+++ title = "Stewart Platforms" author = ["Dehaeze Thomas"] draft = false category = "equipment" +++ Tags : ## Manufacturers {#manufacturers} | Manufacturers | Country | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------| | [PI](https://www.physikinstrumente.com/en/products/parallel-kinematic-hexapods/) | Germany | | [Newport](https://www.newport.com/search/?q1=hexapod%3Arelevance%3Acompatibility%3AMETRIC%3AisObsolete%3Afalse%3A-excludeCountries%3AFR%3AnpCategory%3Ahexapods&ajax&text=hexapod) | USA | | [Symetrie](https://symetrie.fr/en/hexapods-en/positioning-hexapods/) | France | | [CSA Engineering](https://www.csaengineering.com/products-services/hexapod-positioning-systems/hexapod-models.html) | USA | | [Aerotech](https://www.aerotech.com/product-catalog/hexapods.aspx) | USA | | [SmarAct](https://www.smaract.com/smarpod) | Germany | | [Gridbots](https://www.gridbots.com/hexamove.html) | India | | [Alio Industries](https://www.alioindustries.com/) | USA | | [MOOG](https://www.moog.com/products/hexapods-positioning-systems.html) | | ## Stewart Platforms at ESRF {#stewart-platforms-at-esrf} | Beamline | Manufacturer | Comments | |----------|--------------|-----------------------------------| | ID11 | Symetrie | Small, Piezo based | | ID31 | Symetrie | Large Stroke, Encoders, DC motors | | ID01 | PI | | | ID16a | ESRF | Piezo (PI) | ## Flexure Jointed Stewart Platforms {#flexure-jointed-stewart-platforms} Papers by J.E. McInroy: - - - - - - - - - - Main advantage of flexure jointed Stewart platforms over conventional (long stroke) ones: - Linear behavior - Constant Jacobian matrices along all stroke - No singularity - Easier to decouple the dynamics that works for all the stroke ## Built Stewart PLatforms {#built-stewart-platforms} **Actuators**: - Short Stroke: PZT, Voice Coil, Magnetostrictive - Long Stroke: DC, AC, Servo + Ball Screw, Inchworm **Joints**: - Flexible: usually for short stroke - Conventional **Sensors**: - Force Sensors - Relative Motion Sensors: Encoders, LVDT - Strain Gauge - Inertial Sensors (Geophone, Accelerometer) - External Metrology ### Short Stroke {#short-stroke} | University | Figure | Configuration | Joints | Actuators | Sensors | Application | Link to bibliography | |----------------|--------------------------------------|-------------------|-------------|--------------------------|------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | JPL | [5](#figure--fig:stewart-jpl) | Cubic | Flexible | Voice Coil (0.5 mm) | Force (collocated) | | , Vibration Isolation (Space) | | Washinton, JPL | [16](#figure--fig:stewart-ht-uw) | Cubic | Elastomers | Voice Coil (10 mm) | Force, LVDT, Geophones | Isolation + Pointing (Space) | , , | | Wyoming | [17](#figure--fig:stewart-uw-gsp) | Cubic (CoM=CoK) | Flexible | Voice Coil | Force | | , , , , | | Brussels | [21](#figure--fig:stewart-ulb-vc) | Cubic | Flexible | Voice Coil | Force | Vibration Isolation | , | | SRDC | [2](#figure--fig:stewart-naval) | Not Cubic | Ball joints | Voice Coil (10 mm) | | | | | SRDC | [18](#figure--fig:stewart-pph) | Non-Cubic | Flexible | Voice Coil | Accelerometers, External metrology: Eddy Current + optical | Pointing | | | Harbin (China) | [13](#figure--fig:stewart-tang18) | Cubic | Flexible | Voice Coil | Accelerometer in each leg | | , , | | Einhoven | [9](#figure--fig:stewart-beijen) | Almost cubic | Flexible | Voice Coil | Force Sensor + Accelerometer | Vibration Isolation | , | | JPL | [4](#figure--fig:stewart-geng) | Cubic (6-UPU) | Flexible | Magnetostrictive | Force (collocated), Accelerometers | Vibration Isolation | , , | | China | [10](#figure--fig:stewart-zhang11) | Non-cubic | Flexible | Magnetostrictive | Inertial | | | | Brussels | [20](#figure--fig:stewart-ulb-pz) | Cubic | Flexible | Piezoelectric, Amplified | Piezo Force | Active Damping | | | SRDC | [19](#figure--fig:stewart-uqp) | Cubic | | Piezoelectric (50 um) | Geophone | Vibration | | | Taiwan | [14](#figure--fig:stewart-nanoscale) | Cubic | Flexible | Piezoelectric (120 um) | External capacitive | | , | | Taiwan | [15](#figure--fig:stewart-ting07) | Non-Cubic | Flexible | Piezoelectric (160 um) | External capacitive (LION) | | | | Harbin (China) | [12](#figure--fig:stewart-du14) | 6-SPS (Optimized) | Flexible | Piezoelectric | Strain Gauge | | | | Japan | [6](#figure--fig:stewart-furutani) | Non-Cubic | Flexible | Piezoelectric (16 um) | Eddy Current Displacement Sensors | Cutting machine | | | China | [11](#figure--fig:stewart-yang19) | 6-UPS (Cubic?) | Flexible | Piezoelectric | Force, Position | | | | Shangai | [8](#figure--fig:stewart-wang16) | Cubic | Flexible | Piezoelectric | Force Sensor + Accelerometer | | | | Matra (France) | [3](#figure--fig:stewart-mais) | Cubic | Flexible | Piezoelectric (25 um) | Piezo force sensors | Vibration control | | | Japan | [7](#figure--fig:stewart-torii) | Non-Cubic | Flexible | Inchworm | | | | | Netherlands | [1](#figure--fig:stewart-naves) | Non-Cubic | Flexible | 3-phase rotary motor | Rotary Encoders | | <&naves20_desig;&naves20_t_flex> | {{< figure src="/ox-hugo/stewart_naves.jpg" caption="Figure 1: T-flex <&naves20_desig>" >}} {{< figure src="/ox-hugo/stewart_naval.jpg" caption="Figure 2: <&taranti01_effic_algor_vibrat_suppr>" >}} {{< figure src="/ox-hugo/stewart_mais.jpg" caption="Figure 3: <&defendini00_techn>" >}} {{< figure src="/ox-hugo/stewart_geng.jpg" caption="Figure 4: <&geng94_six_degree_of_freed_activ>" >}} {{< figure src="/ox-hugo/stewart_jpl.jpg" caption="Figure 5: <&spanos95_soft_activ_vibrat_isolat>" >}} {{< figure src="/ox-hugo/stewart_furutani.jpg" caption="Figure 6: <&furutani04_nanom_cuttin_machin_using_stewar>" >}} {{< figure src="/ox-hugo/stewart_torii.jpg" caption="Figure 7: <&torii12_small_size_self_propel_stewar_platf>" >}} {{< figure src="/ox-hugo/stewart_wang16.jpg" caption="Figure 8: <&wang16_inves_activ_vibrat_isolat_stewar>" >}} {{< figure src="/ox-hugo/stewart_beijen.jpg" caption="Figure 9: <&beijen18_self_tunin_mimo_distur_feedf>" >}} {{< figure src="/ox-hugo/stewart_zhang11.jpg" caption="Figure 10: <&zhang11_six_dof>" >}} {{< figure src="/ox-hugo/stewart_yang19.jpg" caption="Figure 11: <&yang19_dynam_model_decoup_contr_flexib>" >}} {{< figure src="/ox-hugo/stewart_du14.jpg" caption="Figure 12: <&du14_piezo_actuat_high_precis_flexib>" >}} {{< figure src="/ox-hugo/stewart_tang18.jpg" caption="Figure 13: <&tang18_decen_vibrat_contr_voice_coil>" >}} {{< figure src="/ox-hugo/stewart_nanoscale.jpg" caption="Figure 14: <&ting06_desig_stewar_nanos_platf>" >}} {{< figure src="/ox-hugo/stewart_ting07.jpg" caption="Figure 15: <&ting07_measur_calib_stewar_microm_system>" >}} {{< figure src="/ox-hugo/stewart_ht_uw.jpg" caption="Figure 16: Hood Technology Corporation (HT) and the University of Washington (UW) have designed and tested a unique hexapod design for spaceborne interferometry missions <&thayer02_six_axis_vibrat_isolat_system>" >}} {{< figure src="/ox-hugo/stewart_uw_gsp.jpg" caption="Figure 17: UW GSP: Mutually Orthogonal Stewart Geometry <&li01_simul_fault_vibrat_isolat_point>" >}} {{< figure src="/ox-hugo/stewart_pph.jpg" caption="Figure 18: Precision Pointing Hexapod (PPH) <&chen03_payload_point_activ_vibrat_isolat>" >}} {{< figure src="/ox-hugo/stewart_uqp.jpg" caption="Figure 19: Ultra Quiet Platform (UQP) <&agrawal04_algor_activ_vibrat_isolat_spacec>" >}} {{< figure src="/ox-hugo/stewart_ulb_pz.jpg" caption="Figure 20: ULB - Piezoelectric <&abu02_stiff_soft_stewar_platf_activ>" >}} {{< figure src="/ox-hugo/stewart_ulb_vc.jpg" caption="Figure 21: ULB - Voice Coil <&hanieh03_activ_stewar>" >}} ### Long Stroke {#long-stroke} | University | Figure | Configuration | Joints | Actuators | Sensors | Link to bibliography | |----------------|-----------------------------------|---------------|--------------|-------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------| | Japan | [22](#figure--fig:stewart-cleary) | 6-UPS | Conventional | DC, gear + rack pinion | Encoder, 7um res | | | Seoul | [23](#figure--fig:stewart-kim00) | Non-Cubic | Conventional | Hydraulic | LVDT | | | Xidian (China) | [24](#figure--fig:stewart-su04) | Non-Cubic | Conventional | Servo Motor + Screwball | Encoder | | | Czech | [25](#figure--fig:stewart-czech) | 6-UPS | Conventional | DC, Ball Screw | Absolute Linear position | , , | {{< figure src="/ox-hugo/stewart_cleary.jpg" caption="Figure 22: <&cleary91_protot_paral_manip>" >}} {{< figure src="/ox-hugo/stewart_kim00.jpg" caption="Figure 23: <&kim01_six>" >}} {{< figure src="/ox-hugo/stewart_su04.jpg" caption="Figure 24: <&su04_distur_rejec_high_precis_motion>" >}} {{< figure src="/ox-hugo/stewart_czech.jpg" caption="Figure 25: Stewart platform from Brno University (Czech) <&brezina08_ni_labview_matlab_simmec_stewar_platf_desig>" >}} ## Bibliography {#bibliography} <./biblio/references.bib>