digital-brain/content/zettels/stewart_platforms.md

227 lines
20 KiB
Markdown
Raw Normal View History

2020-04-20 18:58:10 +02:00
+++
title = "Stewart Platforms"
2022-03-15 16:40:48 +01:00
author = ["Dehaeze Thomas"]
2020-04-20 18:58:10 +02:00
draft = false
2022-03-22 16:42:13 +01:00
category = "equipment"
2020-04-20 18:58:10 +02:00
+++
Tags
:
2020-09-04 15:42:37 +02:00
## Manufacturers {#manufacturers}
2021-03-14 16:00:24 +01:00
| Manufacturers | Country |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| [PI](https://www.physikinstrumente.com/en/products/parallel-kinematic-hexapods/) | Germany |
| [Newport](https://www.newport.com/search/?q1=hexapod%3Arelevance%3Acompatibility%3AMETRIC%3AisObsolete%3Afalse%3A-excludeCountries%3AFR%3AnpCategory%3Ahexapods&ajax&text=hexapod) | USA |
| [Symetrie](https://symetrie.fr/en/hexapods-en/positioning-hexapods/) | France |
| [CSA Engineering](https://www.csaengineering.com/products-services/hexapod-positioning-systems/hexapod-models.html) | USA |
| [Aerotech](https://www.aerotech.com/product-catalog/hexapods.aspx) | USA |
| [SmarAct](https://www.smaract.com/smarpod) | Germany |
| [Gridbots](https://www.gridbots.com/hexamove.html) | India |
| [Alio Industries](https://www.alioindustries.com/) | USA |
2024-05-24 20:32:40 +02:00
| [MOOG](https://www.moog.com/products/hexapods-positioning-systems.html) | |
2020-09-04 15:42:37 +02:00
## Stewart Platforms at ESRF {#stewart-platforms-at-esrf}
| Beamline | Manufacturer | Comments |
|----------|--------------|-----------------------------------|
| ID11 | Symetrie | Small, Piezo based |
| ID31 | Symetrie | Large Stroke, Encoders, DC motors |
| ID01 | PI | |
| ID16a | ESRF | Piezo (PI) |
## Flexure Jointed Stewart Platforms {#flexure-jointed-stewart-platforms}
Papers by J.E. McInroy:
2024-05-24 20:32:40 +02:00
- <obrien98_lesson>
- <mcinroy99_precis_fault_toler_point_using_stewar_platf>
- <mcinroy99_dynam>
- <mcinroy00_desig_contr_flexur_joint_hexap>
- <chen00_ident_decoup_contr_flexur_joint_hexap>
- <mcinroy02_model_desig_flexur_joint_stewar>
- <li01_simul_vibrat_isolat_point_contr>
- <lin03_adapt_sinus_distur_cancel_precis>
- <jafari03_orthog_gough_stewar_platf_microm>
- <chen04_decoup_contr_flexur_joint_hexap>
2021-09-22 16:00:00 +02:00
Main advantage of flexure jointed Stewart platforms over conventional (long stroke) ones:
- Linear behavior
- Constant Jacobian matrices along all stroke
- No singularity
- Easier to decouple the dynamics that works for all the stroke
2021-05-02 20:37:00 +02:00
2024-06-04 14:04:43 +02:00
## Built Stewart PLatforms {#built-stewart-platforms}
<span class="org-target" id="org-target--sec-built"></span>
**Actuators**:
- Short Stroke: PZT, Voice Coil, Magnetostrictive
- Long Stroke: DC, AC, Servo + Ball Screw, Inchworm
**Joints**:
- Flexible: usually for short stroke
- Conventional
**Sensors**:
- Force Sensors
- Relative Motion Sensors: Encoders, LVDT
- Strain Gauge
- Inertial Sensors (Geophone, Accelerometer)
- External Metrology
### Short Stroke {#short-stroke}
<span class="org-target" id="org-target--sec-built-short-stroke"></span>
2024-06-04 14:06:48 +02:00
| University | Figure | Configuration | Joints | Actuators | Sensors | Application | Link to bibliography |
|----------------|--------------------------------------|-------------------|-------------|--------------------------|------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JPL | [5](#figure--fig:stewart-jpl) | Cubic | Flexible | Voice Coil (0.5 mm) | Force (collocated) | | <spanos95_soft_activ_vibrat_isolat>, <rahman98_multiax> Vibration Isolation (Space) |
| Washinton, JPL | [16](#figure--fig:stewart-ht-uw) | Cubic | Elastomers | Voice Coil (10 mm) | Force, LVDT, Geophones | Isolation + Pointing (Space) | <thayer98_stewar>, <thayer02_six_axis_vibrat_isolat_system>, <hauge04_sensor_contr_space_based_six> |
| Wyoming | [17](#figure--fig:stewart-uw-gsp) | Cubic (CoM=CoK) | Flexible | Voice Coil | Force | | <mcinroy99_dynam>, <mcinroy99_precis_fault_toler_point_using_stewar_platf>, <mcinroy00_desig_contr_flexur_joint_hexap>, <li01_simul_vibrat_isolat_point_contr>, <jafari03_orthog_gough_stewar_platf_microm> |
| Brussels | [21](#figure--fig:stewart-ulb-vc) | Cubic | Flexible | Voice Coil | Force | Vibration Isolation | <hanieh03_activ_stewar>, <preumont07_six_axis_singl_stage_activ> |
| SRDC | [2](#figure--fig:stewart-naval) | Not Cubic | Ball joints | Voice Coil (10 mm) | | | <taranti01_effic_algor_vibrat_suppr> |
| SRDC | [18](#figure--fig:stewart-pph) | Non-Cubic | Flexible | Voice Coil | Accelerometers, External metrology: Eddy Current + optical | Pointing | <chen03_payload_point_activ_vibrat_isolat> |
| Harbin (China) | [13](#figure--fig:stewart-tang18) | Cubic | Flexible | Voice Coil | Accelerometer in each leg | | <chi15_desig_exper_study_vcm_based>, <tang18_decen_vibrat_contr_voice_coil>, <jiao18_dynam_model_exper_analy_stewar> |
| Einhoven | [9](#figure--fig:stewart-beijen) | Almost cubic | Flexible | Voice Coil | Force Sensor + Accelerometer | Vibration Isolation | <beijen18_self_tunin_mimo_distur_feedf>, <tjepkema12_activ_ph> |
| JPL | [4](#figure--fig:stewart-geng) | Cubic (6-UPU) | Flexible | Magnetostrictive | Force (collocated), Accelerometers | Vibration Isolation | <geng93_six_degree_of_freed_activ>, <geng94_six_degree_of_freed_activ>, <geng95_intel_contr_system_multip_degree> |
| China | [10](#figure--fig:stewart-zhang11) | Non-cubic | Flexible | Magnetostrictive | Inertial | | <zhang11_six_dof> |
| Brussels | [20](#figure--fig:stewart-ulb-pz) | Cubic | Flexible | Piezoelectric, Amplified | Piezo Force | Active Damping | <abu02_stiff_soft_stewar_platf_activ> |
| SRDC | [19](#figure--fig:stewart-uqp) | Cubic | | Piezoelectric (50 um) | Geophone | Vibration | <agrawal04_algor_activ_vibrat_isolat_spacec> |
| Taiwan | [14](#figure--fig:stewart-nanoscale) | Cubic | Flexible | Piezoelectric (120 um) | External capacitive | | <ting06_desig_stewar_nanos_platf>, <ting13_compos_contr_desig_stewar_nanos_platf> |
| Taiwan | [15](#figure--fig:stewart-ting07) | Non-Cubic | Flexible | Piezoelectric (160 um) | External capacitive (LION) | | <ting07_measur_calib_stewar_microm_system> |
| Harbin (China) | [12](#figure--fig:stewart-du14) | 6-SPS (Optimized) | Flexible | Piezoelectric | Strain Gauge | | <du14_piezo_actuat_high_precis_flexib> |
| Japan | [6](#figure--fig:stewart-furutani) | Non-Cubic | Flexible | Piezoelectric (16 um) | Eddy Current Displacement Sensors | Cutting machine | <furutani04_nanom_cuttin_machin_using_stewar> |
| China | [11](#figure--fig:stewart-yang19) | 6-UPS (Cubic?) | Flexible | Piezoelectric | Force, Position | | <yang19_dynam_model_decoup_contr_flexib> |
| Shangai | [8](#figure--fig:stewart-wang16) | Cubic | Flexible | Piezoelectric | Force Sensor + Accelerometer | | <wang16_inves_activ_vibrat_isolat_stewar> |
| Matra (France) | [3](#figure--fig:stewart-mais) | Cubic | Flexible | Piezoelectric (25 um) | Piezo force sensors | Vibration control | <defendini00_techn> |
| Japan | [7](#figure--fig:stewart-torii) | Non-Cubic | Flexible | Inchworm | | | <torii12_small_size_self_propel_stewar_platf> |
| Netherlands | [1](#figure--fig:stewart-naves) | Non-Cubic | Flexible | 3-phase rotary motor | Rotary Encoders | | <&naves20_desig;&naves20_t_flex> |
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-naves"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_naves.jpg" caption="<span class=\"figure-number\">Figure 1: </span>T-flex <&naves20_desig>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-naval"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_naval.jpg" caption="<span class=\"figure-number\">Figure 2: </span><&taranti01_effic_algor_vibrat_suppr>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-mais"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_mais.jpg" caption="<span class=\"figure-number\">Figure 3: </span><&defendini00_techn>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-geng"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_geng.jpg" caption="<span class=\"figure-number\">Figure 4: </span><&geng94_six_degree_of_freed_activ>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-jpl"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_jpl.jpg" caption="<span class=\"figure-number\">Figure 5: </span><&spanos95_soft_activ_vibrat_isolat>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-furutani"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_furutani.jpg" caption="<span class=\"figure-number\">Figure 6: </span><&furutani04_nanom_cuttin_machin_using_stewar>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-torii"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_torii.jpg" caption="<span class=\"figure-number\">Figure 7: </span><&torii12_small_size_self_propel_stewar_platf>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-wang16"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_wang16.jpg" caption="<span class=\"figure-number\">Figure 8: </span><&wang16_inves_activ_vibrat_isolat_stewar>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-beijen"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_beijen.jpg" caption="<span class=\"figure-number\">Figure 9: </span><&beijen18_self_tunin_mimo_distur_feedf>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-zhang11"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_zhang11.jpg" caption="<span class=\"figure-number\">Figure 10: </span><&zhang11_six_dof>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-yang19"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_yang19.jpg" caption="<span class=\"figure-number\">Figure 11: </span><&yang19_dynam_model_decoup_contr_flexib>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-du14"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_du14.jpg" caption="<span class=\"figure-number\">Figure 12: </span><&du14_piezo_actuat_high_precis_flexib>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-tang18"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_tang18.jpg" caption="<span class=\"figure-number\">Figure 13: </span><&tang18_decen_vibrat_contr_voice_coil>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-nanoscale"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_nanoscale.jpg" caption="<span class=\"figure-number\">Figure 14: </span><&ting06_desig_stewar_nanos_platf>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-ting07"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_ting07.jpg" caption="<span class=\"figure-number\">Figure 15: </span><&ting07_measur_calib_stewar_microm_system>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-ht-uw"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_ht_uw.jpg" caption="<span class=\"figure-number\">Figure 16: </span>Hood Technology Corporation (HT) and the University of Washington (UW) have designed and tested a unique hexapod design for spaceborne interferometry missions <&thayer02_six_axis_vibrat_isolat_system>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-uw-gsp"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_uw_gsp.jpg" caption="<span class=\"figure-number\">Figure 17: </span>UW GSP: Mutually Orthogonal Stewart Geometry <&li01_simul_fault_vibrat_isolat_point>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-pph"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_pph.jpg" caption="<span class=\"figure-number\">Figure 18: </span>Precision Pointing Hexapod (PPH) <&chen03_payload_point_activ_vibrat_isolat>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-uqp"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_uqp.jpg" caption="<span class=\"figure-number\">Figure 19: </span>Ultra Quiet Platform (UQP) <&agrawal04_algor_activ_vibrat_isolat_spacec>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-ulb-pz"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_ulb_pz.jpg" caption="<span class=\"figure-number\">Figure 20: </span>ULB - Piezoelectric <&abu02_stiff_soft_stewar_platf_activ>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-ulb-vc"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_ulb_vc.jpg" caption="<span class=\"figure-number\">Figure 21: </span>ULB - Voice Coil <&hanieh03_activ_stewar>" >}}
2024-06-04 14:04:43 +02:00
### Long Stroke {#long-stroke}
<span class="org-target" id="org-target--sec-built-long-stroke"></span>
2024-06-04 14:06:48 +02:00
| University | Figure | Configuration | Joints | Actuators | Sensors | Link to bibliography |
|----------------|-----------------------------------|---------------|--------------|-------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Japan | [22](#figure--fig:stewart-cleary) | 6-UPS | Conventional | DC, gear + rack pinion | Encoder, 7um res | <cleary91_protot_paral_manip> |
| Seoul | [23](#figure--fig:stewart-kim00) | Non-Cubic | Conventional | Hydraulic | LVDT | <kim00_robus_track_contr_desig_dof_paral_manip> |
| Xidian (China) | [24](#figure--fig:stewart-su04) | Non-Cubic | Conventional | Servo Motor + Screwball | Encoder | <su04_distur_rejec_high_precis_motion> |
| Czech | [25](#figure--fig:stewart-czech) | 6-UPS | Conventional | DC, Ball Screw | Absolute Linear position | <brezina08_ni_labview_matlab_simmec_stewar_platf_desig>, <houska10_desig_implem_absol_linear_posit>, <brezina10_contr_desig_stewar_platf_linear_actuat> |
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-cleary"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_cleary.jpg" caption="<span class=\"figure-number\">Figure 22: </span><&cleary91_protot_paral_manip>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-kim00"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_kim00.jpg" caption="<span class=\"figure-number\">Figure 23: </span><&kim01_six>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-su04"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_su04.jpg" caption="<span class=\"figure-number\">Figure 24: </span><&su04_distur_rejec_high_precis_motion>" >}}
2024-06-04 14:04:43 +02:00
<a id="figure--fig:stewart-czech"></a>
2024-06-04 14:06:48 +02:00
{{< figure src="/ox-hugo/stewart_czech.jpg" caption="<span class=\"figure-number\">Figure 25: </span>Stewart platform from Brno University (Czech) <&brezina08_ni_labview_matlab_simmec_stewar_platf_desig>" >}}
2024-06-04 14:04:43 +02:00
## Bibliography {#bibliography}
2024-05-24 20:32:40 +02:00
<./biblio/references.bib>