800 lines
23 KiB
TeX
800 lines
23 KiB
TeX
% Created 2024-04-12 Fri 09:30
|
|
% Intended LaTeX compiler: pdflatex
|
|
\documentclass[a4paper, twoside, 11pt, onecolumn, bibliography=totoc, openright, appendixprefix=true]{scrreprt}
|
|
|
|
\input{config.tex}
|
|
\newacronym{mimo}{MIMO}{Multiple-Inputs Multiple-Outputs}
|
|
\newacronym{siso}{SISO}{Single-Input Single-Output}
|
|
\newacronym{nass}{NASS}{Nano Active Stabilization System}
|
|
\newacronym{lti}{LTI}{Linear Time Invariant}
|
|
\newacronym{esrf}{ESRF}{European Synchrotron Radiation Facility}
|
|
\newglossaryentry{ka}{name=\ensuremath{k_a},description={{Actuator Stiffness in}}}
|
|
\newglossaryentry{phi}{name=\ensuremath{\phi},description={{A woody bush}}}
|
|
\input{config_extra.tex}
|
|
\addbibresource{ref.bib}
|
|
\addbibresource{phd-thesis.bib}
|
|
\author{Dehaeze Thomas}
|
|
\date{2024-04-12}
|
|
\title{Mechatronic approach for the design of a Nano Active Stabilization System}
|
|
\subtitle{PhD Thesis}
|
|
\hypersetup{
|
|
pdfauthor={Dehaeze Thomas},
|
|
pdftitle={Mechatronic approach for the design of a Nano Active Stabilization System},
|
|
pdfkeywords={},
|
|
pdfsubject={},
|
|
pdfcreator={Emacs 29.3 (Org mode 9.6)},
|
|
pdflang={English}}
|
|
\usepackage{biblatex}
|
|
|
|
\begin{document}
|
|
|
|
|
|
\begin{titlepage}
|
|
\vspace*{5cm}
|
|
\makeatletter
|
|
\begin{center}
|
|
\begin{Huge}
|
|
\@title
|
|
\end{Huge}\\[0.1cm]
|
|
%
|
|
\begin{Large}
|
|
\@subtitle
|
|
\end{Large}\\
|
|
%
|
|
\emph{by}\\
|
|
\@author
|
|
%
|
|
\vfill
|
|
A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (PhD) in Engineering Science\\
|
|
at\\
|
|
\textsc{Liège Université}
|
|
\end{center}
|
|
\makeatother
|
|
\end{titlepage}
|
|
|
|
\newpage
|
|
\null
|
|
\thispagestyle{empty}
|
|
\newpage
|
|
|
|
\chapter*{Abstract}
|
|
\gls{phi}
|
|
|
|
\chapter*{Résumé}
|
|
|
|
\chapter*{Acknowledgments}
|
|
|
|
\dominitoc
|
|
\tableofcontents
|
|
|
|
\listoftables
|
|
\listoffigures
|
|
|
|
\chapter{Introduction}
|
|
\section{Context of this thesis / Background and Motivation}
|
|
|
|
\begin{itemize}
|
|
\item \gls{esrf} (Figure \ref{fig:esrf_picture})
|
|
\end{itemize}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=0.7\linewidth]{figs/esrf_picture.jpg}
|
|
\caption{\label{fig:esrf_picture}European Synchrotron Radiation Facility}
|
|
\end{figure}
|
|
|
|
\begin{itemize}
|
|
\item ID31 and Micro Station (Figure \ref{fig:id31_microstation_picture})
|
|
\end{itemize}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=0.49\linewidth]{figs/id31_microstation_picture.png}
|
|
\caption{\label{fig:id31_microstation_picture}Picture of the ID31 Micro-Station with annotations}
|
|
\end{figure}
|
|
|
|
Alternative: \texttt{id31\_microstation\_cad\_view.png} (CAD view)
|
|
|
|
\begin{itemize}
|
|
\item X-ray beam + detectors + sample stage (Figure \ref{fig:id31_beamline_schematic})
|
|
\end{itemize}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=\linewidth]{figs/id31_beamline_schematic.png}
|
|
\caption{\label{fig:id31_beamline_schematic}ID31 Beamline Schematic. With light source, nano-focusing optics, sample stage and detector.}
|
|
\end{figure}
|
|
|
|
\begin{itemize}
|
|
\item Few words about science made on ID31 and why nano-meter accuracy is required
|
|
\item Typical experiments (tomography, \ldots{}), various samples (up to 50kg)
|
|
\item Where to explain the goal of each stage? (e.g. micro-hexapod: static positioning, Ty and Rz: scans, \ldots{})
|
|
\item Example of picture obtained (Figure \ref{fig:id31_tomography_result})
|
|
\end{itemize}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=0.49\linewidth]{example-image-c.png}
|
|
\caption{\label{fig:id31_tomography_result}Image obtained on the ID31 beamline}
|
|
\end{figure}
|
|
|
|
\begin{itemize}
|
|
\item Explain wanted positioning accuracy and why micro-station cannot have this accuracy (backlash, play, thermal expansion, \ldots{})
|
|
|
|
\item Speak about the metrology concept, and why it is not included in this thesis
|
|
\end{itemize}
|
|
|
|
\section{Challenge definition}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1]{figs/nass_concept_schematic.png}
|
|
\caption{\label{fig:nass_concept_schematic}Nass Concept. 1: micro-station, 2: nano-hexapod, 3: sample, 4: 5DoF metrology}
|
|
\end{figure}
|
|
|
|
\begin{itemize}
|
|
\item 6DoF vibration control platform on top of a complex positioning platform
|
|
\item \textbf{Goal}: Improve accuracy of 6DoF long stroke position platform
|
|
\item \textbf{Approach}: Mechatronic approach / model based / predictive
|
|
\item \textbf{Control}: Robust control approach / various payloads.
|
|
First hexapod with control bandwidth higher than the suspension modes that accepts various payloads?
|
|
\item Rotation aspect
|
|
\item Compactness? (more related to mechanical design)
|
|
\end{itemize}
|
|
|
|
\section{Literature Review}
|
|
|
|
\begin{figure}
|
|
\begin{subfigure}{0.49\textwidth}
|
|
\begin{center}
|
|
\includegraphics[scale=1,width=0.8\linewidth]{example-image-a.png}
|
|
\end{center}
|
|
\subcaption{Stewart platform based on voice coil actuators}
|
|
\end{subfigure}
|
|
\begin{subfigure}{0.49\textwidth}
|
|
\begin{center}
|
|
\includegraphics[scale=1,width=0.8\linewidth]{example-image-b.png}
|
|
\end{center}
|
|
\subcaption{Stewart platform based on piezoelectric actuators}
|
|
\end{subfigure}
|
|
\caption{\label{fig:stewart_platform_examples}Examples of Stewart Platforms}
|
|
\end{figure}
|
|
|
|
\begin{itemize}
|
|
\item Hexapods
|
|
\cite{li01_simul_fault_vibrat_isolat_point}
|
|
\cite{bishop02_devel_precis_point_contr_vibrat}
|
|
\cite{hanieh03_activ_stewar}
|
|
\cite{afzali-far16_vibrat_dynam_isotr_hexap_analy_studies}
|
|
\cite{naves20_desig}
|
|
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org}
|
|
\item Positioning stations
|
|
\item Mechatronic approach?
|
|
\cite{rankers98_machin}
|
|
\cite{monkhorst04_dynam_error_budget}
|
|
\cite{jabben07_mechat}
|
|
\end{itemize}
|
|
|
|
\section{Outline of thesis / Thesis Summary / Thesis Contributions}
|
|
|
|
\textbf{Mechatronic Design Approach} / \textbf{Model Based Design}:
|
|
\begin{itemize}
|
|
\item \cite{monkhorst04_dynam_error_budget} high costs of the design process: the designed system must be \textbf{first time right}.
|
|
When the system is finally build, its performance level should satisfy the specifications.
|
|
No significant changes are allowed in the post design phase.
|
|
Because of this, the designer wants to be able to predict the performance of the system a-priori and gain insight in the performance limiting factors of the system.
|
|
\end{itemize}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=\linewidth]{figs/nass_mechatronics_approach.png}
|
|
\caption{\label{fig:nass_mechatronics_approach}Overview of the mechatronic approach used for the Nano-Active-Stabilization-System}
|
|
\end{figure}
|
|
|
|
\textbf{Goals}:
|
|
\begin{itemize}
|
|
\item Design \gls{nass} such that it is easy to control (and maintain).
|
|
Have good performances by design and not by complex control strategies.
|
|
\end{itemize}
|
|
|
|
|
|
\textbf{Models}:
|
|
\begin{itemize}
|
|
\item Uniaxial Model:
|
|
\begin{itemize}
|
|
\item Effect of limited support compliance
|
|
\item Effect of change of payload
|
|
\end{itemize}
|
|
\item Rotating Model
|
|
\begin{itemize}
|
|
\item Gyroscopic effects
|
|
\end{itemize}
|
|
\item Multi Body Model
|
|
\item Finite Element Models
|
|
\end{itemize}
|
|
|
|
\chapter{Conceptual Design Development}
|
|
\minitoc
|
|
\paragraph{Abstract}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=\linewidth]{figs/chapter1_overview.png}
|
|
\caption{\label{fig:chapter1_overview}Figure caption}
|
|
\end{figure}
|
|
|
|
\section{Uni-axial Model}
|
|
|
|
\begin{itemize}
|
|
\item Explain what we want to capture with this model
|
|
\item Schematic of the uniaxial model (with X-ray)
|
|
\item Identification of disturbances (ground motion, stage vibrations)
|
|
\item Optimal nano-hexapod stiffness/actuator: Voice coil VS Piezo (conclusion?)
|
|
\item Control architecture (IFF, DVF, \ldots{})?
|
|
\item Conclusion
|
|
\end{itemize}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1]{figs/mass_spring_damper_nass.png}
|
|
\caption{\label{fig:mass_spring_damper_nass}3-DoF uniaxial mass-spring-damper model of the NASS}
|
|
\end{figure}
|
|
|
|
\subsection{Micro Station Model}
|
|
\subsection{Nano Hexapod Model}
|
|
\subsection{Disturbance Identification}
|
|
\subsection{Open Loop Dynamic Noise Budgeting}
|
|
|
|
\begin{itemize}
|
|
\item List all disturbances with their spectral densities
|
|
\item Show how they have been measured
|
|
\item Say that repeatable errors can be calibrated (show measurement of Hans-Peter?)
|
|
\end{itemize}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=0.4\linewidth]{measurement_microstation_vibration_picture.jpg}
|
|
\caption{\label{fig:measurement_microstation_vibration_picture}Setup used to measure the micro-station vibrations during operation}
|
|
\end{figure}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=0.49\linewidth]{example-image-b.png}
|
|
\caption{\label{fig:asd_ground_motion_ustation_dist}Amplitude Spectral density of the measured disturbance sources}
|
|
\end{figure}
|
|
|
|
\subsection{Active Damping}
|
|
|
|
Conclusion: IFF is better for this application
|
|
|
|
\paragraph{Integral Force Feedback}
|
|
|
|
\begin{itemize}
|
|
\item Mass spring damper model
|
|
\item Root Locus
|
|
\item Sensitivity to disturbances
|
|
\end{itemize}
|
|
|
|
\paragraph{Direct Velocity Feedback}
|
|
|
|
\begin{itemize}
|
|
\item Mass spring damper model
|
|
\item Root Locus
|
|
\item Sensitivity to disturbances
|
|
\end{itemize}
|
|
|
|
|
|
\subsection{Position Feedback Controller}
|
|
\subsection{Effect of support compliance}
|
|
|
|
\begin{itemize}
|
|
\item \textbf{goal}: make the nano-hexapod independent of the support compliance
|
|
\item Simple 2DoF model
|
|
\item Generalized to any support compliance
|
|
\item \textbf{conclusion}: frequency of nano-hexapod resonances should be lower than first suspension mode of the support
|
|
\end{itemize}
|
|
|
|
\subsection{Effect of payload dynamics}
|
|
|
|
\begin{itemize}
|
|
\item \textbf{goal}: be robust to a change of payload
|
|
\item Simple 2DoF model
|
|
\item Generalized to any payload dynamics
|
|
\end{itemize}
|
|
|
|
\subsection{Conclusion}
|
|
|
|
\section{Effect of rotation}
|
|
|
|
Papers:
|
|
\begin{itemize}
|
|
\item \cite{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb}
|
|
\item \cite{dehaeze21_activ_dampin_rotat_platf_using}
|
|
\end{itemize}
|
|
|
|
\subsection{System Description and Analysis}
|
|
|
|
\begin{itemize}
|
|
\item x-y-Rz model
|
|
\item explain why this is representing the NASS
|
|
\item Equation of motion
|
|
\item Centrifugal forces, Coriolis
|
|
\end{itemize}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1]{figs/2dof_rotating_system.png}
|
|
\caption{\label{fig:2dof_rotating_system}Mass spring damper model of an X-Y stage on top of a rotating stage}
|
|
\end{figure}
|
|
|
|
\subsection{Integral Force Feedback}
|
|
|
|
\begin{itemize}
|
|
\item Control diagram
|
|
\item Root Locus: unstable with pure IFF
|
|
\end{itemize}
|
|
|
|
\subsection{IFF with an High Pass Filter}
|
|
|
|
\subsection{IFF with a stiffness in parallel with the force sensor}
|
|
|
|
\subsection{Relative Damping Control}
|
|
|
|
\subsection{Comparison of Active Damping Techniques}
|
|
|
|
\subsection{Rotating Nano-Hexapod}
|
|
|
|
\subsection{Nano Active Stabilization System with rotation}
|
|
|
|
\subsection{Conclusion}
|
|
|
|
\begin{itemize}
|
|
\item problem with voice coil actuator
|
|
\item Two solutions: add parallel stiffness, or change controller
|
|
\item Conclusion: minimum stiffness is required
|
|
\item APA is a nice architecture for parallel stiffness + integrated force sensor (have to speak about IFF before that)
|
|
\end{itemize}
|
|
|
|
\section{Micro Station - Modal Analysis}
|
|
Conclusion:
|
|
\begin{itemize}
|
|
\item complex dynamics: need multi-body model of the micro-station to represent the limited compliance\ldots{}
|
|
\end{itemize}
|
|
|
|
\subsection{Measurement Setup}
|
|
|
|
\subsection{Frequency Analysis}
|
|
|
|
\subsection{Modal Analysis}
|
|
|
|
\section{Micro Station - Multi Body Model}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=0.7\linewidth]{figs/simscape_first_model_screenshot.jpg}
|
|
\caption{\label{fig:simscape_first_model_screenshot}3D view of the multi-body model of the micro-station}
|
|
\end{figure}
|
|
|
|
\subsection{Kinematics}
|
|
|
|
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/kinematics.org}
|
|
|
|
\begin{itemize}
|
|
\item Small overview of each stage and associated stiffnesses / inertia
|
|
\item schematic that shows to considered DoF
|
|
\item import from CAD
|
|
\end{itemize}
|
|
|
|
\subsection{Modal Analysis and Dynamic Modeling}
|
|
\begin{itemize}
|
|
\item Picture of the experimental setup
|
|
\item Location of accelerometers
|
|
\item Show obtained modes
|
|
\item Validation of rigid body assumption
|
|
\item Explain how this helps tuning the multi-body model
|
|
\end{itemize}
|
|
|
|
\subsection{Disturbances and Positioning errors}
|
|
|
|
\subsection{Validation of the Model}
|
|
|
|
\begin{itemize}
|
|
\item Most important metric: support compliance
|
|
\item Compare model and measurement
|
|
\end{itemize}
|
|
|
|
\section{Nano Hexapod - Multi Body Model}
|
|
|
|
\begin{itemize}
|
|
\item What we want to capture with this model
|
|
\item Explain what is a multi body model (rigid body, springs, etc\ldots{})
|
|
\item Key elements (plates, joints, struts): for now simplistic model (rigid body elements, perfect joints, \ldots{}), but in next section, FEM will be used
|
|
\item Matlab/Simulink developed toolbox for the study of Stewart platforms
|
|
\end{itemize}
|
|
|
|
\subsection{Stewart Platform Architecture}
|
|
|
|
\begin{figure}
|
|
\begin{subfigure}{0.49\textwidth}
|
|
\begin{center}
|
|
\includegraphics[scale=1,width=0.8\linewidth]{stewart_architecture_example.png}
|
|
\end{center}
|
|
\subcaption{Initial position}
|
|
\end{subfigure}
|
|
\begin{subfigure}{0.49\textwidth}
|
|
\begin{center}
|
|
\includegraphics[scale=1,width=0.8\linewidth]{stewart_architecture_example_pose.png}
|
|
\end{center}
|
|
\subcaption{After some motion}
|
|
\end{subfigure}
|
|
\caption{\label{fig:stewart_platform_architecture}Stewart Platform Architecture}
|
|
\end{figure}
|
|
|
|
Configurable Simscape Model: \url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org}
|
|
\begin{itemize}
|
|
\item Explain the different frames, etc\ldots{}
|
|
|
|
\item Little review
|
|
\item explain key elements:
|
|
\begin{itemize}
|
|
\item two plates
|
|
\item joints
|
|
\item actuators
|
|
\end{itemize}
|
|
\item explain advantages compared to serial architecture
|
|
\end{itemize}
|
|
|
|
\subsection{Kinematics}
|
|
|
|
\begin{itemize}
|
|
\item Well define elements, frames, \ldots{}
|
|
\item Derivation of jacobian matrices: for forces and for displacement
|
|
\item Explain this is true for small displacements (show how small)
|
|
\end{itemize}
|
|
|
|
\subsection{Model of an Amplified Piezoelectric Actuator}
|
|
|
|
\begin{itemize}
|
|
\item APA test bench
|
|
\item Piezoelectric effects
|
|
\item mass spring damper representation (2dof)
|
|
\item Compare the model and the experiment
|
|
\item Here, just a basic 2DoF model of the APA is used
|
|
\end{itemize}
|
|
|
|
\subsection{Dynamics of the Nano-Hexapod}
|
|
|
|
\begin{itemize}
|
|
\item Effect of joints stiffnesses
|
|
|
|
\item[{$\square$}] The APA model should maybe not be used here, same for the nice top and bottom plates. Here the detailed design is not yet performed
|
|
\end{itemize}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=\linewidth]{figs/simscape_nano_hexapod.png}
|
|
\caption{\label{fig:simscape_nano_hexapod}3D view of the multi-body model of the Nano-Hexapod (simplified)}
|
|
\end{figure}
|
|
|
|
\section{Control Architecture - Concept Validation}
|
|
|
|
Discussion of:
|
|
\begin{itemize}
|
|
\item Transformation matrices / control architecture (computation of the position error in the frame of the nano-hexapod)
|
|
\item Control of parallel architectures
|
|
\item Control in the frame of struts or cartesian?
|
|
\item Effect of rotation on IFF? => APA
|
|
\item HAC-LAC
|
|
\item New noise budgeting?
|
|
\end{itemize}
|
|
|
|
\subsection{Control Kinematics}
|
|
|
|
\begin{itemize}
|
|
\item Explain how the position error can be expressed in the frame of the nano-hexapod
|
|
\item block diagram
|
|
\item Explain how to go from external metrology to the frame of the nano-hexapod
|
|
\end{itemize}
|
|
|
|
\subsection{High Authority Control - Low Authority Control (HAC-LAC)}
|
|
|
|
\begin{itemize}
|
|
\item general idea
|
|
\item case for parallel manipulator: decentralized LAC + centralized HAC
|
|
\end{itemize}
|
|
|
|
\subsection{Decoupling Strategies for parallel manipulators}
|
|
\href{file:///home/thomas/Cloud/research/matlab/decoupling-strategies/svd-control.org}{study}
|
|
|
|
\begin{itemize}
|
|
\item Jacobian matrices, CoK, CoM, \ldots{}
|
|
\item Discussion of cubic architecture
|
|
\item SVD, Modal, \ldots{}
|
|
\end{itemize}
|
|
|
|
\subsection{Decentralized Integral Force Feedback (LAC)}
|
|
|
|
\begin{itemize}
|
|
\item Root Locus
|
|
\item Damping optimization
|
|
\end{itemize}
|
|
|
|
\subsection{Decoupled Dynamics}
|
|
|
|
\begin{itemize}
|
|
\item Centralized HAC
|
|
\item Control in the frame of the struts
|
|
\item Effect of IFF
|
|
\end{itemize}
|
|
|
|
\subsection{Centralized Position Controller (HAC)}
|
|
|
|
\begin{itemize}
|
|
\item Decoupled plant
|
|
\item Controller design
|
|
\end{itemize}
|
|
|
|
\section{Conceptual Design - Conclusion}
|
|
|
|
\chapter{Detailed Design}
|
|
\minitoc
|
|
\paragraph{Abstract}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=\linewidth]{figs/chapter2_overview.png}
|
|
\caption{\label{fig:chapter2_overview}Figure caption}
|
|
\end{figure}
|
|
|
|
\section{Nano-Hexapod Kinematics - Optimal Geometry?}
|
|
\begin{itemize}
|
|
\item[{$\square$}] Maybe this can be just merged with the last section in this chapter?
|
|
\end{itemize}
|
|
|
|
\subsection{Optimal strut orientation}
|
|
|
|
|
|
\subsection{Cubic Architecture: a Special Case?}
|
|
|
|
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/cubic-configuration.org}
|
|
|
|
\section{Nano-Hexapod Dynamics - Including Flexible elements in the Multi-body model}
|
|
\begin{itemize}
|
|
\item[{$\square$}] Should this be an appendix?
|
|
\end{itemize}
|
|
Reduced order flexible bodies \cite{brumund21_multib_simul_reduc_order_flexib_bodies_fea}
|
|
\begin{itemize}
|
|
\item Used with APA, Flexible joints, Plates
|
|
\end{itemize}
|
|
|
|
\subsection{Reduced order flexible bodies}
|
|
|
|
\begin{itemize}
|
|
\item Quick explanation of the theory
|
|
\item Implementation with Ansys (or Comsol) and Simscape
|
|
\end{itemize}
|
|
|
|
\subsection{Numerical Validation}
|
|
|
|
\begin{itemize}
|
|
\item Numerical Validation Ansys VS Simscape (APA)
|
|
\item Figure with 0 and 1kg mass
|
|
\end{itemize}
|
|
|
|
\subsection{Experimental Validation}
|
|
|
|
\begin{itemize}
|
|
\item Test bench
|
|
\item Obtained transfer functions and comparison with Simscape model with reduced order flexible body
|
|
\end{itemize}
|
|
|
|
\section{Actuator Choice}
|
|
|
|
\begin{itemize}
|
|
\item From previous study: APA seems a nice choice
|
|
\item First tests with the APA95ML: validation of a basic model (maybe already presented)
|
|
\item Optimal stiffness?
|
|
\item Talk about piezoelectric actuator? bandwidth? noise?
|
|
\item Specifications: stiffness, stroke, \ldots{} => choice of the APA
|
|
\item FEM of the APA
|
|
\item Validation with flexible APA in the simscape model
|
|
\end{itemize}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=0.49\linewidth]{example-image-a.png}
|
|
\caption{\label{fig:apa_schmeatic}Schematical representation of an Amplified Piezoelectric Actuator}
|
|
\end{figure}
|
|
|
|
\subsection{Model}
|
|
|
|
Piezoelectric equations
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=0.49\linewidth]{example-image-a.png}
|
|
\caption{\label{fig:apa_schmeatic_2dof}Schematical representation of a 2DoF model of an Amplified Piezoelectric Actuator}
|
|
\end{figure}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=0.49\linewidth]{example-image-b.png}
|
|
\caption{\label{fig:apa_schmeatic_fem}Schematical representation of a FEM of an Amplified Piezoelectric Actuator}
|
|
\end{figure}
|
|
|
|
\begin{itemize}
|
|
\item FEM
|
|
\item Simscape model
|
|
\item (2 DoF, FEM, \ldots{})
|
|
\end{itemize}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1]{figs/root_locus_iff_rot_stiffness.png}
|
|
\caption{\label{fig:root_locus_iff_rot_stiffness}Limitation of the attainable damping due to the APA design}
|
|
\end{figure}
|
|
|
|
\subsection{Experimental System Identification}
|
|
|
|
\begin{itemize}
|
|
\item Experimental validation (granite test bench)
|
|
\item Electrical parameters
|
|
\item Required instrumentation to read force sensor?
|
|
\item Add resistor to include high pass filtering: no risk of saturating the ADC
|
|
\item Estimation of piezoelectric parameters
|
|
\end{itemize}
|
|
|
|
\subsection{Validation with Simscape model}
|
|
|
|
\begin{itemize}
|
|
\item Tuned Simscape model
|
|
\item IFF results: OK
|
|
\end{itemize}
|
|
|
|
\section{Design of Nano-Hexapod Flexible Joints}
|
|
|
|
\begin{itemize}
|
|
\item Perfect flexible joint
|
|
\item Imperfection of the flexible joint: Model
|
|
\item Study of the effect of limited stiffness in constrain directions and non-null stiffness in other directions
|
|
\item Obtained Specification
|
|
\item Design optimisation (FEM)
|
|
\item Implementation of flexible elements in the Simscape model: close to simplified model
|
|
\end{itemize}
|
|
|
|
\subsection{Effect of flexible joint characteristics on obtained dynamics}
|
|
|
|
\begin{itemize}
|
|
\item Based on Simscape model
|
|
\item Effect of axial stiffness, bending stiffness, \ldots{}
|
|
\item Obtained specifications (trade-off)
|
|
\end{itemize}
|
|
|
|
|
|
\subsection{Flexible joint geometry optimization}
|
|
|
|
\begin{itemize}
|
|
\item Chosen geometry
|
|
\item Show different existing geometry for flexible joints used on hexapods
|
|
\item Optimisation with Ansys
|
|
\item Validation with Simscape model
|
|
\end{itemize}
|
|
|
|
\subsection{Experimental identification}
|
|
|
|
\begin{itemize}
|
|
\item Experimental validation, characterisation (\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/test-bench-flexible-joints-adv/bending.org}{study})
|
|
\item Visual inspection
|
|
\item Test bench
|
|
\item Obtained results
|
|
\end{itemize}
|
|
|
|
\section{Choice of Instrumentation}
|
|
|
|
\begin{itemize}
|
|
\item Discussion of the choice of other elements:
|
|
\begin{itemize}
|
|
\item Encoder
|
|
\item DAC
|
|
\item ADC (reading of the force sensors)
|
|
\item real time controller
|
|
\item Voltage amplifiers
|
|
\end{itemize}
|
|
\item Give some requirements + chosen elements + measurements / validation
|
|
\end{itemize}
|
|
|
|
\subsection{DAC and ADC}
|
|
|
|
\begin{itemize}
|
|
\item Force sensor
|
|
\end{itemize}
|
|
|
|
\subsection{Voltage amplifier (\href{https://research.tdehaeze.xyz/test-bench-pd200/}{link})}
|
|
|
|
\begin{itemize}
|
|
\item Test Bench: capacitive load, ADC, DAC, Instrumentation amplifier
|
|
\item Noise measurement
|
|
\item Transfer function measurement
|
|
\end{itemize}
|
|
|
|
\subsection{Encoder (\href{https://research.tdehaeze.xyz/test-bench-vionic/}{link})}
|
|
\begin{itemize}
|
|
\item Noise measurement
|
|
\end{itemize}
|
|
|
|
\section{Obtained Design}
|
|
\begin{itemize}
|
|
\item Explain again the different specifications in terms of space, payload, etc..
|
|
\item CAD view of the nano-hexapod
|
|
\item Chosen geometry, materials, ease of mounting, cabling, \ldots{}
|
|
\item Validation on Simscape with accurate model?
|
|
\end{itemize}
|
|
|
|
\section{Detailed Design - Conclusion}
|
|
\chapter{Experimental Validation}
|
|
\minitoc
|
|
\paragraph{Abstract}
|
|
|
|
\begin{figure}[htbp]
|
|
\centering
|
|
\includegraphics[scale=1,width=\linewidth]{figs/chapter3_overview.png}
|
|
\caption{\label{fig:chapter3_overview}Figure caption}
|
|
\end{figure}
|
|
|
|
Schematic representation of the experimental validation process.
|
|
\begin{itemize}
|
|
\item APA
|
|
\item Strut
|
|
\item Nano-hexapod on suspended table
|
|
\item Nano-hexapod with Spindle
|
|
\end{itemize}
|
|
|
|
\section{Amplified Piezoelectric Actuator}
|
|
|
|
\section{Flexible Joints}
|
|
|
|
\section{Struts}
|
|
|
|
\section{Nano-Hexapod}
|
|
|
|
\section{Rotating Nano-Hexapod}
|
|
|
|
\section{ID31 Micro Station}
|
|
|
|
\section{Experimental Validation - Conclusion}
|
|
\chapter{Conclusion and Future Work}
|
|
|
|
\section{Alternative Architecture}
|
|
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/alternative-micro-station-architecture.org}
|
|
|
|
\appendix
|
|
|
|
\chapter{Mathematical Tools for Mechatronics}
|
|
\section{Feedback Control}
|
|
|
|
|
|
\section{Dynamical Noise Budgeting}
|
|
\subsection{Power Spectral Density}
|
|
|
|
\subsection{Cumulative Amplitude Spectrum}
|
|
|
|
\chapter{Stewart Platform - Kinematics}
|
|
\printbibliography[heading=bibintoc,title={Bibliography}]
|
|
|
|
\chapter*{List of Publications}
|
|
\begin{refsection}[ref.bib]
|
|
% List all papers even if not cited
|
|
\nocite{*}
|
|
% Sort by year
|
|
\newrefcontext[sorting=ynt]
|
|
% Articles
|
|
\printbibliography[keyword={publication},heading={subbibliography},title={Articles},env=mypubs,type={article}]
|
|
% Proceedings
|
|
\printbibliography[keyword={publication},heading={subbibliography},title={In Proceedings},env=mypubs,type={inproceedings}]
|
|
\end{refsection}
|
|
|
|
\printglossary[type=\acronymtype]
|
|
\printglossary[type=\glossarytype]
|
|
\printglossary
|
|
\end{document}
|