Update Content - 2021-09-22
This commit is contained in:
parent
b90a4e21ec
commit
1b82dffdd7
28
content/zettels/angular_velocity.md
Normal file
28
content/zettels/angular_velocity.md
Normal file
@ -0,0 +1,28 @@
|
||||
+++
|
||||
title = "Angular Velocity"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Non-integrability of the angular velocity vector {#non-integrability-of-the-angular-velocity-vector}
|
||||
|
||||
The non-integrability of the angular velocity vector is well described in ([Legnani et al. 2012](#orga01afc4)).
|
||||
|
||||
> It is well known that the angular velocity vector is not the time derivative of any set of angular coordinates.
|
||||
> In other words, it is impossible to define a set of three coordinates representing the 3D angular position of a body whose time derivative is equal to the angular velocity vector.
|
||||
|
||||
This is illustrated in Figure [1](#org4ad23f3).
|
||||
|
||||
<a id="org4ad23f3"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/angular_nonintegrability.png" caption="Figure 1: Effect of different sequences of rotations of a rigid body. In both cases we get Rot(x)=0, Rot(y)=90deg and Rot(z)=90deg" >}}
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orga01afc4"></a>Legnani, G., I. Fassi, H. Giberti, S. Cinquemani, and D. Tosi. 2012. “A New Isotropic and Decoupled 6-Dof Parallel Manipulator.” _Mechanism and Machine Theory_ 58 (nil):64–81. <https://doi.org/10.1016/j.mechmachtheory.2012.07.008>.
|
@ -10,18 +10,18 @@ Tags
|
||||
Here are some notes on the literature about the isotropy of parallel manipulators.
|
||||
|
||||
|
||||
## ([Tsai and Huang 2003](#org838fed0)) {#tsai-and-huang-2003--org838fed0}
|
||||
## ([Tsai and Huang 2003](#org0724ed5)) {#tsai-and-huang-2003--org0724ed5}
|
||||
|
||||
|
||||
## ([Fassi, Legnani, and Tosi 2005](#org2487ba1)) {#fassi-legnani-and-tosi-2005--org2487ba1}
|
||||
## ([Fassi, Legnani, and Tosi 2005](#orgd63d03a)) {#fassi-legnani-and-tosi-2005--orgd63d03a}
|
||||
|
||||
|
||||
## ([Bandyopadhyay and Ghosal 2008](#org89a27d1)) {#bandyopadhyay-and-ghosal-2008--org89a27d1}
|
||||
## ([Bandyopadhyay and Ghosal 2008](#orgf824a14)) {#bandyopadhyay-and-ghosal-2008--orgf824a14}
|
||||
|
||||
Uses `mathematica` to inverse analytical Jacobian matrix and obtain conditions for isotropy.
|
||||
|
||||
|
||||
## ([Legnani et al. 2010](#orgbf26550)) {#legnani-et-al-dot-2010--orgbf26550}
|
||||
## ([Legnani et al. 2010](#org513282b)) {#legnani-et-al-dot-2010--org513282b}
|
||||
|
||||
|
||||
### Abstract {#abstract}
|
||||
@ -115,7 +115,7 @@ Then conditions are given to find an isotropic TCP.
|
||||
Conditions can be applied to the Stewart platform and isotropy points can be found.
|
||||
|
||||
|
||||
## ([Tong et al. 2011](#org0e02b02)) {#tong-et-al-dot-2011--org0e02b02}
|
||||
## ([Tong et al. 2011](#org6ea337f)) {#tong-et-al-dot-2011--org6ea337f}
|
||||
|
||||
A parallel manipulator consists of a movable platform, a fixed base, and six struts, each with a linear actuator.
|
||||
The struts are partitioned into two groups: the first group with strut 1,3,5 and the second group with strut 2,4,6.
|
||||
@ -123,7 +123,7 @@ The attached points of each strut are uniformly spaced on the circumferences of
|
||||
The three struts in each group are rotational symmetry and repeat every 120 deg.
|
||||
This parallel manipulator with this kind of configurations are defined as generalized symmetric Gough-Stewart parallel manipulators (GSGSPMs).
|
||||
|
||||
<a id="orgc9be46b"></a>
|
||||
<a id="orgf6e6061"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/tong11_architecture_gsgspm.png" caption="Figure 1: Architecture of a GSGSPM" >}}
|
||||
|
||||
@ -131,60 +131,79 @@ A compliance center exists consequentially for any GSGSPMs.
|
||||
At the compliance center, a GSGSPM is uncoupled.
|
||||
|
||||
|
||||
## ([Legnani et al. 2012](#org1e949d1)) {#legnani-et-al-dot-2012--org1e949d1}
|
||||
## ([Legnani et al. 2012](#org0747a45)) {#legnani-et-al-dot-2012--org0747a45}
|
||||
|
||||
A manipulator is called partially of totally decoupled if the general movements of the robot can be subdivided in elementary tasks, each actuated by one or a group of actuators.
|
||||
Decoupling may be referred to the end effector coordinate or to local kinetostatic properties related to the Jacobian.
|
||||
|
||||
- Total decoupling occurs when the Jacobian is diagonal
|
||||
- Partial decoupling is when the Jacobian is triangular
|
||||
- Block decoupling is when the Jacobian is block diagonal
|
||||
|
||||
<a id="org0738057"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/legnani12_isotropic_pkm.png" caption="Figure 2: An isotropic PKM" >}}
|
||||
|
||||
<summary>
|
||||
The paper discusses the concepts of isotropy and decoupling in n-DoF PKM.
|
||||
The role of different Jacobian matrices in the isotropy, decoupling and in general mobility analysis of manipulators is recalled.
|
||||
It is highlighted how isotropy and decoupling may be achieved for pure translational manipulators in the whole workspace while rotational manipulators maybe decoupling in only one configuration.
|
||||
</summary>
|
||||
|
||||
|
||||
## ([Ding et al. 2014](#org1fe4a1a)) {#ding-et-al-dot-2014--org1fe4a1a}
|
||||
## ([Ding et al. 2014](#orgbeecf44)) {#ding-et-al-dot-2014--orgbeecf44}
|
||||
|
||||
|
||||
## ([Wu et al. 2018](#org7f6b447)) {#wu-et-al-dot-2018--org7f6b447}
|
||||
## ([Wu et al. 2018](#orgcb2f4d0)) {#wu-et-al-dot-2018--orgcb2f4d0}
|
||||
|
||||
> Isotropy => J\*J' = a\*I
|
||||
Isotropy => J\*J' = a\*I
|
||||
|
||||
<!--quoteend-->
|
||||
- Stiffness isotropy = static isotropy
|
||||
- velocity isotropy = kinematic isotropy
|
||||
|
||||
> - Stiffness isotropy = static isotropy
|
||||
> - velocity isotropy = kinematic isotropy
|
||||
They also proved that the symmetric generalized Stewart platform at a neutral position could be fully decoupled by adjusting the payload's center of mass to coincide with its **compliance center**. ([Tong et al. 2011](#org6ea337f))
|
||||
|
||||
<!--quoteend-->
|
||||
Dynamic isotropy => same resonance frequency for all suspension modes.
|
||||
|
||||
> They also proved that the symmetric generalized Stewart platform at a neutral position could be fully decoupled by adjusting the payload's center of mass to coincide with its **compliance center**. ([Tong et al. 2011](#org0e02b02))
|
||||
<a id="org171ed4c"></a>
|
||||
|
||||
<!--quoteend-->
|
||||
|
||||
> Dynamic isotropy => same resonance frequency for all suspension modes
|
||||
{{< figure src="/ox-hugo/wu18_stewart_picture.png" caption="Figure 3: Optimized Stewart platform" >}}
|
||||
|
||||
|
||||
## ([Zhou et al. 2019](#org1f33e66)) {#zhou-et-al-dot-2019--org1f33e66}
|
||||
## ([Yang et al. 2020](#orgda6537c)) {#yang-et-al-dot-2020--orgda6537c}
|
||||
|
||||
<summary>
|
||||
This paper proposes a novel concept, namely _isotropic control_ to solve the problem of having identical performance in all DoF.
|
||||
Dynamic equations of parallel mechanisms with base excitation are established and analyzed.
|
||||
An isotropic control framework is then synthesized in modal space.
|
||||
The multi-DoF system is transformed into multi identical single-DoF systems.
|
||||
Under the framework of isotropic control, parallel mechanisms obtain an identical frequency response for all modes.
|
||||
An identical corner frequency, active damping, and rate of low-frequency transmissibility are achieved for all modes.
|
||||
</summary>
|
||||
|
||||
|
||||
## ([Yang et al. 2020](#orgfee3e89)) {#yang-et-al-dot-2020--orgfee3e89}
|
||||
|
||||
|
||||
## ([Kang et al. 2020](#org0ed4d48)) {#kang-et-al-dot-2020--org0ed4d48}
|
||||
## ([Kang et al. 2020](#org460918c)) {#kang-et-al-dot-2020--org460918c}
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org89a27d1"></a>Bandyopadhyay, Sandipan, and Ashitava Ghosal. 2008. “An Algebraic Formulation of Kinematic Isotropy and Design of Isotropic 6-6 Stewart Platform Manipulators.” _Mechanism and Machine Theory_ 43 (5):591–616. <https://doi.org/10.1016/j.mechmachtheory.2007.05.003>.
|
||||
<a id="orgf824a14"></a>Bandyopadhyay, Sandipan, and Ashitava Ghosal. 2008. “An Algebraic Formulation of Kinematic Isotropy and Design of Isotropic 6-6 Stewart Platform Manipulators.” _Mechanism and Machine Theory_ 43 (5):591–616. <https://doi.org/10.1016/j.mechmachtheory.2007.05.003>.
|
||||
|
||||
<a id="org1fe4a1a"></a>Ding, Boyin, Benjamin S. Cazzolato, Richard M. Stanley, Steven Grainger, and John J. Costi. 2014. “Stiffness Analysis and Control of a Stewart Platform-Based Manipulator with Decoupled Sensor-Actuator Locations for Ultrahigh Accuracy Positioning under Large External Loads.” _Journal of Dynamic Systems, Measurement, and Control_ 136 (6):nil. <https://doi.org/10.1115/1.4027945>.
|
||||
<a id="orgbeecf44"></a>Ding, Boyin, Benjamin S. Cazzolato, Richard M. Stanley, Steven Grainger, and John J. Costi. 2014. “Stiffness Analysis and Control of a Stewart Platform-Based Manipulator with Decoupled Sensor-Actuator Locations for Ultrahigh Accuracy Positioning under Large External Loads.” _Journal of Dynamic Systems, Measurement, and Control_ 136 (6):nil. <https://doi.org/10.1115/1.4027945>.
|
||||
|
||||
<a id="org2487ba1"></a>Fassi, Irene, Giovanni Legnani, and Diego Tosi. 2005. “Geometrical Conditions for the Design of Partial or Full Isotropic Hexapods.” _Journal of Robotic Systems_ 22 (10):507–18. <https://doi.org/10.1002/rob.20074>.
|
||||
<a id="orgd63d03a"></a>Fassi, Irene, Giovanni Legnani, and Diego Tosi. 2005. “Geometrical Conditions for the Design of Partial or Full Isotropic Hexapods.” _Journal of Robotic Systems_ 22 (10):507–18. <https://doi.org/10.1002/rob.20074>.
|
||||
|
||||
<a id="org0ed4d48"></a>Kang, Shengzheng, Hongtao Wu, Shengdong Yu, Yao Li, Xiaolong Yang, and Jiafeng Yao. 2020. “Modeling and Control of a Six-Axis Parallel Piezo-Flexural Micropositioning Stage with Cross-Coupling Hysteresis Nonlinearities.” In _2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)_, 1350–55. IEEE.
|
||||
<a id="org460918c"></a>Kang, Shengzheng, Hongtao Wu, Shengdong Yu, Yao Li, Xiaolong Yang, and Jiafeng Yao. 2020. “Modeling and Control of a Six-Axis Parallel Piezo-Flexural Micropositioning Stage with Cross-Coupling Hysteresis Nonlinearities.” In _2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)_, 1350–55. IEEE.
|
||||
|
||||
<a id="org1e949d1"></a>Legnani, G., I. Fassi, H. Giberti, S. Cinquemani, and D. Tosi. 2012. “A New Isotropic and Decoupled 6-Dof Parallel Manipulator.” _Mechanism and Machine Theory_ 58 (nil):64–81. <https://doi.org/10.1016/j.mechmachtheory.2012.07.008>.
|
||||
<a id="org0747a45"></a>Legnani, G., I. Fassi, H. Giberti, S. Cinquemani, and D. Tosi. 2012. “A New Isotropic and Decoupled 6-Dof Parallel Manipulator.” _Mechanism and Machine Theory_ 58 (nil):64–81. <https://doi.org/10.1016/j.mechmachtheory.2012.07.008>.
|
||||
|
||||
<a id="orgbf26550"></a>Legnani, Giovanni, D Tosi, I Fassi, Hermes Giberti, and Simone Cinquemani. 2010. “The ‘Point of Isotropy’ and Other Properties of Serial and Parallel Manipulators.” _Mechanism and Machine Theory_ 45 (10). Elsevier:1407–23.
|
||||
<a id="org513282b"></a>Legnani, Giovanni, D Tosi, I Fassi, Hermes Giberti, and Simone Cinquemani. 2010. “The ‘Point of Isotropy’ and Other Properties of Serial and Parallel Manipulators.” _Mechanism and Machine Theory_ 45 (10). Elsevier:1407–23.
|
||||
|
||||
<a id="org0e02b02"></a>Tong, Zhizhong, Jingfeng He, Hongzhou Jiang, and Guangren Duan. 2011. “Optimal Design of a Class of Generalized Symmetric Gough-Stewart Parallel Manipulators with Dynamic Isotropy and Singularity-Free Workspace.” _Robotica_ 30 (2):305–14. <https://doi.org/10.1017/s0263574711000531>.
|
||||
<a id="org6ea337f"></a>Tong, Zhizhong, Jingfeng He, Hongzhou Jiang, and Guangren Duan. 2011. “Optimal Design of a Class of Generalized Symmetric Gough-Stewart Parallel Manipulators with Dynamic Isotropy and Singularity-Free Workspace.” _Robotica_ 30 (2):305–14. <https://doi.org/10.1017/s0263574711000531>.
|
||||
|
||||
<a id="org838fed0"></a>Tsai, K.Y., and K.D. Huang. 2003. “The Design of Isotropic 6-Dof Parallel Manipulators Using Isotropy Generators.” _Mechanism and Machine Theory_ 38 (11):1199–1214. <https://doi.org/10.1016/s0094-114x(03)00067-3>.
|
||||
<a id="org0724ed5"></a>Tsai, K.Y., and K.D. Huang. 2003. “The Design of Isotropic 6-Dof Parallel Manipulators Using Isotropy Generators.” _Mechanism and Machine Theory_ 38 (11):1199–1214. <https://doi.org/10.1016/s0094-114x(03)00067-3>.
|
||||
|
||||
<a id="org7f6b447"></a>Wu, Ying, Kaiping Yu, Jian Jiao, Dengqing Cao, Weichao Chi, and Jie Tang. 2018. “Dynamic Isotropy Design and Analysis of a Six-Dof Active Micro-Vibration Isolation Manipulator on Satellites.” _Robotics and Computer-Integrated Manufacturing_ 49 (nil):408–25. <https://doi.org/10.1016/j.rcim.2017.08.003>.
|
||||
<a id="orgcb2f4d0"></a>Wu, Ying, Kaiping Yu, Jian Jiao, Dengqing Cao, Weichao Chi, and Jie Tang. 2018. “Dynamic Isotropy Design and Analysis of a Six-Dof Active Micro-Vibration Isolation Manipulator on Satellites.” _Robotics and Computer-Integrated Manufacturing_ 49 (nil):408–25. <https://doi.org/10.1016/j.rcim.2017.08.003>.
|
||||
|
||||
<a id="orgfee3e89"></a>Yang, Xiaolong, Hongtao Wu, Yao Li, Shengzheng Kang, Bai Chen, Huimin Lu, Carman K. M. Lee, and Ping Ji. 2020. “Dynamics and Isotropic Control of Parallel Mechanisms for Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 25 (4):2027–34. <https://doi.org/10.1109/tmech.2020.2996641>.
|
||||
|
||||
<a id="org1f33e66"></a>Zhou, Songlin, Jing Sun, Weixing Chen, Wei Li, and Feng Gao. 2019. “Method of Designing a Six-Axis Force Sensor for Stiffness Decoupling Based on Stewart Platform.” _Measurement_ 148 (nil):106966. <https://doi.org/10.1016/j.measurement.2019.106966>.
|
||||
<a id="orgda6537c"></a>Yang, Xiaolong, Hongtao Wu, Yao Li, Shengzheng Kang, Bai Chen, Huimin Lu, Carman K. M. Lee, and Ping Ji. 2020. “Dynamics and Isotropic Control of Parallel Mechanisms for Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 25 (4):2027–34. <https://doi.org/10.1109/tmech.2020.2996641>.
|
||||
|
@ -36,37 +36,44 @@ Tags
|
||||
|
||||
Papers by J.E. McInroy:
|
||||
|
||||
- ([O’Brien et al. 1998](#org320ae46))
|
||||
- ([McInroy, O’Brien, and Neat 1999](#orgea92441))
|
||||
- ([McInroy 1999](#orgfb23e22))
|
||||
- ([McInroy and Hamann 2000](#org90e178e))
|
||||
- ([Chen and McInroy 2000](#org418808c))
|
||||
- ([McInroy 2002](#orgaa607f0))
|
||||
- ([Li, Hamann, and McInroy 2001](#org7176257))
|
||||
- ([Lin and McInroy 2003](#org6427256))
|
||||
- ([Jafari and McInroy 2003](#orga8add64))
|
||||
- ([Chen and McInroy 2004](#org3f36881))
|
||||
- ([O’Brien et al. 1998](#org4f530c8))
|
||||
- ([McInroy, O’Brien, and Neat 1999](#orgc2500da))
|
||||
- ([McInroy 1999](#orgf6f13f1))
|
||||
- ([McInroy and Hamann 2000](#org353671a))
|
||||
- ([Chen and McInroy 2000](#orgf235207))
|
||||
- ([McInroy 2002](#org5be7775))
|
||||
- ([Li, Hamann, and McInroy 2001](#orgdc37806))
|
||||
- ([Lin and McInroy 2003](#orge3fb031))
|
||||
- ([Jafari and McInroy 2003](#orge70feb2))
|
||||
- ([Chen and McInroy 2004](#org8ae8169))
|
||||
|
||||
Main advantage of flexure jointed Stewart platforms over conventional (long stroke) ones:
|
||||
|
||||
- Linear behavior
|
||||
- Constant Jacobian matrices along all stroke
|
||||
- No singularity
|
||||
- Easier to decouple the dynamics that works for all the stroke
|
||||
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org3f36881"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):413–21. <https://doi.org/10.1109/tcst.2004.824339>.
|
||||
<a id="org8ae8169"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):413–21. <https://doi.org/10.1109/tcst.2004.824339>.
|
||||
|
||||
<a id="org418808c"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
<a id="orgf235207"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
|
||||
|
||||
<a id="orga8add64"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. <https://doi.org/10.1109/tra.2003.814506>.
|
||||
<a id="orge70feb2"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595–603. <https://doi.org/10.1109/tra.2003.814506>.
|
||||
|
||||
<a id="org6427256"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):267–72. <https://doi.org/10.1109/tcst.2003.809248>.
|
||||
<a id="orge3fb031"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):267–72. <https://doi.org/10.1109/tcst.2003.809248>.
|
||||
|
||||
<a id="org7176257"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
|
||||
<a id="orgdc37806"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
|
||||
|
||||
<a id="orgfb23e22"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
|
||||
<a id="orgf6f13f1"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
|
||||
|
||||
<a id="orgaa607f0"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. <https://doi.org/10.1109/3516.990892>.
|
||||
<a id="org5be7775"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):95–99. <https://doi.org/10.1109/3516.990892>.
|
||||
|
||||
<a id="org90e178e"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. <https://doi.org/10.1109/70.864229>.
|
||||
<a id="org353671a"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):372–81. <https://doi.org/10.1109/70.864229>.
|
||||
|
||||
<a id="orgea92441"></a>McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):91–95. <https://doi.org/10.1109/3516.752089>.
|
||||
<a id="orgc2500da"></a>McInroy, J.E., J.F. O’Brien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):91–95. <https://doi.org/10.1109/3516.752089>.
|
||||
|
||||
<a id="org320ae46"></a>O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.
|
||||
<a id="org4f530c8"></a>O’Brien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.
|
||||
|
BIN
static/ox-hugo/angular_nonintegrability.png
Normal file
BIN
static/ox-hugo/angular_nonintegrability.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 119 KiB |
BIN
static/ox-hugo/legnani12_isotropic_pkm.png
Normal file
BIN
static/ox-hugo/legnani12_isotropic_pkm.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 87 KiB |
BIN
static/ox-hugo/wu18_stewart_picture.png
Normal file
BIN
static/ox-hugo/wu18_stewart_picture.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 651 KiB |
Loading…
Reference in New Issue
Block a user