}
|
||||
\item Effect of limited support compliance
|
||||
\item Effect of change of payload
|
||||
\end{itemize}
|
||||
\item Rotating Model
|
||||
\begin{itemize}
|
||||
\item Gyroscopic effects
|
||||
\end{itemize}
|
||||
\item Multi Body Model
|
||||
\item Finite Element Models
|
||||
\end{itemize}
|
||||
|
||||
\chapter{Conceptual Design Development}
|
||||
\minitoc
|
||||
\paragraph{Abstract}
|
||||
|
||||
Schematic that summarizes this phase.
|
||||
Uniaxial => Rotation => Multi body => Simulations
|
||||
|
||||
\section{Constrains on the system}
|
||||
|
||||
\begin{itemize}
|
||||
\item Size
|
||||
\item Payload
|
||||
\item Connections to samples
|
||||
\item \ldots{} should justify the nano-hexapod design
|
||||
\begin{itemize}
|
||||
\item choice of parallel architecture
|
||||
\end{itemize}
|
||||
|
||||
\item[{$\square$}] Picture/schematic of the micro-station with indicated location of Nano-Hexapod
|
||||
\end{itemize}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=\linewidth]{figs/chapter1_overview.png}
|
||||
\caption{\label{fig:chapter1_overview}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\section{Uni-axial Model}
|
||||
|
||||
\begin{itemize}
|
||||
\item Explain what we want to capture with this model
|
||||
\item Schematic of the uniaxial model (with X-ray)
|
||||
@ -222,7 +240,16 @@ Uniaxial => Rotation => Multi body => Simulations
|
||||
\caption{\label{fig:mass_spring_damper_nass}3-DoF uniaxial mass-spring-damper model of the NASS}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Noise Budgeting}
|
||||
\subsection{Micro Station Model}
|
||||
\subsection{Nano Hexapod Model}
|
||||
\subsection{Disturbance Identification}
|
||||
\subsection{Open Loop Dynamic Noise Budgeting}
|
||||
|
||||
\begin{itemize}
|
||||
\item List all disturbances with their spectral densities
|
||||
\item Show how they have been measured
|
||||
\item Say that repeatable errors can be calibrated (show measurement of Hans-Peter?)
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -236,25 +263,6 @@ Uniaxial => Rotation => Multi body => Simulations
|
||||
\caption{\label{fig:asd_ground_motion_ustation_dist}Amplitude Spectral density of the measured disturbance sources}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Effect of support compliance}
|
||||
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty\_support.org}{study}
|
||||
|
||||
\begin{itemize}
|
||||
\item \textbf{goal}: make the nano-hexapod independent of the support compliance
|
||||
\item Simple 2DoF model
|
||||
\item Generalized to any support compliance
|
||||
\item \textbf{conclusion}: frequency of nano-hexapod resonances should be lower than first suspension mode of the support
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Effect of payload dynamics}
|
||||
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty\_payload.org}{study}
|
||||
|
||||
\begin{itemize}
|
||||
\item \textbf{goal}: be robust to a change of payload
|
||||
\item Simple 2DoF model
|
||||
\item Generalized to any payload dynamics
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Active Damping}
|
||||
|
||||
Conclusion: IFF is better for this application
|
||||
@ -276,10 +284,35 @@ Conclusion: IFF is better for this application
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\section{Effect of rotation}
|
||||
\cite{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb,dehaeze21_activ_dampin_rotat_platf_using}
|
||||
\subsection{Position Feedback Controller}
|
||||
\subsection{Effect of support compliance}
|
||||
|
||||
\subsection{X-Y rotating platform model}
|
||||
\begin{itemize}
|
||||
\item \textbf{goal}: make the nano-hexapod independent of the support compliance
|
||||
\item Simple 2DoF model
|
||||
\item Generalized to any support compliance
|
||||
\item \textbf{conclusion}: frequency of nano-hexapod resonances should be lower than first suspension mode of the support
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Effect of payload dynamics}
|
||||
|
||||
\begin{itemize}
|
||||
\item \textbf{goal}: be robust to a change of payload
|
||||
\item Simple 2DoF model
|
||||
\item Generalized to any payload dynamics
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Conclusion}
|
||||
|
||||
\section{Effect of rotation}
|
||||
|
||||
Papers:
|
||||
\begin{itemize}
|
||||
\item \cite{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb}
|
||||
\item \cite{dehaeze21_activ_dampin_rotat_platf_using}
|
||||
\end{itemize}
|
||||
|
||||
\subsection{System Description and Analysis}
|
||||
|
||||
\begin{itemize}
|
||||
\item x-y-Rz model
|
||||
@ -294,25 +327,24 @@ Conclusion: IFF is better for this application
|
||||
\caption{\label{fig:2dof_rotating_system}Mass spring damper model of an X-Y stage on top of a rotating stage}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Effect of rotational velocity on the system dynamics}
|
||||
|
||||
\begin{itemize}
|
||||
\item Campbell diagram
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Decentralized Integral Force Feedback}
|
||||
\subsection{Integral Force Feedback}
|
||||
|
||||
\begin{itemize}
|
||||
\item Control diagram
|
||||
\item Root Locus: unstable with pure IFF
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Two proposed modification of IFF}
|
||||
\subsection{IFF with an High Pass Filter}
|
||||
|
||||
\begin{itemize}
|
||||
\item Comparison of parallel stiffness and change of controller
|
||||
\item Transmissibility
|
||||
\end{itemize}
|
||||
\subsection{IFF with a stiffness in parallel with the force sensor}
|
||||
|
||||
\subsection{Relative Damping Control}
|
||||
|
||||
\subsection{Comparison of Active Damping Techniques}
|
||||
|
||||
\subsection{Rotating Nano-Hexapod}
|
||||
|
||||
\subsection{Nano Active Stabilization System with rotation}
|
||||
|
||||
\subsection{Conclusion}
|
||||
|
||||
@ -323,7 +355,56 @@ Conclusion: IFF is better for this application
|
||||
\item APA is a nice architecture for parallel stiffness + integrated force sensor (have to speak about IFF before that)
|
||||
\end{itemize}
|
||||
|
||||
\section{Multi Body Model - Nano Hexapod}
|
||||
\section{Micro Station - Modal Analysis}
|
||||
Conclusion:
|
||||
\begin{itemize}
|
||||
\item complex dynamics: need multi-body model of the micro-station to represent the limited compliance\ldots{}
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Measurement Setup}
|
||||
|
||||
\subsection{Frequency Analysis}
|
||||
|
||||
\subsection{Modal Analysis}
|
||||
|
||||
\section{Micro Station - Multi Body Model}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=0.7\linewidth]{figs/simscape_first_model_screenshot.jpg}
|
||||
\caption{\label{fig:simscape_first_model_screenshot}3D view of the multi-body model of the micro-station}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Kinematics}
|
||||
|
||||
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/kinematics.org}
|
||||
|
||||
\begin{itemize}
|
||||
\item Small overview of each stage and associated stiffnesses / inertia
|
||||
\item schematic that shows to considered DoF
|
||||
\item import from CAD
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Modal Analysis and Dynamic Modeling}
|
||||
\begin{itemize}
|
||||
\item Picture of the experimental setup
|
||||
\item Location of accelerometers
|
||||
\item Show obtained modes
|
||||
\item Validation of rigid body assumption
|
||||
\item Explain how this helps tuning the multi-body model
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Disturbances and Positioning errors}
|
||||
|
||||
\subsection{Validation of the Model}
|
||||
|
||||
\begin{itemize}
|
||||
\item Most important metric: support compliance
|
||||
\item Compare model and measurement
|
||||
\end{itemize}
|
||||
|
||||
\section{Nano Hexapod - Multi Body Model}
|
||||
|
||||
\begin{itemize}
|
||||
\item What we want to capture with this model
|
||||
\item Explain what is a multi body model (rigid body, springs, etc\ldots{})
|
||||
@ -333,7 +414,26 @@ Conclusion: IFF is better for this application
|
||||
|
||||
\subsection{Stewart Platform Architecture}
|
||||
|
||||
\begin{figure}
|
||||
\begin{subfigure}{0.49\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=1,width=0.8\linewidth]{stewart_architecture_example.png}
|
||||
\end{center}
|
||||
\subcaption{Initial position}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.49\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=1,width=0.8\linewidth]{stewart_architecture_example_pose.png}
|
||||
\end{center}
|
||||
\subcaption{After some motion}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:stewart_platform_architecture}Stewart Platform Architecture}
|
||||
\end{figure}
|
||||
|
||||
Configurable Simscape Model: \url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org}
|
||||
\begin{itemize}
|
||||
\item Explain the different frames, etc\ldots{}
|
||||
|
||||
\item Little review
|
||||
\item explain key elements:
|
||||
\begin{itemize}
|
||||
@ -359,12 +459,15 @@ Conclusion: IFF is better for this application
|
||||
\item Piezoelectric effects
|
||||
\item mass spring damper representation (2dof)
|
||||
\item Compare the model and the experiment
|
||||
\item Here, just a basic 2DoF model of the APA is used
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Dynamics}
|
||||
\subsection{Dynamics of the Nano-Hexapod}
|
||||
|
||||
\begin{itemize}
|
||||
\item Effect of joints stiffnesses
|
||||
|
||||
\item[{$\square$}] The APA model should maybe not be used here, same for the nice top and bottom plates. Here the detailed design is not yet performed
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
@ -373,46 +476,24 @@ Conclusion: IFF is better for this application
|
||||
\caption{\label{fig:simscape_nano_hexapod}3D view of the multi-body model of the Nano-Hexapod (simplified)}
|
||||
\end{figure}
|
||||
|
||||
\section{Multi Body Model - Micro Station}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=0.7\linewidth]{figs/simscape_first_model_screenshot.jpg}
|
||||
\caption{\label{fig:simscape_first_model_screenshot}3D view of the multi-body model of the micro-station}
|
||||
\end{figure}
|
||||
\section{Control Architecture - Concept Validation}
|
||||
|
||||
\subsection{Kinematics}
|
||||
|
||||
\begin{itemize}
|
||||
\item Small overview of each stage and associated stiffnesses / inertia
|
||||
\item schematic that shows to considered DoF
|
||||
\item import from CAD
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Modal Analysis}
|
||||
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-measurements/modal-analysis/index.org}{study}
|
||||
|
||||
\begin{itemize}
|
||||
\item Picture of the experimental setup
|
||||
\item Location of accelerometers
|
||||
\item Show obtained modes
|
||||
\item Validation of rigid body assumption
|
||||
\item Explain how this helps tuning the multi-body model
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Validation of the Model}
|
||||
|
||||
\begin{itemize}
|
||||
\item Most important metric: support compliance
|
||||
\item Compare model and measurement
|
||||
\end{itemize}
|
||||
|
||||
\section{Control Architecture}
|
||||
Discussion of:
|
||||
\begin{itemize}
|
||||
\item Transformation matrices / control architecture
|
||||
\item Transformation matrices / control architecture (computation of the position error in the frame of the nano-hexapod)
|
||||
\item Control of parallel architectures
|
||||
\item Control in the frame of struts or cartesian?
|
||||
\item Effect of rotation on IFF? => APA
|
||||
\item HAC-LAC
|
||||
\item New noise budgeting?
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Control Kinematics}
|
||||
|
||||
\begin{itemize}
|
||||
\item Explain how the position error can be expressed in the frame of the nano-hexapod
|
||||
\item block diagram
|
||||
\item Explain how to go from external metrology to the frame of the nano-hexapod
|
||||
\end{itemize}
|
||||
|
||||
\subsection{High Authority Control - Low Authority Control (HAC-LAC)}
|
||||
@ -438,14 +519,6 @@ Discussion of:
|
||||
\item Damping optimization
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Control Kinematics}
|
||||
|
||||
\begin{itemize}
|
||||
\item Explain how the position error can be expressed in the frame of the nano-hexapod
|
||||
\item block diagram
|
||||
\item Explain how to go from external metrology to the frame of the nano-hexapod
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Decoupled Dynamics}
|
||||
|
||||
\begin{itemize}
|
||||
@ -461,52 +534,34 @@ Discussion of:
|
||||
\item Controller design
|
||||
\end{itemize}
|
||||
|
||||
\section{Simulations - Concept Validation}
|
||||
\begin{itemize}
|
||||
\item Tomography experiment
|
||||
\item Open VS Closed loop results
|
||||
\item \textbf{Conclusion}: concept validation
|
||||
nano hexapod architecture with APA
|
||||
decentralized IFF + centralized HAC
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=\linewidth]{figs/simscape_nass_final.png}
|
||||
\caption{\label{fig:simscape_nass_final}3D view of the multi-body model including the micro-station, the nano-hexapod and the associated metrology}
|
||||
\end{figure}
|
||||
|
||||
\section{Conclusion}
|
||||
|
||||
\section{Conceptual Design - Conclusion}
|
||||
|
||||
\chapter{Detailed Design}
|
||||
\minitoc
|
||||
\paragraph{Abstract}
|
||||
|
||||
CAD view of the nano-hexapod with key components:
|
||||
\begin{itemize}
|
||||
\item plates
|
||||
\item flexible joints
|
||||
\item APA
|
||||
\item required instrumentation (ADC, DAC, Speedgoat, Amplifiers, Force Sensor instrumentation, \ldots{})
|
||||
\end{itemize}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=\linewidth]{figs/chapter2_overview.png}
|
||||
\caption{\label{fig:chapter2_overview}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\section{Optimal Nano-Hexapod geometry}
|
||||
\section{Nano-Hexapod Kinematics - Optimal Geometry?}
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Geometry?
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Cubic architecture?
|
||||
\item[{$\square$}] Kinematics
|
||||
\item[{$\square$}] Trade-off for the strut orientation
|
||||
\end{itemize}
|
||||
\item[{$\square$}] Sensors required
|
||||
\item[{$\square$}] Maybe this can be just merged with the last section in this chapter?
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Optimal strut orientation}
|
||||
|
||||
|
||||
\subsection{Cubic Architecture: a Special Case?}
|
||||
|
||||
\section{Including Flexible elements in the Multi-body model}
|
||||
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/cubic-configuration.org}
|
||||
|
||||
\section{Nano-Hexapod Dynamics - Including Flexible elements in the Multi-body model}
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Should this be an appendix?
|
||||
\end{itemize}
|
||||
Reduced order flexible bodies \cite{brumund21_multib_simul_reduc_order_flexib_bodies_fea}
|
||||
\begin{itemize}
|
||||
\item Used with APA, Flexible joints, Plates
|
||||
@ -533,8 +588,17 @@ Reduced order flexible bodies \cite{brumund21_multib_simul_reduc_order_flexib_bo
|
||||
\item Obtained transfer functions and comparison with Simscape model with reduced order flexible body
|
||||
\end{itemize}
|
||||
|
||||
\section{Amplified Piezoelectric Actuator}
|
||||
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa/index.org}{study 1}, \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa300ml/test-bench-apa300ml.org}{study 2}
|
||||
\section{Actuator Choice}
|
||||
|
||||
\begin{itemize}
|
||||
\item From previous study: APA seems a nice choice
|
||||
\item First tests with the APA95ML: validation of a basic model (maybe already presented)
|
||||
\item Optimal stiffness?
|
||||
\item Talk about piezoelectric actuator? bandwidth? noise?
|
||||
\item Specifications: stiffness, stroke, \ldots{} => choice of the APA
|
||||
\item FEM of the APA
|
||||
\item Validation with flexible APA in the simscape model
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@ -542,10 +606,6 @@ Reduced order flexible bodies \cite{brumund21_multib_simul_reduc_order_flexib_bo
|
||||
\caption{\label{fig:apa_schmeatic}Schematical representation of an Amplified Piezoelectric Actuator}
|
||||
\end{figure}
|
||||
|
||||
\begin{itemize}
|
||||
\item First tests with the APA95ML
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Model}
|
||||
|
||||
Piezoelectric equations
|
||||
@ -568,6 +628,12 @@ Piezoelectric equations
|
||||
\item (2 DoF, FEM, \ldots{})
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_iff_rot_stiffness.png}
|
||||
\caption{\label{fig:root_locus_iff_rot_stiffness}Limitation of the attainable damping due to the APA design}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Experimental System Identification}
|
||||
|
||||
\begin{itemize}
|
||||
@ -585,7 +651,17 @@ Piezoelectric equations
|
||||
\item IFF results: OK
|
||||
\end{itemize}
|
||||
|
||||
\section{Flexible Joints}
|
||||
\section{Design of Nano-Hexapod Flexible Joints}
|
||||
|
||||
\begin{itemize}
|
||||
\item Perfect flexible joint
|
||||
\item Imperfection of the flexible joint: Model
|
||||
\item Study of the effect of limited stiffness in constrain directions and non-null stiffness in other directions
|
||||
\item Obtained Specification
|
||||
\item Design optimisation (FEM)
|
||||
\item Implementation of flexible elements in the Simscape model: close to simplified model
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Effect of flexible joint characteristics on obtained dynamics}
|
||||
|
||||
\begin{itemize}
|
||||
@ -594,10 +670,12 @@ Piezoelectric equations
|
||||
\item Obtained specifications (trade-off)
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\subsection{Flexible joint geometry optimization}
|
||||
|
||||
\begin{itemize}
|
||||
\item Chosen geometry
|
||||
\item Show different existing geometry for flexible joints used on hexapods
|
||||
\item Optimisation with Ansys
|
||||
\item Validation with Simscape model
|
||||
\end{itemize}
|
||||
@ -611,13 +689,25 @@ Piezoelectric equations
|
||||
\item Obtained results
|
||||
\end{itemize}
|
||||
|
||||
\section{Instrumentation}
|
||||
\subsection{DAC}
|
||||
\section{Choice of Instrumentation}
|
||||
|
||||
\begin{itemize}
|
||||
\item Discussion of the choice of other elements:
|
||||
\begin{itemize}
|
||||
\item Encoder
|
||||
\item DAC
|
||||
\item ADC (reading of the force sensors)
|
||||
\item real time controller
|
||||
\item Voltage amplifiers
|
||||
\end{itemize}
|
||||
\item Give some requirements + chosen elements + measurements / validation
|
||||
\end{itemize}
|
||||
|
||||
\subsection{ADC}
|
||||
\subsection{DAC and ADC}
|
||||
|
||||
Force sensor
|
||||
\begin{itemize}
|
||||
\item Force sensor
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Voltage amplifier (\href{https://research.tdehaeze.xyz/test-bench-pd200/}{link})}
|
||||
|
||||
@ -632,17 +722,25 @@ Force sensor
|
||||
\item Noise measurement
|
||||
\end{itemize}
|
||||
|
||||
\section{Obtained Mechanical Design}
|
||||
|
||||
\section{Obtained Design}
|
||||
\begin{itemize}
|
||||
\item Explain again the different specifications in terms of space, payload, etc..
|
||||
\item CAD view of the nano-hexapod
|
||||
\item Chosen geometry, materials, ease of mounting, cabling, \ldots{}
|
||||
\item Validation on Simscape with accurate model?
|
||||
\end{itemize}
|
||||
|
||||
\section{Detailed Design - Conclusion}
|
||||
\chapter{Experimental Validation}
|
||||
\minitoc
|
||||
\paragraph{Abstract}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=\linewidth]{figs/chapter3_overview.png}
|
||||
\caption{\label{fig:chapter3_overview}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
Schematic representation of the experimental validation process.
|
||||
\begin{itemize}
|
||||
\item APA
|
||||
@ -651,62 +749,36 @@ Schematic representation of the experimental validation process.
|
||||
\item Nano-hexapod with Spindle
|
||||
\end{itemize}
|
||||
|
||||
\section{Amplified Piezoelectric Actuator (\href{https://research.tdehaeze.xyz/test-bench-apa300ml/}{link})}
|
||||
\section{Amplified Piezoelectric Actuator}
|
||||
|
||||
APA alone:
|
||||
\begin{itemize}
|
||||
\item \textbf{Goal}: Tune model of APA
|
||||
\item[{$\square$}] FRF and fit with FEM model
|
||||
\item[{$\square$}] Show all six FRF and how close they are
|
||||
\item[{$\square$}] IFF
|
||||
\end{itemize}
|
||||
\section{Flexible Joints}
|
||||
|
||||
\section{Struts}
|
||||
|
||||
Strut (APA + joints):
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] FRF, tune model
|
||||
\item[{$\square$}] Issue with encoder (comparison with axial motion)
|
||||
\item[{$\square$}] IFF
|
||||
\end{itemize}
|
||||
|
||||
\section{Nano-Hexapod}
|
||||
|
||||
Mounting
|
||||
|
||||
Test bench on top of soft table:
|
||||
\begin{itemize}
|
||||
\item \textbf{Goal}: Tune model of nano-hexapod, validation of dynamics
|
||||
\item modal analysis soft table (first mode at xxx Hz => rigid body in Simscape)
|
||||
\item FRF + comp model (multiple masses)
|
||||
\item IFF and robustness to change of mass
|
||||
\end{itemize}
|
||||
|
||||
\section{Rotating Nano-Hexapod}
|
||||
|
||||
\begin{itemize}
|
||||
\item \textbf{Goal}: validation of control strategy with rotation
|
||||
\item Interferometers to have more stroke
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=0.49\linewidth]{example-image-a.png}
|
||||
\caption{\label{fig:rot_nano_hexapod_bench_schematic}Schematic of the rotating nano-hexapod test bench}
|
||||
\end{figure}
|
||||
|
||||
\section{ID31 Micro Station}
|
||||
|
||||
\begin{itemize}
|
||||
\item \textbf{Goal}: full validation without the full metrology
|
||||
\end{itemize}
|
||||
|
||||
\section{Experimental Validation - Conclusion}
|
||||
\chapter{Conclusion and Future Work}
|
||||
|
||||
\section{Alternative Architecture}
|
||||
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/alternative-micro-station-architecture.org}
|
||||
|
||||
\appendix
|
||||
|
||||
\chapter{Mathematical Tools for Mechatronics}
|
||||
\section{Feedback Control}
|
||||
|
||||
|
||||
\section{Dynamical Noise Budgeting}
|
||||
\subsection{Power Spectral Density}
|
||||
|
||||
\subsection{Cumulative Amplitude Spectrum}
|
||||
|
||||
\chapter{Stewart Platform - Kinematics}
|
||||
\chapter{Comments on something}
|
||||
\printbibliography[heading=bibintoc,title={Bibliography}]
|
||||
|
||||
\chapter*{List of Publications}
|
||||
@ -722,5 +794,6 @@ Test bench on top of soft table:
|
||||
\end{refsection}
|
||||
|
||||
\printglossary[type=\acronymtype]
|
||||
\printglossary[type=\glossarytype]
|
||||
\printglossary
|
||||
\end{document}
|
||||
|
9
ref.bib
9
ref.bib
@ -32,12 +32,3 @@
|
||||
month = {2},
|
||||
keywords = {publication},
|
||||
}
|
||||
|
||||
@book{taghirad13_paral,
|
||||
author = {Taghirad, Hamid},
|
||||
title = {Parallel robots : mechanics and control},
|
||||
year = {2013},
|
||||
publisher = {CRC Press},
|
||||
address = {Boca Raton, FL},
|
||||
isbn = {9781466555778},
|
||||
}
|
||||
|
32
setup.org
32
setup.org
@ -249,19 +249,29 @@ Note that this is marked as deprecated for koma-script.
|
||||
|
||||
* Fonts
|
||||
|
||||
https://tug.org/FontCatalogue/quattrocento/
|
||||
#+begin_src latex
|
||||
\usepackage[lf]{ebgaramond}
|
||||
#+end_src
|
||||
\ifxetexorluatex
|
||||
\usepackage{unicode-math}
|
||||
\setmainfont{EB Garamond}
|
||||
\setmathfont{Garamond Math}
|
||||
|
||||
https://tug.org/FontCatalogue/crimsonproregular/
|
||||
#+begin_src latex
|
||||
% \usepackage{crimson}
|
||||
#+end_src
|
||||
|
||||
https://tug.org/FontCatalogue/sourcecodepro/
|
||||
#+begin_src latex
|
||||
\usepackage[oldstyle, scale=0.7]{sourcecodepro}
|
||||
% Load some missing symbols from another font.
|
||||
\setmathfont{STIX Two Math}[%
|
||||
range = {
|
||||
\sharp,
|
||||
\natural,
|
||||
\flat,
|
||||
\clubsuit,
|
||||
\spadesuit,
|
||||
\checkmark
|
||||
}
|
||||
]
|
||||
\setmonofont[Scale=MatchLowercase]{Source Code Pro}
|
||||
\else
|
||||
\usepackage[lf]{ebgaramond} % https://tug.org/FontCatalogue/quattrocento/
|
||||
\usepackage[oldstyle,scale=0.7]{sourcecodepro} % https://tug.org/FontCatalogue/sourcecodepro/
|
||||
\singlespacing
|
||||
\fi
|
||||
#+end_src
|
||||
|
||||
* Colors
|
||||
|
Loading…
x
Reference in New Issue
Block a user