digital-brain/content/zettels/stewart_platforms.md

20 KiB

+++ title = "Stewart Platforms" author = ["Dehaeze Thomas"] draft = false category = "equipment" +++

Tags :

Manufacturers

Manufacturers Country
PI Germany
Newport USA
Symetrie France
CSA Engineering USA
Aerotech USA
SmarAct Germany
Gridbots India
Alio Industries USA
MOOG

Stewart Platforms at ESRF

Beamline Manufacturer Comments
ID11 Symetrie Small, Piezo based
ID31 Symetrie Large Stroke, Encoders, DC motors
ID01 PI
ID16a ESRF Piezo (PI)

Flexure Jointed Stewart Platforms

Papers by J.E. McInroy:

  • <obrien98_lesson>
  • <mcinroy99_precis_fault_toler_point_using_stewar_platf>
  • <mcinroy99_dynam>
  • <mcinroy00_desig_contr_flexur_joint_hexap>
  • <chen00_ident_decoup_contr_flexur_joint_hexap>
  • <mcinroy02_model_desig_flexur_joint_stewar>
  • <li01_simul_vibrat_isolat_point_contr>
  • <lin03_adapt_sinus_distur_cancel_precis>
  • <jafari03_orthog_gough_stewar_platf_microm>
  • <chen04_decoup_contr_flexur_joint_hexap>

Main advantage of flexure jointed Stewart platforms over conventional (long stroke) ones:

  • Linear behavior
  • Constant Jacobian matrices along all stroke
  • No singularity
  • Easier to decouple the dynamics that works for all the stroke

Built Stewart PLatforms

Actuators:

  • Short Stroke: PZT, Voice Coil, Magnetostrictive
  • Long Stroke: DC, AC, Servo + Ball Screw, Inchworm

Joints:

  • Flexible: usually for short stroke
  • Conventional

Sensors:

  • Force Sensors
  • Relative Motion Sensors: Encoders, LVDT
  • Strain Gauge
  • Inertial Sensors (Geophone, Accelerometer)
  • External Metrology

Short Stroke

University Figure Configuration Joints Actuators Sensors Application Link to bibliography
JPL 5 Cubic Flexible Voice Coil (0.5 mm) Force (collocated) <spanos95_soft_activ_vibrat_isolat>, <rahman98_multiax> Vibration Isolation (Space)
Washinton, JPL 16 Cubic Elastomers Voice Coil (10 mm) Force, LVDT, Geophones Isolation + Pointing (Space) <thayer98_stewar>, <thayer02_six_axis_vibrat_isolat_system>, <hauge04_sensor_contr_space_based_six>
Wyoming 17 Cubic (CoM=CoK) Flexible Voice Coil Force <mcinroy99_dynam>, <mcinroy99_precis_fault_toler_point_using_stewar_platf>, <mcinroy00_desig_contr_flexur_joint_hexap>, <li01_simul_vibrat_isolat_point_contr>, <jafari03_orthog_gough_stewar_platf_microm>
Brussels 21 Cubic Flexible Voice Coil Force Vibration Isolation <hanieh03_activ_stewar>, <preumont07_six_axis_singl_stage_activ>
SRDC 2 Not Cubic Ball joints Voice Coil (10 mm) <taranti01_effic_algor_vibrat_suppr>
SRDC 18 Non-Cubic Flexible Voice Coil Accelerometers, External metrology: Eddy Current + optical Pointing <chen03_payload_point_activ_vibrat_isolat>
Harbin (China) 13 Cubic Flexible Voice Coil Accelerometer in each leg <chi15_desig_exper_study_vcm_based>, <tang18_decen_vibrat_contr_voice_coil>, <jiao18_dynam_model_exper_analy_stewar>
Einhoven 9 Almost cubic Flexible Voice Coil Force Sensor + Accelerometer Vibration Isolation <beijen18_self_tunin_mimo_distur_feedf>, <tjepkema12_activ_ph>
JPL 4 Cubic (6-UPU) Flexible Magnetostrictive Force (collocated), Accelerometers Vibration Isolation <geng93_six_degree_of_freed_activ>, <geng94_six_degree_of_freed_activ>, <geng95_intel_contr_system_multip_degree>
China 10 Non-cubic Flexible Magnetostrictive Inertial <zhang11_six_dof>
Brussels 20 Cubic Flexible Piezoelectric, Amplified Piezo Force Active Damping <abu02_stiff_soft_stewar_platf_activ>
SRDC 19 Cubic Piezoelectric (50 um) Geophone Vibration <agrawal04_algor_activ_vibrat_isolat_spacec>
Taiwan 14 Cubic Flexible Piezoelectric (120 um) External capacitive <ting06_desig_stewar_nanos_platf>, <ting13_compos_contr_desig_stewar_nanos_platf>
Taiwan 15 Non-Cubic Flexible Piezoelectric (160 um) External capacitive (LION) <ting07_measur_calib_stewar_microm_system>
Harbin (China) 12 6-SPS (Optimized) Flexible Piezoelectric Strain Gauge <du14_piezo_actuat_high_precis_flexib>
Japan 6 Non-Cubic Flexible Piezoelectric (16 um) Eddy Current Displacement Sensors Cutting machine <furutani04_nanom_cuttin_machin_using_stewar>
China 11 6-UPS (Cubic?) Flexible Piezoelectric Force, Position <yang19_dynam_model_decoup_contr_flexib>
Shangai 8 Cubic Flexible Piezoelectric Force Sensor + Accelerometer <wang16_inves_activ_vibrat_isolat_stewar>
Matra (France) 3 Cubic Flexible Piezoelectric (25 um) Piezo force sensors Vibration control <defendini00_techn>
Japan 7 Non-Cubic Flexible Inchworm <torii12_small_size_self_propel_stewar_platf>
Netherlands 1 Non-Cubic Flexible 3-phase rotary motor Rotary Encoders <&naves20_desig;&naves20_t_flex>

{{< figure src="/ox-hugo/stewart_naves.jpg" caption="<span class="figure-number">Figure 1: T-flex <&naves20_desig>" >}}

{{< figure src="/ox-hugo/stewart_naval.jpg" caption="<span class="figure-number">Figure 2: <&taranti01_effic_algor_vibrat_suppr>" >}}

{{< figure src="/ox-hugo/stewart_mais.jpg" caption="<span class="figure-number">Figure 3: <&defendini00_techn>" >}}

{{< figure src="/ox-hugo/stewart_geng.jpg" caption="<span class="figure-number">Figure 4: <&geng94_six_degree_of_freed_activ>" >}}

{{< figure src="/ox-hugo/stewart_jpl.jpg" caption="<span class="figure-number">Figure 5: <&spanos95_soft_activ_vibrat_isolat>" >}}

{{< figure src="/ox-hugo/stewart_furutani.jpg" caption="<span class="figure-number">Figure 6: <&furutani04_nanom_cuttin_machin_using_stewar>" >}}

{{< figure src="/ox-hugo/stewart_torii.jpg" caption="<span class="figure-number">Figure 7: <&torii12_small_size_self_propel_stewar_platf>" >}}

{{< figure src="/ox-hugo/stewart_wang16.jpg" caption="<span class="figure-number">Figure 8: <&wang16_inves_activ_vibrat_isolat_stewar>" >}}

{{< figure src="/ox-hugo/stewart_beijen.jpg" caption="<span class="figure-number">Figure 9: <&beijen18_self_tunin_mimo_distur_feedf>" >}}

{{< figure src="/ox-hugo/stewart_zhang11.jpg" caption="<span class="figure-number">Figure 10: <&zhang11_six_dof>" >}}

{{< figure src="/ox-hugo/stewart_yang19.jpg" caption="<span class="figure-number">Figure 11: <&yang19_dynam_model_decoup_contr_flexib>" >}}

{{< figure src="/ox-hugo/stewart_du14.jpg" caption="<span class="figure-number">Figure 12: <&du14_piezo_actuat_high_precis_flexib>" >}}

{{< figure src="/ox-hugo/stewart_tang18.jpg" caption="<span class="figure-number">Figure 13: <&tang18_decen_vibrat_contr_voice_coil>" >}}

{{< figure src="/ox-hugo/stewart_nanoscale.jpg" caption="<span class="figure-number">Figure 14: <&ting06_desig_stewar_nanos_platf>" >}}

{{< figure src="/ox-hugo/stewart_ting07.jpg" caption="<span class="figure-number">Figure 15: <&ting07_measur_calib_stewar_microm_system>" >}}

{{< figure src="/ox-hugo/stewart_ht_uw.jpg" caption="<span class="figure-number">Figure 16: Hood Technology Corporation (HT) and the University of Washington (UW) have designed and tested a unique hexapod design for spaceborne interferometry missions <&thayer02_six_axis_vibrat_isolat_system>" >}}

{{< figure src="/ox-hugo/stewart_uw_gsp.jpg" caption="<span class="figure-number">Figure 17: UW GSP: Mutually Orthogonal Stewart Geometry <&li01_simul_fault_vibrat_isolat_point>" >}}

{{< figure src="/ox-hugo/stewart_pph.jpg" caption="<span class="figure-number">Figure 18: Precision Pointing Hexapod (PPH) <&chen03_payload_point_activ_vibrat_isolat>" >}}

{{< figure src="/ox-hugo/stewart_uqp.jpg" caption="<span class="figure-number">Figure 19: Ultra Quiet Platform (UQP) <&agrawal04_algor_activ_vibrat_isolat_spacec>" >}}

{{< figure src="/ox-hugo/stewart_ulb_pz.jpg" caption="<span class="figure-number">Figure 20: ULB - Piezoelectric <&abu02_stiff_soft_stewar_platf_activ>" >}}

{{< figure src="/ox-hugo/stewart_ulb_vc.jpg" caption="<span class="figure-number">Figure 21: ULB - Voice Coil <&hanieh03_activ_stewar>" >}}

Long Stroke

University Figure Configuration Joints Actuators Sensors Link to bibliography
Japan 22 6-UPS Conventional DC, gear + rack pinion Encoder, 7um res <cleary91_protot_paral_manip>
Seoul 23 Non-Cubic Conventional Hydraulic LVDT <kim00_robus_track_contr_desig_dof_paral_manip>
Xidian (China) 24 Non-Cubic Conventional Servo Motor + Screwball Encoder <su04_distur_rejec_high_precis_motion>
Czech 25 6-UPS Conventional DC, Ball Screw Absolute Linear position <brezina08_ni_labview_matlab_simmec_stewar_platf_desig>, <houska10_desig_implem_absol_linear_posit>, <brezina10_contr_desig_stewar_platf_linear_actuat>

{{< figure src="/ox-hugo/stewart_cleary.jpg" caption="<span class="figure-number">Figure 22: <&cleary91_protot_paral_manip>" >}}

{{< figure src="/ox-hugo/stewart_kim00.jpg" caption="<span class="figure-number">Figure 23: <&kim01_six>" >}}

{{< figure src="/ox-hugo/stewart_su04.jpg" caption="<span class="figure-number">Figure 24: <&su04_distur_rejec_high_precis_motion>" >}}

{{< figure src="/ox-hugo/stewart_czech.jpg" caption="<span class="figure-number">Figure 25: Stewart platform from Brno University (Czech) <&brezina08_ni_labview_matlab_simmec_stewar_platf_desig>" >}}

Bibliography

<./biblio/references.bib>