20 KiB
+++ title = "Stewart Platforms" author = ["Dehaeze Thomas"] draft = false category = "equipment" +++
Tags :
Manufacturers
Manufacturers | Country |
---|---|
PI | Germany |
Newport | USA |
Symetrie | France |
CSA Engineering | USA |
Aerotech | USA |
SmarAct | Germany |
Gridbots | India |
Alio Industries | USA |
MOOG |
Stewart Platforms at ESRF
Beamline | Manufacturer | Comments |
---|---|---|
ID11 | Symetrie | Small, Piezo based |
ID31 | Symetrie | Large Stroke, Encoders, DC motors |
ID01 | PI | |
ID16a | ESRF | Piezo (PI) |
Flexure Jointed Stewart Platforms
Papers by J.E. McInroy:
- <obrien98_lesson>
- <mcinroy99_precis_fault_toler_point_using_stewar_platf>
- <mcinroy99_dynam>
- <mcinroy00_desig_contr_flexur_joint_hexap>
- <chen00_ident_decoup_contr_flexur_joint_hexap>
- <mcinroy02_model_desig_flexur_joint_stewar>
- <li01_simul_vibrat_isolat_point_contr>
- <lin03_adapt_sinus_distur_cancel_precis>
- <jafari03_orthog_gough_stewar_platf_microm>
- <chen04_decoup_contr_flexur_joint_hexap>
Main advantage of flexure jointed Stewart platforms over conventional (long stroke) ones:
- Linear behavior
- Constant Jacobian matrices along all stroke
- No singularity
- Easier to decouple the dynamics that works for all the stroke
Built Stewart PLatforms
Actuators:
- Short Stroke: PZT, Voice Coil, Magnetostrictive
- Long Stroke: DC, AC, Servo + Ball Screw, Inchworm
Joints:
- Flexible: usually for short stroke
- Conventional
Sensors:
- Force Sensors
- Relative Motion Sensors: Encoders, LVDT
- Strain Gauge
- Inertial Sensors (Geophone, Accelerometer)
- External Metrology
Short Stroke
University | Figure | Configuration | Joints | Actuators | Sensors | Application | Link to bibliography |
---|---|---|---|---|---|---|---|
JPL | 5 | Cubic | Flexible | Voice Coil (0.5 mm) | Force (collocated) | <spanos95_soft_activ_vibrat_isolat>, <rahman98_multiax> Vibration Isolation (Space) | |
Washinton, JPL | 16 | Cubic | Elastomers | Voice Coil (10 mm) | Force, LVDT, Geophones | Isolation + Pointing (Space) | <thayer98_stewar>, <thayer02_six_axis_vibrat_isolat_system>, <hauge04_sensor_contr_space_based_six> |
Wyoming | 17 | Cubic (CoM=CoK) | Flexible | Voice Coil | Force | <mcinroy99_dynam>, <mcinroy99_precis_fault_toler_point_using_stewar_platf>, <mcinroy00_desig_contr_flexur_joint_hexap>, <li01_simul_vibrat_isolat_point_contr>, <jafari03_orthog_gough_stewar_platf_microm> | |
Brussels | 21 | Cubic | Flexible | Voice Coil | Force | Vibration Isolation | <hanieh03_activ_stewar>, <preumont07_six_axis_singl_stage_activ> |
SRDC | 2 | Not Cubic | Ball joints | Voice Coil (10 mm) | <taranti01_effic_algor_vibrat_suppr> | ||
SRDC | 18 | Non-Cubic | Flexible | Voice Coil | Accelerometers, External metrology: Eddy Current + optical | Pointing | <chen03_payload_point_activ_vibrat_isolat> |
Harbin (China) | 13 | Cubic | Flexible | Voice Coil | Accelerometer in each leg | <chi15_desig_exper_study_vcm_based>, <tang18_decen_vibrat_contr_voice_coil>, <jiao18_dynam_model_exper_analy_stewar> | |
Einhoven | 9 | Almost cubic | Flexible | Voice Coil | Force Sensor + Accelerometer | Vibration Isolation | <beijen18_self_tunin_mimo_distur_feedf>, <tjepkema12_activ_ph> |
JPL | 4 | Cubic (6-UPU) | Flexible | Magnetostrictive | Force (collocated), Accelerometers | Vibration Isolation | <geng93_six_degree_of_freed_activ>, <geng94_six_degree_of_freed_activ>, <geng95_intel_contr_system_multip_degree> |
China | 10 | Non-cubic | Flexible | Magnetostrictive | Inertial | <zhang11_six_dof> | |
Brussels | 20 | Cubic | Flexible | Piezoelectric, Amplified | Piezo Force | Active Damping | <abu02_stiff_soft_stewar_platf_activ> |
SRDC | 19 | Cubic | Piezoelectric (50 um) | Geophone | Vibration | <agrawal04_algor_activ_vibrat_isolat_spacec> | |
Taiwan | 14 | Cubic | Flexible | Piezoelectric (120 um) | External capacitive | <ting06_desig_stewar_nanos_platf>, <ting13_compos_contr_desig_stewar_nanos_platf> | |
Taiwan | 15 | Non-Cubic | Flexible | Piezoelectric (160 um) | External capacitive (LION) | <ting07_measur_calib_stewar_microm_system> | |
Harbin (China) | 12 | 6-SPS (Optimized) | Flexible | Piezoelectric | Strain Gauge | <du14_piezo_actuat_high_precis_flexib> | |
Japan | 6 | Non-Cubic | Flexible | Piezoelectric (16 um) | Eddy Current Displacement Sensors | Cutting machine | <furutani04_nanom_cuttin_machin_using_stewar> |
China | 11 | 6-UPS (Cubic?) | Flexible | Piezoelectric | Force, Position | <yang19_dynam_model_decoup_contr_flexib> | |
Shangai | 8 | Cubic | Flexible | Piezoelectric | Force Sensor + Accelerometer | <wang16_inves_activ_vibrat_isolat_stewar> | |
Matra (France) | 3 | Cubic | Flexible | Piezoelectric (25 um) | Piezo force sensors | Vibration control | <defendini00_techn> |
Japan | 7 | Non-Cubic | Flexible | Inchworm | <torii12_small_size_self_propel_stewar_platf> | ||
Netherlands | 1 | Non-Cubic | Flexible | 3-phase rotary motor | Rotary Encoders | <&naves20_desig;&naves20_t_flex> |
{{< figure src="/ox-hugo/stewart_naves.jpg" caption="<span class="figure-number">Figure 1: T-flex <&naves20_desig>" >}}
{{< figure src="/ox-hugo/stewart_naval.jpg" caption="<span class="figure-number">Figure 2: <&taranti01_effic_algor_vibrat_suppr>" >}}
{{< figure src="/ox-hugo/stewart_mais.jpg" caption="<span class="figure-number">Figure 3: <&defendini00_techn>" >}}
{{< figure src="/ox-hugo/stewart_geng.jpg" caption="<span class="figure-number">Figure 4: <&geng94_six_degree_of_freed_activ>" >}}
{{< figure src="/ox-hugo/stewart_jpl.jpg" caption="<span class="figure-number">Figure 5: <&spanos95_soft_activ_vibrat_isolat>" >}}
{{< figure src="/ox-hugo/stewart_furutani.jpg" caption="<span class="figure-number">Figure 6: <&furutani04_nanom_cuttin_machin_using_stewar>" >}}
{{< figure src="/ox-hugo/stewart_torii.jpg" caption="<span class="figure-number">Figure 7: <&torii12_small_size_self_propel_stewar_platf>" >}}
{{< figure src="/ox-hugo/stewart_wang16.jpg" caption="<span class="figure-number">Figure 8: <&wang16_inves_activ_vibrat_isolat_stewar>" >}}
{{< figure src="/ox-hugo/stewart_beijen.jpg" caption="<span class="figure-number">Figure 9: <&beijen18_self_tunin_mimo_distur_feedf>" >}}
{{< figure src="/ox-hugo/stewart_zhang11.jpg" caption="<span class="figure-number">Figure 10: <&zhang11_six_dof>" >}}
{{< figure src="/ox-hugo/stewart_yang19.jpg" caption="<span class="figure-number">Figure 11: <&yang19_dynam_model_decoup_contr_flexib>" >}}
{{< figure src="/ox-hugo/stewart_du14.jpg" caption="<span class="figure-number">Figure 12: <&du14_piezo_actuat_high_precis_flexib>" >}}
{{< figure src="/ox-hugo/stewart_tang18.jpg" caption="<span class="figure-number">Figure 13: <&tang18_decen_vibrat_contr_voice_coil>" >}}
{{< figure src="/ox-hugo/stewart_nanoscale.jpg" caption="<span class="figure-number">Figure 14: <&ting06_desig_stewar_nanos_platf>" >}}
{{< figure src="/ox-hugo/stewart_ting07.jpg" caption="<span class="figure-number">Figure 15: <&ting07_measur_calib_stewar_microm_system>" >}}
{{< figure src="/ox-hugo/stewart_ht_uw.jpg" caption="<span class="figure-number">Figure 16: Hood Technology Corporation (HT) and the University of Washington (UW) have designed and tested a unique hexapod design for spaceborne interferometry missions <&thayer02_six_axis_vibrat_isolat_system>" >}}
{{< figure src="/ox-hugo/stewart_uw_gsp.jpg" caption="<span class="figure-number">Figure 17: UW GSP: Mutually Orthogonal Stewart Geometry <&li01_simul_fault_vibrat_isolat_point>" >}}
{{< figure src="/ox-hugo/stewart_pph.jpg" caption="<span class="figure-number">Figure 18: Precision Pointing Hexapod (PPH) <&chen03_payload_point_activ_vibrat_isolat>" >}}
{{< figure src="/ox-hugo/stewart_uqp.jpg" caption="<span class="figure-number">Figure 19: Ultra Quiet Platform (UQP) <&agrawal04_algor_activ_vibrat_isolat_spacec>" >}}
{{< figure src="/ox-hugo/stewart_ulb_pz.jpg" caption="<span class="figure-number">Figure 20: ULB - Piezoelectric <&abu02_stiff_soft_stewar_platf_activ>" >}}
{{< figure src="/ox-hugo/stewart_ulb_vc.jpg" caption="<span class="figure-number">Figure 21: ULB - Voice Coil <&hanieh03_activ_stewar>" >}}
Long Stroke
University | Figure | Configuration | Joints | Actuators | Sensors | Link to bibliography |
---|---|---|---|---|---|---|
Japan | 22 | 6-UPS | Conventional | DC, gear + rack pinion | Encoder, 7um res | <cleary91_protot_paral_manip> |
Seoul | 23 | Non-Cubic | Conventional | Hydraulic | LVDT | <kim00_robus_track_contr_desig_dof_paral_manip> |
Xidian (China) | 24 | Non-Cubic | Conventional | Servo Motor + Screwball | Encoder | <su04_distur_rejec_high_precis_motion> |
Czech | 25 | 6-UPS | Conventional | DC, Ball Screw | Absolute Linear position | <brezina08_ni_labview_matlab_simmec_stewar_platf_desig>, <houska10_desig_implem_absol_linear_posit>, <brezina10_contr_desig_stewar_platf_linear_actuat> |
{{< figure src="/ox-hugo/stewart_cleary.jpg" caption="<span class="figure-number">Figure 22: <&cleary91_protot_paral_manip>" >}}
{{< figure src="/ox-hugo/stewart_kim00.jpg" caption="<span class="figure-number">Figure 23: <&kim01_six>" >}}
{{< figure src="/ox-hugo/stewart_su04.jpg" caption="<span class="figure-number">Figure 24: <&su04_distur_rejec_high_precis_motion>" >}}
{{< figure src="/ox-hugo/stewart_czech.jpg" caption="<span class="figure-number">Figure 25: Stewart platform from Brno University (Czech) <&brezina08_ni_labview_matlab_simmec_stewar_platf_desig>" >}}
Bibliography
<./biblio/references.bib>