Update many posts

This commit is contained in:
2020-06-03 22:43:54 +02:00
parent 7ad9601cbf
commit e5e6f1aa7a
589 changed files with 41329 additions and 897 deletions

View File

@@ -0,0 +1,426 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Active structural vibration control: a review - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags :
Reference (Rabih Alkhatib &amp;amp; Golnaraghi, 2003) Author(s) Alkhatib, R., &amp;amp; Golnaraghi, M. F. Year 2003 Process of designing an active vibration control system Analyze the structure to be controled Obtain an idealized mathematical model with FEM or experimental modal analysis Reduce the model order is necessary Analyze the resulting model: dynamics properties, types of disturbances, &amp;hellip; Quantify sensors and actuators requirements. Decide on their types and location Analyze the impact of the sensors and actuators on the overall dynamic characteristics Specify performance criteria and stability tradeoffs Device of the type of control algorythm to be employed and design a controller to meet the specifications Simulate the resulting controlled system on a computer If the controller does not meet the requirements, adjust the specifications or modify the type of controller Choose hardware and software and integrate the components on a pilot plant Formulate experiments and perform system identification and model updating Implement controller and carry out system test to evaluate the performance Feedback control Active damping The objective is to reduce the resonance peaks of the closed loop transfer function." />
<link rel="canonical" href="/paper/alkhatib03_activ_struc_vibrat_contr/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Active structural vibration control: a review</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents">
<ul>
<li><a href="#process-of-designing-an-active-vibration-control-system">Process of designing an active vibration control system</a></li>
<li><a href="#feedback-control">Feedback control</a>
<ul>
<li><a href="#active-damping">Active damping</a></li>
<li><a href="#model-based-feedback">Model based feedback</a></li>
</ul>
</li>
<li><a href="#feedforward-control">Feedforward Control</a></li>
<li><a href="#controllability-and-observability">Controllability and Observability</a></li>
<li><a href="#coordinate-coupling-control">Coordinate Coupling Control</a></li>
<li><a href="#robust-control">Robust control</a></li>
<li><a href="#optimal-control">Optimal Control</a></li>
<li><a href="#state-observers--estimators">State Observers (Estimators)</a></li>
<li><a href="#intelligent-structure-and-controller">Intelligent Structure and Controller</a></li>
<li><a href="#adaptive-control">Adaptive Control</a></li>
<li><a href="#active-control-effects-on-the-system">Active Control Effects on the System</a></li>
<li><a href="#time-delays">Time Delays</a></li>
<li><a href="#optimal-placement-of-actuators">Optimal Placement of Actuators</a></li>
</ul>
</nav>
</div>
</div>
<div class="post-content">
<p>Tags
:</p>
<dl>
<dt>Reference</dt>
<dd><sup id="279b5558de3a8131b329a9ba1a99e4f8"><a href="#alkhatib03_activ_struc_vibrat_contr" title="Rabih Alkhatib \&amp; Golnaraghi, Active Structural Vibration Control: a Review, {The Shock and Vibration Digest}, v(5), 367-383 (2003).">(Rabih Alkhatib &amp; Golnaraghi, 2003)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Alkhatib, R., &amp; Golnaraghi, M. F.</dd>
<dt>Year</dt>
<dd>2003</dd>
</dl>
<h2 id="process-of-designing-an-active-vibration-control-system">Process of designing an active vibration control system</h2>
<ol>
<li>Analyze the structure to be controled</li>
<li>Obtain an idealized mathematical model with FEM or experimental modal analysis</li>
<li>Reduce the model order is necessary</li>
<li>Analyze the resulting model: dynamics properties, types of disturbances, &hellip;</li>
<li>Quantify sensors and actuators requirements. Decide on their types and location</li>
<li>Analyze the impact of the sensors and actuators on the overall dynamic characteristics</li>
<li>Specify performance criteria and stability tradeoffs</li>
<li>Device of the type of control algorythm to be employed and design a controller to meet the specifications</li>
<li>Simulate the resulting controlled system on a computer</li>
<li>If the controller does not meet the requirements, adjust the specifications or modify the type of controller</li>
<li>Choose hardware and software and integrate the components on a pilot plant</li>
<li>Formulate experiments and perform system identification and model updating</li>
<li>Implement controller and carry out system test to evaluate the performance</li>
</ol>
<h2 id="feedback-control">Feedback control</h2>
<h3 id="active-damping">Active damping</h3>
<p>The objective is to reduce the resonance peaks of the closed loop transfer function.</p>
<p>\[T(s) = \frac{G(s)H(s)}{1+G(s)H(s)}\]</p>
<p>Then \(T(s) \approx G(s)\) except near the resonance peaks where the amplitude is reduced.</p>
<p>This method can be realized without a model of the structure with <strong>guaranteed stability</strong>, granted that the actuators and sensors are <strong>collocated</strong>.</p>
<h3 id="model-based-feedback">Model based feedback</h3>
<p>Objective: keep a control variable (position, velocity, &hellip;) to a desired value in spite of external disturbances \(d(s)\).</p>
<p>We have \[\frac{y(s)}{d(s)} = \frac{1}{1+G(s)H(s)}\] so we need large values of \(G(s)H(s)\) in the frequency range where the disturbance has considerable effect.</p>
<p>To do so, we need a mathematical model of the system, then the control bandwidth and effectiveness are restricted by the accuracy of the model.
Unmodeled structural dynamics may destabilize the system.</p>
<h2 id="feedforward-control">Feedforward Control</h2>
<p>We need a signal that is correlated to the disturbance. Then feedforward can improve performance over simple feedback control.</p>
<p>An adaptive filter manipulates the signal correlated to the disturbance and the output is applied to the system by the actuator.
The filter coefficients are adapted in such a way that an error signal is minimized.
The idea is to generate a secondary disturbance, which destructively interferes with the effect of the primary distance at the location of the error sensor.
However, there is no guarantee that the global response is also reduced at other locations.</p>
<p>The method is considered to be a <strong>local technique</strong>, in contrast to feedback which is global.</p>
<p>Contrary to active damping which can only reduce the vibration near the resonance, <strong>feedforward control can be effective for any frequency</strong>.
The major restriction to the application of feedforward adaptive filtering is the accessibility of a reference signal correlated to the disturbance.</p>
<p><a id="table--table:comparison-constrol-strat"></a></p>
<div class="table-caption">
<span class="table-number"><a href="#table--table:comparison-constrol-strat">Table 1</a></span>:
Comparison of control strategies
</div>
<table>
<thead>
<tr>
<th>Type of control</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Damping</td>
<td>Simple to implement</td>
<td>Effective only near resonance</td>
</tr>
<tr>
<td></td>
<td>Does not required accurate model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guaranteed stability (collocated)</td>
<td></td>
</tr>
<tr>
<td>Model Based</td>
<td>Global method</td>
<td>Requires accurate model</td>
</tr>
<tr>
<td></td>
<td>Attenuate all disturbance within bandwidth</td>
<td>Required low delay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Limited bandwidth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spillover</td>
</tr>
<tr>
<td>Feedforward Adaptive filtering</td>
<td>No model is necessary</td>
<td>Error signal required</td>
</tr>
<tr>
<td></td>
<td>Robust to change in plant transfer function</td>
<td>Local method: may amplify vibration elsewhere</td>
</tr>
<tr>
<td></td>
<td>More effective for narrowband disturbance</td>
<td>Large amount of real-time computation</td>
</tr>
</tbody>
</table>
<h2 id="controllability-and-observability">Controllability and Observability</h2>
<p>Controllability and Observability are two fundamental qualitave properties of dynamic systems.</p>
<p>A system is said to be <strong>controllable</strong> if every state vector can be transform to a desirate state in finite time by the application of unconstrained control inputs.</p>
<p>A system is said to be <strong>observable</strong> at time \(t_0\) if for a state \(z(t_0)\), there is a finite time \(t_1&gt;t_0\) such that the knowledge of the input \(u(t)\) and output \(y(t)\) from \(t_0\) to \(t_1\) are sufficient to determine the state \(z(t_0)\).</p>
<h2 id="coordinate-coupling-control">Coordinate Coupling Control</h2>
<p>Coordinate coupling control (CCC) is an <strong>energy-basded method</strong>.</p>
<p>The idea is to <strong>transfer the vibrations</strong> from a low or undamped oscilatory system (the plant) to a damped system (the controller).</p>
<p>This can be implemented passively using tuned mass damper. But the key advantage of this technique is that one can replace the physical absorber with a computer model. The coupling terms can then be selected to maximise the energy transfer.</p>
<h2 id="robust-control">Robust control</h2>
<p>Robust control concentrates on the <strong>tradeoffs between performance and stability</strong> in the presence of uncertainty in the system model as well as the exogenous inputs to which it is subjected.</p>
<p>Uncertainty can be divided into four types:</p>
<ul>
<li>parameter errors</li>
<li>error in model order</li>
<li>neglected disturbances</li>
<li>neglected nonlinearities</li>
</ul>
<p>The \(\mathcal{H}_\infty\) controller is developed to address uncertainty by systematic means.
A general block diagram of the control system is shown figure <a href="#org95c575a">1</a>.</p>
<p>A <strong>frequency shaped filter</strong> \(W(s)\) coupled to selected inputs and outputs of the plant is included.
The outputs of this frequency shaped filter define the error ouputs used to evaluate the system performance and generate the <strong>cost</strong> that will be used in the design process.</p>
<p><a id="org95c575a"></a></p>
<figure>
<img src="/ox-hugo/alkhatib03_hinf_control.png"
alt="Figure 1: Block diagram for robust control"/> <figcaption>
<p>Figure 1: Block diagram for robust control</p>
</figcaption>
</figure>
<p>The generalized plan \(G\) can be partitionned according to the input-output variables. And we have that the transfer function matrix from \(d\) to \(z\) is:
\[ H_{z/d} = G_{z/d} + G_{z/u} K (I - G_{y/u} K)^{-1} G_{y/d} \]
This transfer function matrix contains measures of performance and stability robustness.</p>
<p>The objective of \(\mathcal{H}_\infty\) control is to design an admissible control \(u(s)=K(s)y(s)\) such that \(\| H_{z/d} \|_\infty\) is minimum.</p>
<h2 id="optimal-control">Optimal Control</h2>
<p>The control \(u(t)\) is designed to minimize a cost function \(J\), given the initial conditions \(z(t_0)\) and \(\dot{z}(t_0)\) subject to the constraint that:</p>
<p>\begin{align*}
\dot{z} &amp;= Az + Bu\\\<br>
y &amp;= Cz
\end{align*}</p>
<p>One such cost function appropriate to a vibration control is
\[J = 1/2 \int_{t_0}^{t_f} ( z^T A z + u^T R u ) dt\]
Where \(Q\) and \(R\) and positive definite symmetric weighting matrices.</p>
<h2 id="state-observers--estimators">State Observers (Estimators)</h2>
<p>It is not always possible to determine the entire state variables. There are usualy too many degrees of freedom and only limited measurements.</p>
<p>The state vector \(z(t)\) can be estimated independently of the control problem, and the resulting estimate \(\hat{z}(t)\) can be used.</p>
<h2 id="intelligent-structure-and-controller">Intelligent Structure and Controller</h2>
<p>Intelligent structure would have the capability to:</p>
<ul>
<li>recognize the present dynamic state of its own structure and evaluate the functional performance of the structure</li>
<li>identify functional descriptions of external and internal disturbances</li>
<li>detect changes in structural properties and changes in external and internal disturbances</li>
<li>predict possible future changes in structural properties</li>
<li>make intelligent decisions regarding compensations for disturbances and adequately generale actuation forces</li>
<li>learn from past performance to improve future actions</li>
</ul>
<p>Two main methodologies:</p>
<ul>
<li>artificial neural networks</li>
<li>fuzzy logic</li>
</ul>
<h2 id="adaptive-control">Adaptive Control</h2>
<p>Adaptive control is frequently used to control systems whose parameters are unknown, uncertain, or slowly varying.</p>
<p>The design of an adaptive controller involves several steps:</p>
<ul>
<li>selection of a controller structure with adjustable parameters</li>
<li>selection of an adaptation law for adjusting those parameters</li>
<li>selection of a performance index</li>
<li>real-time evaluation of the performance with respect to some desired behavior</li>
<li>real-time plant identification and model updating</li>
<li>real-time adjustment of the controller parameters to bring the performance closer to the desired behavior</li>
</ul>
<p>It essentially consists of a real-time system identification technique integrated with a control algorithm.</p>
<p>Two different methods</p>
<ul>
<li><strong>Direct method</strong>: the controller parameters are adjusted directly based on the error between the measured and desired outputs.</li>
<li><strong>Indirect method</strong>: the computations are divided into two consecutive phases. First, the plant model is first estimated in real time. Second, the controller parameters are modified based on the most recent updated plant parameters.</li>
</ul>
<h2 id="active-control-effects-on-the-system">Active Control Effects on the System</h2>
<p><a id="org7c357dd"></a></p>
<figure>
<img src="/ox-hugo/alkhatib03_1dof_control.png"
alt="Figure 2: 1 DoF control of a spring-mass-damping system"/> <figcaption>
<p>Figure 2: 1 DoF control of a spring-mass-damping system</p>
</figcaption>
</figure>
<p>Consider the control system figure <a href="#org7c357dd">2</a>, the equation of motion of the system is:
\[ m\ddot{x} + c\dot{x} + kx = f_a + f \]</p>
<p>The controller force can be expressed as: \(f_a = -g_a \ddot{x} + g_v \dot{x} + g_d x\). The equation of motion becomes:
\[ (m+g_a)\ddot{x} + (c+g_v)\dot{x} + (k+g_d)x = f \]</p>
<p>Depending of the type of signal used, the active control adds/substracts mass, damping and stiffness.</p>
<h2 id="time-delays">Time Delays</h2>
<p>One of the limits to the performance of active control is the time delay in controllers and actuators. Time delay introduces phase shift, which deteriorates the controller performance or even causes instability in the system.</p>
<h2 id="optimal-placement-of-actuators">Optimal Placement of Actuators</h2>
<p>The problem of optimizing the locations of the actuators can be more significant than the control law itself.</p>
<p>If the actuator is placed at the wrong location, the system will require a greater force control. In that case, the system is said to have a <strong>low degree of controllability</strong>.</p>
<h1 id="bibliography">Bibliography</h1>
<p><a id="alkhatib03_activ_struc_vibrat_contr"></a>Alkhatib, R., &amp; Golnaraghi, M. F., <em>Active structural vibration control: a review</em>, The Shock and Vibration Digest, <em>35(5)</em>, 367383 (2003). <a href="http://dx.doi.org/10.1177/05831024030355002">http://dx.doi.org/10.1177/05831024030355002</a> <a href="#279b5558de3a8131b329a9ba1a99e4f8"></a></p>
</div>
<footer class="post-footer">
<div class="post-tags">
<a href="/tags/tag1/">tag1</a>
<a href="/tags/tag2/">tag2</a>
</div>
<nav class="post-nav">
<a class="prev" href="/paper/hanieh03_activ_stewar/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Active isolation and damping of vibrations via stewart platform</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/oomen18_advan_motion_contr_precis_mechat/">
<span class="next-text nav-default">Advanced motion control for precision mechatronics: control, identification, and learning of complex systems</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,352 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Guidelines for the selection of weighting functions for h-infinity control - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags H Infinity Control Reference (Bibel &amp;amp; Malyevac, 1992) Author(s) Bibel, J. E., &amp;amp; Malyevac, D. S. Year 1992 Properties of feedback control
Figure 1: Control System Diagram
From the figure 1, we have:
\begin{align*} y(s) &amp;amp;= T(s) r(s) &#43; S(s) d(s) - T(s) n(s)\\\
e(s) &amp;amp;= S(s) r(s) - S(s) d(s) - S(s) n(s)\\\
u(s) &amp;amp;= S(s)K(s) r(s) - S(s)K(s) d(s) - S(s)K(s) n(s) \end{align*}" />
<link rel="canonical" href="/paper/bibel92_guidel_h/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Guidelines for the selection of weighting functions for h-infinity control</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents">
<ul>
<li><a href="#properties-of-feedback-control">Properties of feedback control</a></li>
<li><a href="#siso-tradeoff">SISO tradeoff</a></li>
<li><a href="#h-infty--and-weighting-functions">\(H_\infty\) and weighting functions</a></li>
<li><a href="#lower-linear-fractional-transformation">Lower Linear Fractional Transformation</a></li>
<li><a href="#weights-for-inputs-outputs-signals">Weights for inputs/outputs signals</a></li>
<li><a href="#general-guidelines-for-weight-selection--w-s">General Guidelines for Weight Selection: \(W_S\)</a></li>
<li><a href="#general-guidelines-for-weight-selection--w-t">General Guidelines for Weight Selection: \(W_T\)</a></li>
<li><a href="#unmodeled-dynamics-weighting-function">Unmodeled dynamics weighting function</a></li>
<li><a href="#inputs-and-output-weighting-function">Inputs and Output weighting function</a></li>
<li><a href="#order-of-the-weighting-functions">Order of the weighting functions</a></li>
</ul>
</nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/h_infinity_control/">H Infinity Control</a></dd>
<dt>Reference</dt>
<dd><sup id="5b41da575e27e6e86f1a1410a0170836"><a href="#bibel92_guidel_h" title="Bibel \&amp; Malyevac, Guidelines for the selection of weighting functions for H-infinity control, NAVAL SURFACE WARFARE CENTER DAHLGREN DIV VA, (1992).">(Bibel &amp; Malyevac, 1992)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Bibel, J. E., &amp; Malyevac, D. S.</dd>
<dt>Year</dt>
<dd>1992</dd>
</dl>
<h2 id="properties-of-feedback-control">Properties of feedback control</h2>
<p><a id="org82bead2"></a></p>
<figure>
<img src="/ox-hugo/bibel92_control_diag.png"
alt="Figure 1: Control System Diagram"/> <figcaption>
<p>Figure 1: Control System Diagram</p>
</figcaption>
</figure>
<p>From the figure <a href="#org82bead2">1</a>, we have:</p>
<p>\begin{align*}
y(s) &amp;= T(s) r(s) + S(s) d(s) - T(s) n(s)\\\<br>
e(s) &amp;= S(s) r(s) - S(s) d(s) - S(s) n(s)\\\<br>
u(s) &amp;= S(s)K(s) r(s) - S(s)K(s) d(s) - S(s)K(s) n(s)
\end{align*}</p>
<p>With the following definitions</p>
<ul>
<li>\(L(s) = G(s)K(s)\) is the <strong>loop transfer matrix</strong></li>
<li>\(S(s) = [I+G(s)K(s)]^{-1}\) is the <strong>Sensitivity</strong> function matrix</li>
<li>\(T(s) = [I+G(s)K(s)]^{-1}G(s)K(s)\) is the <strong>Transmissibility</strong> function matrix</li>
</ul>
<div class="cbox">
<div></div>
<p>\[ S(s) + T(s) = 1 \]</p>
</div>
<div class="cbox">
<div></div>
<ul>
<li><strong>Command following</strong>: \(S=0\) and \(T=1\) =&gt; large gains</li>
<li><strong>Disturbance rejection</strong>: \(S=0\) =&gt; large gains</li>
<li><strong>Sensor noise attenuation</strong>: \(T\) small where the noise is concentrated</li>
<li><strong>Control Sensitivity minimization</strong>: \(K S\) small</li>
<li><strong>Robustness to modeling errors</strong>: \(T\) small in the frequency range of the expected model undertainties</li>
</ul>
</div>
<h2 id="siso-tradeoff">SISO tradeoff</h2>
<p>We want \(S\) small for command following and disturbance rejection.
We want \(T\) small to remain insensitive to sensor noise and modeling errors and to reduce control sensitivity.</p>
<p>However we cannot keep both \(S\) and \(T\) small as \(S(s)+T(s)=1\).</p>
<p>We must determine some <strong>tradeoff</strong> between the sensitivity and the complementary sensitivity functions.</p>
<p>Usually, reference signals and disturbances occur at low frequencies, while noise and modeling errors are concentrated at high frequencies. The tradeoff, in a SISO sense, is to make \(|S(j\omega)|\) small as low frequencies and \(|T(j\omega)|\) small at high frequencies.</p>
<h2 id="h-infty--and-weighting-functions">\(H_\infty\) and weighting functions</h2>
<div class="cbox">
<div></div>
<p>\(\mathcal{H}_\infty\) control is a design technique with a state-space computation solution that utilizes frequency-dependent weighting functions to tune the controller&rsquo;s performance and robustness characteristics.</p>
</div>
<p><a id="org71ea720"></a></p>
<figure>
<img src="/ox-hugo/bibel92_general_plant.png"
alt="Figure 2: \(\mathcal{H}_\infty\) control framework"/> <figcaption>
<p>Figure 2: \(\mathcal{H}_\infty\) control framework</p>
</figcaption>
</figure>
<p>New design framework (figure <a href="#org71ea720">2</a>): \(P(s)\) is the <strong>generalized plant</strong> transfer function matrix:</p>
<ul>
<li>\(w\): exogenous inputs</li>
<li>\(z\): regulated performance output</li>
<li>\(u\): control inputs</li>
<li>\(y\): measured output variables</li>
</ul>
<p>The plant \(P\) has two inputs and two outputs, it can be decomposed into four sub-transfer function matrices:
\[P = \begin{bmatrix}P_{11} &amp; P_{12} \ P_{21} &amp; P_{22} \end{bmatrix}\]</p>
<h2 id="lower-linear-fractional-transformation">Lower Linear Fractional Transformation</h2>
<p>The transformation from the input \(w\) to the output \(z\), \(T_{zw}\) is called the <strong>Lower Linear Fractional Transformation</strong> \(F_l (P, K)\).</p>
<div class="cbox">
<div></div>
<p>\[T_{zw} = F_l (P, K) = P_{11} + P_{12}K (I-P_{22})^{-1} P_{21}\]</p>
</div>
<p>The \(H_\infty\) control problem is to find a controller that minimizes \(\| T_{zw} \|_\infty\) over the space of all realizable controllers \(K(s)\) that stabilize the closed-loop system.</p>
<h2 id="weights-for-inputs-outputs-signals">Weights for inputs/outputs signals</h2>
<p>Since \(S\) and \(T\) cannot be minimized together at all frequency, <strong>weights are introduced to shape the solutions</strong>. Not only can \(S\) and \(T\) be weighted, but other regulated performance variables and inputs (figure <a href="#org549c59f">3</a>).</p>
<p><a id="org549c59f"></a></p>
<figure>
<img src="/ox-hugo/bibel92_hinf_weights.png"
alt="Figure 3: Input and Output weights in \(\mathcal{H}_\infty\) framework"/> <figcaption>
<p>Figure 3: Input and Output weights in \(\mathcal{H}_\infty\) framework</p>
</figcaption>
</figure>
<p>The weights on the input and output variables are selected to reflect the spatial and <strong>frequency dependence</strong> of the respective signals and performance specifications.</p>
<p>These inputs and output weighting functions are defined as rational, stable and <strong>minimum-phase transfer function</strong> (no poles or zero in the right half plane).</p>
<h2 id="general-guidelines-for-weight-selection--w-s">General Guidelines for Weight Selection: \(W_S\)</h2>
<p>\(W_S\) is selected to reflect the desired <strong>performance characteristics</strong>.
The sensitivity function \(S\) should have low gain at low frequency for good tracking performance and high gain at high frequencies to limit overshoot.
We have to select \(W_S\) such that \({W_S}^-1\) reflects the desired shape of \(S\).</p>
<div class="cbox">
<div></div>
<ul>
<li><strong>Low frequency gain</strong>: set to the inverse of the desired steady state tracking error</li>
<li><strong>High frequency gain</strong>: set to limit overshoot (\(0.1\) to \(0.5\) is a good compromise between overshoot and response speed)</li>
<li><strong>Crossover frequency</strong>: chosen to limit the maximum closed-loop time constant (\(\omega_c \approx 1/\tau\))</li>
</ul>
</div>
<h2 id="general-guidelines-for-weight-selection--w-t">General Guidelines for Weight Selection: \(W_T\)</h2>
<p>We want \(T\) near unity for good tracking of reference and near zero for noise suppresion.</p>
<div class="cbox">
<div></div>
<p>A high pass weight is usualy used on \(T\) because the noise energy is mostly concentrated at high frequencies. It should have the following characteristics:</p>
<ul>
<li>The <strong>crossover frequency</strong> is chosen to <strong>limit the closed-loop bandwidth</strong></li>
<li>The <strong>high frequency gain</strong> is set high to proide <strong>sensor noise rejection</strong> and high frequency gain attenuation</li>
</ul>
</div>
<p>When using both \(W_S\) and \(W_T\), it is important to make sure that the magnitude of theise weights at the crossover frequency is less that one to not violate \(S+T=1\).</p>
<h2 id="unmodeled-dynamics-weighting-function">Unmodeled dynamics weighting function</h2>
<p>Another method of limiting the controller bandwidth and providing high frequency gain attenuation is to use a high pass weight on an <strong>unmodeled dynamics uncertainty block</strong> that may be added from the plant input to the plant output (figure <a href="#org379d5b1">4</a>).</p>
<p><a id="org379d5b1"></a></p>
<figure>
<img src="/ox-hugo/bibel92_unmodeled_dynamics.png"
alt="Figure 4: Unmodeled dynamics model"/> <figcaption>
<p>Figure 4: Unmodeled dynamics model</p>
</figcaption>
</figure>
<p>The weight is chosen to cover the expected worst case magnitude of the unmodeled dynamics. A typical unmodeled dynamics weighting function is shown figure <a href="#orgcc65489">5</a>.</p>
<p><a id="orgcc65489"></a></p>
<figure>
<img src="/ox-hugo/bibel92_weight_dynamics.png"
alt="Figure 5: Example of unmodeled dynamics weight"/> <figcaption>
<p>Figure 5: Example of unmodeled dynamics weight</p>
</figcaption>
</figure>
<h2 id="inputs-and-output-weighting-function">Inputs and Output weighting function</h2>
<p>It is possible to <strong>weight the control input and actuator rate</strong>.
This is used to <strong>prevent actuator saturation</strong> and <strong>limit amplification of sensor noise signals</strong> on the control input signal.</p>
<p>Typically actuator input weights are constant over frequency and set at the inverse of the saturation limit.</p>
<h2 id="order-of-the-weighting-functions">Order of the weighting functions</h2>
<p><strong>The order of the optimal controller is equal to the order of the nominal plant model plus the order of the weights</strong>. The complexity of the controller is increase as the order of the weights increases.</p>
<p><strong>The order of the weights should be kept reasonably low</strong> to reduce the order of th resulting optimal compensator and avoid potential convergence problems in the DK interactions.</p>
<h1 id="bibliography">Bibliography</h1>
<p><a id="bibel92_guidel_h"></a>Bibel, J. E., &amp; Malyevac, D. S., <em>Guidelines for the selection of weighting functions for h-infinity control</em> (1992). <a href="#5b41da575e27e6e86f1a1410a0170836"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/preumont02_force_feedb_versus_accel_feedb/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Force feedback versus acceleration feedback in active vibration isolation</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/chen00_ident_decoup_contr_flexur_joint_hexap/">
<span class="next-text nav-default">Identification and decoupling control of flexure jointed hexapods</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,242 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Control of spacecraft and aircraft - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags HAC-HAC Reference (Bryson, 1993) Author(s) Bryson, A. E. Year 1993 9.2.3 Roll-Off Filters Synthesizing control logic using only one vibration mode means we are consciously neglecting the higher-order vibration modes. When doing this, it is a good idea to insert &amp;ldquo;roll-off&amp;rdquo; into the control logic, so that the loop-transfer gain decreases rapidly with frequency beyond the control bandwidth. This reduces the possibility of destabilizing the unmodelled higher frequency dynamics (&amp;quot;spillover&amp;quot;)." />
<link rel="canonical" href="/paper/bryson93_contr_spacec_aircr/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Control of spacecraft and aircraft</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents">
<ul>
<li><a href="#9-dot-2-dot-3-roll-off-filters">9.2.3 Roll-Off Filters</a></li>
<li><a href="#9-dot-5-robust-compensator-synthesis">9.5 Robust Compensator Synthesis</a></li>
<li><a href="#9-dot-5-dot-2-low-authority-control-high-authority-control">9.5.2 Low-Authority Control/High-Authority Control</a></li>
</ul>
</nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/hac_hac/">HAC-HAC</a></dd>
<dt>Reference</dt>
<dd><sup id="4970865a21830fff7b1daeec187bfa68"><a href="#bryson93_contr_spacec_aircr" title="Bryson, Control of Spacecraft and Aircraft, Princeton university press Princeton, New Jersey (1993).">(Bryson, 1993)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Bryson, A. E.</dd>
<dt>Year</dt>
<dd>1993</dd>
</dl>
<h2 id="9-dot-2-dot-3-roll-off-filters">9.2.3 Roll-Off Filters</h2>
<blockquote>
<p>Synthesizing control logic using only one vibration mode means we are consciously <strong>neglecting the higher-order vibration modes</strong>.
When doing this, it is a good idea to insert &ldquo;roll-off&rdquo; into the control logic, so that the loop-transfer gain decreases rapidly with frequency beyond the control bandwidth.
This reduces the possibility of destabilizing the unmodelled higher frequency dynamics (&quot;<strong>spillover</strong>&quot;).</p>
</blockquote>
<h2 id="9-dot-5-robust-compensator-synthesis">9.5 Robust Compensator Synthesis</h2>
<blockquote>
<p>LQG synthesis using feedback of estimated states will produce almost the same good response as LQR [&hellip;] for systems with control system bandwidths that are well below the frequency of the first vibration mode.
However, it may not be true for systems with higher control system bandwidths, even when one or more vibration modes are included in the control design model.</p>
</blockquote>
<!--quoteend-->
<blockquote>
<p>If a rate sensor is co-located with an actuator on a flexible body, and its signal is fed back to the actuator, all vibration modes are stabilized.
If a rate sensor is not co-located with an actuator on a flexible body, ans its signal is fed back to the actuator, some vibration modes are stabilized and others are destabilized, depending on the location of the sensor relative to the actuator.</p>
</blockquote>
<h2 id="9-dot-5-dot-2-low-authority-control-high-authority-control">9.5.2 Low-Authority Control/High-Authority Control</h2>
<blockquote>
<p>Figure <a href="#fig:bryson93_hac_lac">fig:bryson93_hac_lac</a> shows the concept of Low-Authority Control/High-Authority Control (LAC/HAC) is the s-plane.
LAC uses a co-located rate sensor to add damping to all the vibratory modes (but not the rigid-body mode).
HAC uses a separated displacement sensor to stabilize the rigid body mode, which slightly decreases the damping of the vibratory modes but not enough to produce instability (called &ldquo;spillover&rdquo;)</p>
</blockquote>
<p><a id="orgf5c85db"></a></p>
<figure>
<img src="/ox-hugo/bryson93_hac_lac.png"
alt="Figure 1: HAC-LAC control concept"/> <figcaption>
<p>Figure 1: HAC-LAC control concept</p>
</figcaption>
</figure>
<blockquote>
<p>LAC/HAC is usually insensitive to small deviation of the plant dynamics away from the design values, that is, it is <strong>robust</strong> to plant parameter changes.</p>
</blockquote>
<h1 id="bibliography">Bibliography</h1>
<p><a id="bryson93_contr_spacec_aircr"></a>Bryson, A. E., <em>Control of spacecraft and aircraft</em> (1993), : Princeton university press Princeton, New Jersey. <a href="#4970865a21830fff7b1daeec187bfa68"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/ito16_compar_class_high_precis_actuat/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/tang18_decen_vibrat_contr_voice_coil/">
<span class="next-text nav-default">Decentralized vibration control of a voice coil motor-based stewart parallel mechanism: simulation and experiments</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,203 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Position control in lithographic equipment - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Multivariable Control, Positioning Stations Reference (Hans Butler, 2011) Author(s) Butler, H. Year 2011 Bibliography Butler, H., Position control in lithographic equipment, IEEE Control Systems, 31(5), 2847 (2011). http://dx.doi.org/10.1109/mcs.2011.941882 ↩" />
<link rel="canonical" href="/paper/butler11_posit_contr_lithog_equip/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Position control in lithographic equipment</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/multivariable_control/">Multivariable Control</a>, <a href="/zettels/positioning_stations/">Positioning Stations</a></dd>
<dt>Reference</dt>
<dd><sup id="6a014e3a2ee3e41d20bd0644654c56f0"><a href="#butler11_posit_contr_lithog_equip" title="Hans Butler, Position Control in Lithographic Equipment, {IEEE Control Systems}, v(5), 28-47 (2011).">(Hans Butler, 2011)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Butler, H.</dd>
<dt>Year</dt>
<dd>2011</dd>
</dl>
<h1 id="bibliography">Bibliography</h1>
<p><a id="butler11_posit_contr_lithog_equip"></a>Butler, H., <em>Position control in lithographic equipment</em>, IEEE Control Systems, <em>31(5)</em>, 2847 (2011). <a href="http://dx.doi.org/10.1109/mcs.2011.941882">http://dx.doi.org/10.1109/mcs.2011.941882</a> <a href="#6a014e3a2ee3e41d20bd0644654c56f0"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/sebastian12_nanop_with_multip_sensor/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Nanopositioning with multiple sensors: a case study in data storage</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/collette11_review_activ_vibrat_isolat_strat/">
<span class="next-text nav-default">Review of active vibration isolation strategies</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,205 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Identification and decoupling control of flexure jointed hexapods - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Stewart Platforms, Flexible Joints Reference (Yixin Chen &amp;amp; McInroy, 2000) Author(s) Chen, Y., &amp;amp; McInroy, J. Year 2000 Bibliography Chen, Y., &amp;amp; McInroy, J., Identification and decoupling control of flexure jointed hexapods, In , Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065) (pp. ) (2000). : . ↩" />
<link rel="canonical" href="/paper/chen00_ident_decoup_contr_flexur_joint_hexap/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Identification and decoupling control of flexure jointed hexapods</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/stewart_platforms/">Stewart Platforms</a>, <a href="/zettels/flexible_joints/">Flexible Joints</a></dd>
<dt>Reference</dt>
<dd><sup id="ba05ff213f8e5963d91559d95becfbdb"><a href="#chen00_ident_decoup_contr_flexur_joint_hexap" title="Yixin Chen \&amp; McInroy, Identification and Decoupling Control of Flexure Jointed Hexapods, nil, in in: {Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia
Proceedings (Cat. No.00CH37065)}, edited by (2000)">(Yixin Chen &amp; McInroy, 2000)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Chen, Y., &amp; McInroy, J.</dd>
<dt>Year</dt>
<dd>2000</dd>
</dl>
<h1 id="bibliography">Bibliography</h1>
<p><a id="chen00_ident_decoup_contr_flexur_joint_hexap"></a>Chen, Y., &amp; McInroy, J., <em>Identification and decoupling control of flexure jointed hexapods</em>, In , Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065) (pp. ) (2000). : . <a href="#ba05ff213f8e5963d91559d95becfbdb"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/bibel92_guidel_h/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Guidelines for the selection of weighting functions for h-infinity control</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/garg07_implem_chall_multiv_contr/">
<span class="next-text nav-default">Implementation challenges for multivariable control: what you did not learn in school!</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,278 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Review of active vibration isolation strategies - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Vibration Isolation Reference (Christophe Collette {\it et al.}, 2011) Author(s) Collette, C., Janssens, S., &amp;amp; Artoos, K. Year 2011 Background and Motivations Passive Isolation Tradeoffs \[ X(s) = \underbrace{\frac{cs &#43; k}{ms^2 &#43; cs &#43; k}}_{T_{wx}(s)} W(s) &#43; \underbrace{\frac{1}{ms^2 &#43; cs &#43; k}}_{T_{Fx}(s)} F(s) \]
\(T_{wx}(s)\) is called the transmissibility of the isolator. It characterize the way seismic vibrations \(w\) are transmitted to the equipment. \(T_{Fx}(s)\) is called the compliance." />
<link rel="canonical" href="/paper/collette11_review_activ_vibrat_isolat_strat/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Review of active vibration isolation strategies</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents">
<ul>
<li><a href="#background-and-motivations">Background and Motivations</a>
<ul>
<li><a href="#passive-isolation-tradeoffs">Passive Isolation Tradeoffs</a></li>
<li><a href="#active-isolation">Active Isolation</a></li>
</ul>
</li>
<li><a href="#practical-realizations">Practical Realizations</a></li>
<li><a href="#sensor-limitations">Sensor Limitations</a></li>
<li><a href="#conclusions">Conclusions</a></li>
</ul>
</nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/vibration_isolation/">Vibration Isolation</a></dd>
<dt>Reference</dt>
<dd><sup id="2d69d483f210ca387ca8061596ec27ea"><a href="#collette11_review_activ_vibrat_isolat_strat" title="Christophe Collette, Stef Janssens \&amp; Kurt Artoos, Review of Active Vibration Isolation Strategies, {Recent Patents on Mechanical Engineeringe}, v(3), 212-219 (2011).">(Christophe Collette {\it et al.}, 2011)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Collette, C., Janssens, S., &amp; Artoos, K.</dd>
<dt>Year</dt>
<dd>2011</dd>
</dl>
<h2 id="background-and-motivations">Background and Motivations</h2>
<h3 id="passive-isolation-tradeoffs">Passive Isolation Tradeoffs</h3>
<div class="cbox">
<div></div>
<p>\[ X(s) = \underbrace{\frac{cs + k}{ms^2 + cs + k}}_{T_{wx}(s)} W(s) + \underbrace{\frac{1}{ms^2 + cs + k}}_{T_{Fx}(s)} F(s) \]</p>
</div>
<ul>
<li>\(T_{wx}(s)\) is called the <strong>transmissibility</strong> of the isolator. It characterize the way seismic vibrations \(w\) are transmitted to the equipment.</li>
<li>\(T_{Fx}(s)\) is called the <strong>compliance</strong>. It characterize the capacity of disturbing forces \(F\) to create motion \(x\) of the equipment.</li>
</ul>
<p>In order to minimize the vibrations of a sensitive equipment, a general objective to design a good isolator is to minimize both \(\abs{T_{wx}}\) and \(\abs{T_{Fx}}\) in the frequency range of interest.</p>
<p>To decrease the amplitude of the overshoot at the resonance frequency, <strong>damping</strong> can be increased.
The price to pay is degradation of the isolation at high frequency (the roll off becomes \(-1\) instead of \(-2\)).</p>
<p><strong>First Trade-off</strong>: Trade-off between damping and isolation.</p>
<p>To improve the transmissibility, the resonance frequency can be decreased.
However, the systems becomes more sensitive to external force \(F\) applied on the equipment.</p>
<p><strong>Second trade-off</strong>: Trade-off between isolation and robustness to external force</p>
<h3 id="active-isolation">Active Isolation</h3>
<p>We apply a feedback control.
The general expression of the force delivered by the actuator is \(f = g_a \ddot{x} + g_v \dot{x} + g_p x\). \(g_a\), \(g_v\) and \(g_p\) are constant gains.</p>
<p><a id="table--table:active-isolation"></a></p>
<div class="table-caption">
<span class="table-number"><a href="#table--table:active-isolation">Table 1</a></span>:
Active isolation techniques
</div>
<table>
<thead>
<tr>
<th><strong>Feedback Signal</strong></th>
<th><strong>Effect</strong></th>
<th><strong>Applications</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration</td>
<td>Add virtual mass</td>
<td>Few</td>
</tr>
<tr>
<td>Velocity</td>
<td>Add virtual dashpot connected to the sky</td>
<td>Sky-Hook Damping</td>
</tr>
<tr>
<td>Position</td>
<td>Add virtual spring connected to the sky</td>
<td>Sky-Hook Spring</td>
</tr>
</tbody>
</table>
<h2 id="practical-realizations">Practical Realizations</h2>
<h2 id="sensor-limitations">Sensor Limitations</h2>
<h2 id="conclusions">Conclusions</h2>
<p><a id="orgef29aaf"></a></p>
<figure>
<img src="/ox-hugo/collette11_comp_isolation_strategies.png"
alt="Figure 1: Comparison of Active Vibration Isolation Strategies"/> <figcaption>
<p>Figure 1: Comparison of Active Vibration Isolation Strategies</p>
</figcaption>
</figure>
<h1 id="bibliography">Bibliography</h1>
<p><a id="collette11_review_activ_vibrat_isolat_strat"></a>Collette, C., Janssens, S., &amp; Artoos, K., <em>Review of active vibration isolation strategies</em>, Recent Patents on Mechanical Engineeringe, <em>4(3)</em>, 212219 (2011). <a href="http://dx.doi.org/10.2174/2212797611104030212">http://dx.doi.org/10.2174/2212797611104030212</a> <a href="#2d69d483f210ca387ca8061596ec27ea"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/butler11_posit_contr_lithog_equip/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Position control in lithographic equipment</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip/">
<span class="next-text nav-default">Sensor fusion for active vibration isolation in precision equipment</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,317 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Vibration control of flexible structures using fusion of inertial sensors and hyper-stable actuator-sensor pairs - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Vibration Isolation, Sensor Fusion Reference (Collette &amp;amp; Matichard, 2014) Author(s) Collette, C., &amp;amp; Matichard, F. Year 2014 Introduction Sensor fusion is used to combine the benefits of different types of sensors:
Relative sensor for DC positioning capability at low frequency Inertial sensors for isolation at high frequency Force sensor / collocated sensor to improve the robustness Different types of sensors In this paper, three types of sensors are used." />
<link rel="canonical" href="/paper/collette14_vibrat/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Vibration control of flexible structures using fusion of inertial sensors and hyper-stable actuator-sensor pairs</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents">
<ul>
<li><a href="#introduction">Introduction</a></li>
<li><a href="#different-types-of-sensors">Different types of sensors</a></li>
<li><a href="#inertial-control-and-sensor-fusion-configurations">Inertial Control and sensor fusion configurations</a></li>
<li><a href="#flexible-structure">Flexible structure</a>
<ul>
<li><a href="#inertial-and-small-accelerometer">Inertial and small accelerometer</a></li>
<li><a href="#inertial-and-force-sensor">Inertial and force sensor</a></li>
<li><a href="#inertial-and-relative-sensor">Inertial and relative sensor</a></li>
</ul>
</li>
<li><a href="#conclusion">Conclusion</a></li>
</ul>
</nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/vibration_isolation/">Vibration Isolation</a>, <a href="/zettels/sensor_fusion/">Sensor Fusion</a></dd>
<dt>Reference</dt>
<dd><sup id="1223611da2f9b157af97503a4fec7631"><a href="#collette14_vibrat" title="Collette \&amp; Matichard, Vibration control of flexible structures using fusion of inertial sensors and hyper-stable actuator-sensor pairs, in in: {International Conference on Noise and Vibration Engineering
(ISMA2014)}, edited by (2014)">(Collette &amp; Matichard, 2014)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Collette, C., &amp; Matichard, F.</dd>
<dt>Year</dt>
<dd>2014</dd>
</dl>
<h2 id="introduction">Introduction</h2>
<p>Sensor fusion is used to combine the benefits of different types of sensors:</p>
<ul>
<li>Relative sensor for DC positioning capability at low frequency</li>
<li>Inertial sensors for isolation at high frequency</li>
<li>Force sensor / collocated sensor to improve the robustness</li>
</ul>
<h2 id="different-types-of-sensors">Different types of sensors</h2>
<p>In this paper, three types of sensors are used. Their advantages and disadvantages are summarized table <a href="#table--tab:sensors">1</a>.</p>
<blockquote>
<p>Several types of sensors can be used for the feedback control of vibration isolation systems:</p>
<ul>
<li>Feedback control based on <strong>relative motion sensors</strong> (inductive, capactive, ferromagnetic sensors&hellip;) typically permits to servo-position a system or platform relative to a reference (e.g. floor or support base), but does not provide isolation from the ground motion.</li>
<li>Feedback control based on <strong>force sensors</strong> typically lowers the effective natural frequency, and therefore increases the isolation, but sacrifices the systems compliance in doing so.</li>
<li>Feedback control based on <strong>inertial sensors</strong> (geophones, seismometers, accelerometers&hellip;) improves not only the vibration isolation but also the compliance. Inertial sensors are, however, AC coupled and noisy at low frequencies.</li>
</ul>
</blockquote>
<p><a id="table--tab:sensors"></a></p>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:sensors">Table 1</a></span>:
Types of sensors
</div>
<table>
<thead>
<tr>
<th>Sensors</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative motion</td>
<td>Servo-position</td>
<td>No isolation from gorund motion</td>
</tr>
<tr>
<td>Force sensors</td>
<td>Improve isolation</td>
<td>Increase compliance</td>
</tr>
<tr>
<td>Inertial sensors</td>
<td>Improve isolation and compliance</td>
<td>AC couple and noisy at high frequency</td>
</tr>
</tbody>
</table>
<h2 id="inertial-control-and-sensor-fusion-configurations">Inertial Control and sensor fusion configurations</h2>
<p>For a simple 1DoF model, two fusion-sensor configuration are studied. The results are summarized Table <a href="#table--tab:fusion-trade-off">2</a>.</p>
<p><a id="table--tab:fusion-trade-off"></a></p>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:fusion-trade-off">Table 2</a></span>:
Sensor fusion configurations
</div>
<table>
<thead>
<tr>
<th>Low freq. sensor</th>
<th>High freq. sensor</th>
<th>Transmissibility</th>
<th>Compliance</th>
<th>Trade-off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inertial</td>
<td>Force sensor</td>
<td>Unchanged</td>
<td>Degraded</td>
<td>Sensor noise filtering / compliance degradation</td>
</tr>
<tr>
<td>Inertial</td>
<td>Relative sensor</td>
<td>Degraded</td>
<td>Unchanged</td>
<td>Isolation in the bandwidth / amplification outside</td>
</tr>
</tbody>
</table>
<h2 id="flexible-structure">Flexible structure</h2>
<p>Flexibility is added between the inertial sensor and the actuator.
Now the sensor and actuator are not collocated anymore and the system is unstable because there is no zero between the two poles.
We use sensor fusion to obtain stability at high frequency.</p>
<h3 id="inertial-and-small-accelerometer">Inertial and small accelerometer</h3>
<p>The idea is to use a small accelerometer which is easier to locate near the actuator at high frequency.
However, it is important to verify that the noise introduced by the accelerometer does not degrades too much the isolation performance.</p>
<h3 id="inertial-and-force-sensor">Inertial and force sensor</h3>
<p>Here the advantage is that the deformation mode is almost not present in the open-loop transfer function.
This simplifies the loop shaping of the controller.</p>
<h3 id="inertial-and-relative-sensor">Inertial and relative sensor</h3>
<p>The relative sensor introduces coupling between both side of the actuator which induces degradation of the isolation at high frequency. However, the compliance remains unchanged at high frequency.</p>
<h2 id="conclusion">Conclusion</h2>
<p>Fusion of inertial instruments with sensors collocated with the actuator permits to increase the feedback control bandwidth of active isolation systems.</p>
<p>Three types of sensors have been considered for the high frequency part of the fusion:</p>
<ul>
<li>The fusion with a <strong>relative sensor</strong> improves the stability but compromises the transmissibility. It can be of interested for stiff suspension where high frequency isolation can be sacrified to improve stability.</li>
<li>The fusion with an <strong>accelerometre</strong> is used to increase the loop gain. However, as the accelerometer is not dual with the actuator, there is no guaranty stability when the isolation stage is mounted on a flexible support.</li>
<li>The fusion with a <strong>force sensor</strong> can be used to increase the loop gain with little effect on the compliance and passive isolation, provided that the blend is possible and that no active damping of flexible modes is required.</li>
</ul>
<h1 id="bibliography">Bibliography</h1>
<p><a id="collette14_vibrat"></a>Collette, C., &amp; Matichard, F., <em>Vibration control of flexible structures using fusion of inertial sensors and hyper-stable actuator-sensor pairs</em>, In , International Conference on Noise and Vibration Engineering (ISMA2014) (pp. ) (2014). : . <a href="#1223611da2f9b157af97503a4fec7631"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/dasgupta00_stewar_platf_manip/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">The stewart platform manipulator: a review</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,210 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Sensor fusion methods for high performance active vibration isolation systems - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Sensor Fusion, Vibration Isolation Reference (Collette &amp;amp; Matichard, 2015) Author(s) Collette, C., &amp;amp; Matichard, F. Year 2015 In order to have good stability margins, it is common practice to collocate sensors and actuators. This ensures alternating poles and zeros along the imaginary axis. Then, each phase lag introduced by the poles is compensed by phase leag introduced by the zeroes. This guarantees stability and such system is referred to as hyperstable." />
<link rel="canonical" href="/paper/collette15_sensor_fusion_method_high_perfor/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Sensor fusion methods for high performance active vibration isolation systems</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/sensor_fusion/">Sensor Fusion</a>, <a href="/zettels/vibration_isolation/">Vibration Isolation</a></dd>
<dt>Reference</dt>
<dd><sup id="7772841a8f05142ec30f0f6daae20932"><a href="#collette15_sensor_fusion_method_high_perfor" title="Collette \&amp; Matichard, Sensor Fusion Methods for High Performance Active Vibration Isolation Systems, {Journal of Sound and Vibration}, v(nil), 1-21 (2015).">(Collette &amp; Matichard, 2015)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Collette, C., &amp; Matichard, F.</dd>
<dt>Year</dt>
<dd>2015</dd>
</dl>
<p>In order to have good stability margins, it is common practice to collocate sensors and actuators. This ensures alternating poles and zeros along the imaginary axis. Then, each phase lag introduced by the poles is compensed by phase leag introduced by the zeroes. This guarantees stability and such system is referred to as <strong>hyperstable</strong>.</p>
<p>In this paper, we study and compare different sensor fusion methods combining inertial sensors at low frequency with sensors adding stability at high frequency.
The stability margins of the controller can be significantly increased with no or little effect on the low-frequency active isolation, provided that the two following conditions are fulfilled:</p>
<ul>
<li>the high frequency sensor and the actuator are dual</li>
<li>there exists a bandwidth where we can superimpose the open loop transfer functions obtained with the two sensors.</li>
</ul>
<h1 id="bibliography">Bibliography</h1>
<p><a id="collette15_sensor_fusion_method_high_perfor"></a>Collette, C., &amp; Matichard, F., <em>Sensor fusion methods for high performance active vibration isolation systems</em>, Journal of Sound and Vibration, <em>342(nil)</em>, 121 (2015). <a href="http://dx.doi.org/10.1016/j.jsv.2015.01.006">http://dx.doi.org/10.1016/j.jsv.2015.01.006</a> <a href="#7772841a8f05142ec30f0f6daae20932"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Sensor fusion for active vibration isolation in precision equipment</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/hauge04_sensor_contr_space_based_six/">
<span class="next-text nav-default">Sensors and control of a space-based six-axis vibration isolation system</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,251 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>The stewart platform manipulator: a review - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Stewart Platforms Reference (Bhaskar Dasgupta &amp;amp; Mruthyunjaya, 2000) Author(s) Dasgupta, B., &amp;amp; Mruthyunjaya, T. Year 2000
Table 1: Parallel VS serial manipulators Advantages Disadvantages Serial Manoeuverability Poor precision Large workspace Bends under high load Vibrate at high speed Parallel High stiffness Small workspace Good dynamic performances Precise positioning The generalized Stewart platforms consists of two rigid bodies (referred to as the base and the platoform) connected through six extensible legs, each with sherical joints at both ends." />
<link rel="canonical" href="/paper/dasgupta00_stewar_platf_manip/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">The stewart platform manipulator: a review</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/stewart_platforms/">Stewart Platforms</a></dd>
<dt>Reference</dt>
<dd><sup id="ad17e03f0fbbcc1a070557d7b5a0e1e1"><a href="#dasgupta00_stewar_platf_manip" title="Bhaskar Dasgupta \&amp; Mruthyunjaya, The Stewart Platform Manipulator: a Review, {Mechanism and Machine Theory}, v(1), 15-40 (2000).">(Bhaskar Dasgupta &amp; Mruthyunjaya, 2000)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Dasgupta, B., &amp; Mruthyunjaya, T.</dd>
<dt>Year</dt>
<dd>2000</dd>
</dl>
<p><a id="table--tab:parallel-vs-serial-manipulators"></a></p>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:parallel-vs-serial-manipulators">Table 1</a></span>:
Parallel VS serial manipulators
</div>
<table>
<thead>
<tr>
<th></th>
<th><strong>Advantages</strong></th>
<th><strong>Disadvantages</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Serial</strong></td>
<td>Manoeuverability</td>
<td>Poor precision</td>
</tr>
<tr>
<td></td>
<td>Large workspace</td>
<td>Bends under high load</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vibrate at high speed</td>
</tr>
<tr>
<td><strong>Parallel</strong></td>
<td>High stiffness</td>
<td>Small workspace</td>
</tr>
<tr>
<td></td>
<td>Good dynamic performances</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precise positioning</td>
<td></td>
</tr>
</tbody>
</table>
<p>The generalized Stewart platforms consists of two rigid bodies (referred to as the base and the platoform) connected through six extensible legs, each with sherical joints at both ends.</p>
<h1 id="bibliography">Bibliography</h1>
<p><a id="dasgupta00_stewar_platf_manip"></a>Dasgupta, B., &amp; Mruthyunjaya, T., <em>The stewart platform manipulator: a review</em>, Mechanism and Machine Theory, <em>35(1)</em>, 1540 (2000). <a href="http://dx.doi.org/10.1016/s0094-114x(99)00006-3">http://dx.doi.org/10.1016/s0094-114x(99)00006-3</a> <a href="#ad17e03f0fbbcc1a070557d7b5a0e1e1"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/furqan17_studies_stewar_platf_manip/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Studies on stewart platform manipulator: a review</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/collette14_vibrat/">
<span class="next-text nav-default">Vibration control of flexible structures using fusion of inertial sensors and hyper-stable actuator-sensor pairs</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,220 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>A survey of control issues in nanopositioning - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags :
Reference (Devasia {\it et al.}, 2007) Author(s) Devasia, S., Eleftheriou, E., &amp;amp; Moheimani, S. R. Year 2007 Talks about Scanning Tunneling Microscope (STM) and Scanning Probe Microscope (SPM) Piezoelectric actuators: Creep, Hysteresis, Vibrations, Modeling errors Interesting analysis about Bandwidth-Precision-Range tradeoffs Control approaches for piezoelectric actuators: feedforward, Feedback, Iterative, Sensorless controls
Figure 1: Tradeoffs between bandwidth, precision and range
Bibliography Devasia, S." />
<link rel="canonical" href="/paper/devasia07_survey_contr_issues_nanop/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">A survey of control issues in nanopositioning</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<p>Tags
:</p>
<dl>
<dt>Reference</dt>
<dd><sup id="8ce53b8a612ce8ae3eb616cd1ed05630"><a href="#devasia07_survey_contr_issues_nanop" title="Devasia, Eleftheriou, Moheimani \&amp; SO Reza, A Survey of Control Issues in Nanopositioning, {IEEE Transactions on Control Systems Technology}, v(5), 802--823 (2007).">(Devasia {\it et al.}, 2007)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Devasia, S., Eleftheriou, E., &amp; Moheimani, S. R.</dd>
<dt>Year</dt>
<dd>2007</dd>
</dl>
<ul>
<li>Talks about Scanning Tunneling Microscope (STM) and Scanning Probe Microscope (SPM)</li>
<li>Piezoelectric actuators: Creep, Hysteresis, Vibrations, Modeling errors</li>
<li>Interesting analysis about Bandwidth-Precision-Range tradeoffs</li>
<li>Control approaches for piezoelectric actuators: feedforward, Feedback, Iterative, Sensorless controls</li>
</ul>
<p><a id="orga0f4b4e"></a></p>
<figure>
<img src="/ox-hugo/devasia07_piezoelectric_tradeoff.png"
alt="Figure 1: Tradeoffs between bandwidth, precision and range"/> <figcaption>
<p>Figure 1: Tradeoffs between bandwidth, precision and range</p>
</figcaption>
</figure>
<h1 id="bibliography">Bibliography</h1>
<p><a id="devasia07_survey_contr_issues_nanop"></a>Devasia, S., Eleftheriou, E., &amp; Moheimani, S. R., <em>A survey of control issues in nanopositioning</em>, IEEE Transactions on Control Systems Technology, <em>15(5)</em>, 802823 (2007). <a href="#8ce53b8a612ce8ae3eb616cd1ed05630"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/spanos95_soft_activ_vibrat_isolat/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">A soft 6-axis active vibration isolator</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/holterman05_activ_dampin_based_decoup_colloc_contr/">
<span class="next-text nav-default">Active damping based on decoupled collocated control</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,309 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Nanopositioning system with force feedback for high-performance tracking and vibration control - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Sensor Fusion, Force Sensors Reference (Fleming, 2010) Author(s) Fleming, A. Year 2010 Summary:
The noise generated by a piezoelectric force sensor is much less than a capacitive sensor Dynamical model of a piezoelectric stack actuator and piezoelectric force sensor Noise of a piezoelectric force sensor IFF with a piezoelectric stack actuator and piezoelectric force sensor A force sensor is used as a displacement sensor below the frequency of the first zero Sensor fusion architecture with a capacitive sensor and a force sensor and using complementary filters Virtual sensor fusion architecture (called low-frequency bypass) Analog implementation of the control strategies to avoid quantization noise, finite resolution and sampling delay Model of a multi-layer monolithic piezoelectric stack actuator" />
<link rel="canonical" href="/paper/fleming10_nanop_system_with_force_feedb/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Nanopositioning system with force feedback for high-performance tracking and vibration control</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents">
<ul>
<li><a href="#model-of-a-multi-layer-monolithic-piezoelectric-stack-actuator">Model of a multi-layer monolithic piezoelectric stack actuator</a></li>
<li><a href="#dynamics-of-a-piezoelectric-force-sensor">Dynamics of a piezoelectric force sensor</a></li>
<li><a href="#noise-of-a-piezoelectric-force-sensor">Noise of a piezoelectric force sensor</a></li>
</ul>
<ul>
<li><a href="#backlinks">Backlinks</a></li>
</ul>
</nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/sensor_fusion/">Sensor Fusion</a>, <a href="/zettels/force_sensors/">Force Sensors</a></dd>
<dt>Reference</dt>
<dd><sup id="c823f68dd2a72b9667a61b3c046b4731"><a href="#fleming10_nanop_system_with_force_feedb" title="Fleming, Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control, {IEEE/ASME Transactions on Mechatronics}, v(3), 433-447 (2010).">(Fleming, 2010)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Fleming, A.</dd>
<dt>Year</dt>
<dd>2010</dd>
</dl>
<p>Summary:</p>
<ul>
<li>The noise generated by a piezoelectric force sensor is much less than a capacitive sensor</li>
<li>Dynamical model of a piezoelectric stack actuator and piezoelectric force sensor</li>
<li>Noise of a piezoelectric force sensor</li>
<li>IFF with a piezoelectric stack actuator and piezoelectric force sensor</li>
<li>A force sensor is used as a displacement sensor below the frequency of the first zero</li>
<li>Sensor fusion architecture with a capacitive sensor and a force sensor and using complementary filters</li>
<li>Virtual sensor fusion architecture (called low-frequency bypass)</li>
<li>Analog implementation of the control strategies to avoid quantization noise, finite resolution and sampling delay</li>
</ul>
<h2 id="model-of-a-multi-layer-monolithic-piezoelectric-stack-actuator">Model of a multi-layer monolithic piezoelectric stack actuator</h2>
<p><a id="orgf7e4ab9"></a></p>
<figure>
<img src="/ox-hugo/fleming10_piezo_model.png"
alt="Figure 1: Schematic of a multi-layer monolithic piezoelectric stack actuator model"/> <figcaption>
<p>Figure 1: Schematic of a multi-layer monolithic piezoelectric stack actuator model</p>
</figcaption>
</figure>
<p>The actuator experiences an internal stress in response to an applied voltage.
This stress is represented by the voltage dependent force \(F_a\) and is related to free displacement by
\[ \Delta L = \frac{F_a}{k_a} \]</p>
<ul>
<li>\(\Delta L\) is the change in actuator length in [m]</li>
<li>\(k_a\) is the actuator stiffness in [N/m]</li>
</ul>
<p>The developed force \(F_a\) is related to the applied voltage by:
\[ \Delta L = d_{33} n V_a \]</p>
<ul>
<li>\(d_{33}\) is the piezoelectric strain constant in [m/V]</li>
<li>\(n\) is the number of layers</li>
<li>\(V_a\) is the applied voltage in [V]</li>
</ul>
<p>Combining the two equations, we obtain:
\[ F_a = d_{33} n k_a V_a \]</p>
<p>The ratio of the developed force to applied voltage is \(d_{33} n k_a\) in [N/V].
We denote this constant by \(g_a\) and:
\[ F_a = g_a V_a, \quad g_a = d_{33} n k_a \]</p>
<h2 id="dynamics-of-a-piezoelectric-force-sensor">Dynamics of a piezoelectric force sensor</h2>
<p>Piezoelectric force sensors provide a high sensitivity and bandwidth with low noise at high frequencies.</p>
<p>If a <strong>single wafer</strong> of piezoelectric material is sandwiched between the actuator and platform:
\[ D = d_{33} T \]</p>
<ul>
<li>\(D\) is the amount of generated charge per unit area in \([C/m^2]\)</li>
<li>\(T\) is the stress in \([N/m^2]\)</li>
<li>\(d_{33}\) is the piezoelectric strain constant in \([m/V] = [C/N]\)</li>
</ul>
<p>The generated charge is then
\[ q = d_{33} F_s \]</p>
<p>If an <strong>n-layer</strong> piezoelectric transducer is used as a force sensor, the generated charge is then:
\[ q = n d_{33} F_s \]</p>
<hr>
<p>We can use a <strong>charge amplifier</strong> to measure the force \(F_s\).</p>
<figure>
<img src="/ox-hugo/fleming10_charge_ampl_piezo.png"
alt="Figure 2: Electrical model of a piezoelectric force sensor is shown in gray. Developed charge \(q\) is proportional to the strain and hence the force experienced by the sensor. Op-amp charge amplifier produces an output voltage \(V_s\) equal to \(-q/C_s\)"/> <figcaption>
<p>Figure 2: Electrical model of a piezoelectric force sensor is shown in gray. Developed charge \(q\) is proportional to the strain and hence the force experienced by the sensor. Op-amp charge amplifier produces an output voltage \(V_s\) equal to \(-q/C_s\)</p>
</figcaption>
</figure>
<p>The output voltage \(V_s\) is equal to
\[ V_s = -\frac{q}{C_s} = -\frac{n d_{33}F_s}{C_s} \]
that is, the scaling between the force and voltage is \(-\frac{n d_{33}F_s}{C_s}\ [V/N]\) .</p>
<hr>
<p>We can also use a voltage amplifier.
In that case, the generated charge is deposited on the transducer&rsquo;s internal capacitance.</p>
<p>The open-circuit voltage of a piezoelectric force sensor is:
\[ V_s = \frac{n d_{33} F_s}{C} \]</p>
<ul>
<li>\(C\) is the transducer capacitance defined by \(C = n \epsilon_T A / h\) in [F]
<ul>
<li>\(A\) is the area in \([m^2]\)</li>
<li>\(h\) is the layer thickness in [m]</li>
<li>\(\epsilon_T\) is the dielectric permittivity under a constant stress in \([F/m]\)</li>
</ul>
</li>
</ul>
<p>We obtain
\[ V_s = g_s F_s, \quad g_s = \frac{n d_{33}}{C} \]</p>
<h2 id="noise-of-a-piezoelectric-force-sensor">Noise of a piezoelectric force sensor</h2>
<p>As piezoelectric sensors have a capacitive source impedance, the sensor noise density \(N_{V_s}(\omega)\) is primarily due to current noise \(i_n\) reacting the capacitive source impedance:
\[ N_{V_s}(\omega) = i_n \frac{1}{C \omega} \]</p>
<ul>
<li>\(N_{V_s}\) is the measured noise in \(V/\sqrt{\text{Hz}}\)</li>
<li>\(i_n\) is the current noise in \(A/\sqrt{\text{Hz}}\)</li>
<li>\(C\) is the capacitance of the piezoelectric in \(F\)</li>
</ul>
<p>The current noise density of a general purpose LM833 FET-input op-amp is \(0.5\ pA/\sqrt{\text{Hz}}\).
The capacitance of a piezoelectric stack is typically between \(1 \mu F\) and \(100 \mu F\).</p>
<h1 id="bibliography">Bibliography</h1>
<p><a id="fleming10_nanop_system_with_force_feedb"></a>Fleming, A., <em>Nanopositioning system with force feedback for high-performance tracking and vibration control</em>, IEEE/ASME Transactions on Mechatronics, <em>15(3)</em>, 433447 (2010). <a href="http://dx.doi.org/10.1109/tmech.2009.2028422">http://dx.doi.org/10.1109/tmech.2009.2028422</a> <a href="#c823f68dd2a72b9667a61b3c046b4731"></a></p>
<h2 id="backlinks">Backlinks</h2>
<ul>
<li><a href="/zettels/actuators/">Actuators</a></li>
<li><a href="/zettels/force_sensors/">Force Sensors</a></li>
</ul>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/furutani04_nanom_cuttin_machin_using_stewar/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Nanometre-cutting machine using a stewart-platform parallel mechanism</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/sebastian12_nanop_with_multip_sensor/">
<span class="next-text nav-default">Nanopositioning with multiple sensors: a case study in data storage</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,205 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Estimating the resolution of nanopositioning systems from frequency domain data - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags :
Reference (Andrew Fleming, 2012) Author(s) Fleming, A. J. Year 2012 Bibliography Fleming, A. J., Estimating the resolution of nanopositioning systems from frequency domain data, In , 2012 IEEE International Conference on Robotics and Automation (pp. ) (2012). : . ↩" />
<link rel="canonical" href="/paper/fleming12_estim/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Estimating the resolution of nanopositioning systems from frequency domain data</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<p>Tags
:</p>
<dl>
<dt>Reference</dt>
<dd><sup id="a1cc9b70316a7dda2f652efd146caf84"><a href="#fleming12_estim" title="Andrew Fleming, Estimating the resolution of nanopositioning systems from frequency domain data, nil, in in: {2012 IEEE International Conference on Robotics and
Automation}, edited by (2012)">(Andrew Fleming, 2012)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Fleming, A. J.</dd>
<dt>Year</dt>
<dd>2012</dd>
</dl>
<h1 id="bibliography">Bibliography</h1>
<p><a id="fleming12_estim"></a>Fleming, A. J., <em>Estimating the resolution of nanopositioning systems from frequency domain data</em>, In , 2012 IEEE International Conference on Robotics and Automation (pp. ) (2012). : . <a href="#a1cc9b70316a7dda2f652efd146caf84"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/jiao18_dynam_model_exper_analy_stewar/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Dynamic modeling and experimental analyses of stewart platform with flexible hinges</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/preumont02_force_feedb_versus_accel_feedb/">
<span class="next-text nav-default">Force feedback versus acceleration feedback in active vibration isolation</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,409 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>A review of nanometer resolution position sensors: operation and performance - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Position Sensors Reference (Andrew Fleming, 2013) Author(s) Fleming, A. J. Year 2013 Define concise performance metric and provide expressions for errors sources (non-linearity, drift, noise) Review current position sensor technologies and compare their performance Sensor Characteristics Calibration and nonlinearity Usually quoted as a percentage of the fill-scale range (FSR):
\begin{equation} \text{mapping error (%)} = \pm 100 \frac{\max{}|e_m(v)|}{\text{FSR}} \end{equation}
With \(e_m(v)\) is the mapping error." />
<link rel="canonical" href="/paper/fleming13_review_nanom_resol_posit_sensor/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">A review of nanometer resolution position sensors: operation and performance</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents">
<ul>
<li><a href="#sensor-characteristics">Sensor Characteristics</a>
<ul>
<li><a href="#calibration-and-nonlinearity">Calibration and nonlinearity</a></li>
<li><a href="#drift-and-stability">Drift and Stability</a></li>
<li><a href="#bandwidth">Bandwidth</a></li>
<li><a href="#noise">Noise</a></li>
<li><a href="#resolution">Resolution</a></li>
</ul>
</li>
<li><a href="#comparison-and-summary">Comparison and summary</a></li>
</ul>
</nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/position_sensors/">Position Sensors</a></dd>
<dt>Reference</dt>
<dd><sup id="3fb5b61524290e36d639a4fac65703d0"><a href="#fleming13_review_nanom_resol_posit_sensor" title="Andrew Fleming, A Review of Nanometer Resolution Position Sensors: Operation and Performance, {Sensors and Actuators A: Physical}, v(nil), 106-126 (2013).">(Andrew Fleming, 2013)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Fleming, A. J.</dd>
<dt>Year</dt>
<dd>2013</dd>
</dl>
<ul>
<li>Define concise performance metric and provide expressions for errors sources (non-linearity, drift, noise)</li>
<li>Review current position sensor technologies and compare their performance</li>
</ul>
<h2 id="sensor-characteristics">Sensor Characteristics</h2>
<h3 id="calibration-and-nonlinearity">Calibration and nonlinearity</h3>
<p>Usually quoted as a percentage of the fill-scale range (FSR):</p>
<p>\begin{equation}
\text{mapping error (%)} = \pm 100 \frac{\max{}|e_m(v)|}{\text{FSR}}
\end{equation}</p>
<p>With \(e_m(v)\) is the mapping error.</p>
<p><a id="org18802f9"></a></p>
<figure>
<img src="/ox-hugo/fleming13_mapping_error.png"
alt="Figure 1: The actual position versus the output voltage of a position sensor. The calibration function \(f_{cal}(v)\) is an approximation of the sensor mapping function \(f_a(v)\) where \(v\) is the voltage resulting from a displacement \(x\). \(e_m(v)\) is the residual error."/> <figcaption>
<p>Figure 1: The actual position versus the output voltage of a position sensor. The calibration function \(f_{cal}(v)\) is an approximation of the sensor mapping function \(f_a(v)\) where \(v\) is the voltage resulting from a displacement \(x\). \(e_m(v)\) is the residual error.</p>
</figcaption>
</figure>
<h3 id="drift-and-stability">Drift and Stability</h3>
<p>If the shape of the mapping function actually varies with time, the maximum error due to drift must be evaluated by finding the worst-case mapping error.</p>
<p><a id="org65fb6f9"></a></p>
<figure>
<img src="/ox-hugo/fleming13_drift_stability.png"
alt="Figure 2: The worst case range of a linear mapping function \(f_a(v)\) for a given error in sensitivity and offset."/> <figcaption>
<p>Figure 2: The worst case range of a linear mapping function \(f_a(v)\) for a given error in sensitivity and offset.</p>
</figcaption>
</figure>
<h3 id="bandwidth">Bandwidth</h3>
<p>The bandwidth of a position sensor is the frequency at which the magnitude of the transfer function \(P(s) = v(s)/x(s)\) drops by \(3,dB\).</p>
<p>Although the bandwidth specification is useful for predicting the resolution of sensor, it reveals very little about the measurement errors caused by sensor dynamics.</p>
<p>The frequency domain position error is</p>
<p>\begin{equation}
\begin{aligned}
e_{bw}(s) &amp;= x(s) - v(s) \\\<br>
&amp;= x(s) (1 - P(s))
\end{aligned}
\end{equation}</p>
<p>If the actual position is a sinewave of peak amplitude \(A = \text{FSR}/2\):</p>
<p>\begin{equation}
\begin{aligned}
e_{bw} &amp;= \pm \frac{\text{FSR}}{2} |1 - P(s)| \\\<br>
&amp;\approx \pm A n \frac{f}{f_c}
\end{aligned}
\end{equation}</p>
<p>with \(n\) is the low pass filter order corresponding to the sensor dynamics and \(f_c\) is the measurement bandwidth.</p>
<p>Thus, the sensor bandwidth must be significantly higher than the operating frequency if dynamic errors are to be avoided.</p>
<h3 id="noise">Noise</h3>
<p>In addition to the actual position signal, all sensors produce some additive measurement noise.
In many types of sensor, the majority of noise arises from the thermal noise in resistors and the voltage and current noise in conditioning circuit transistors.
These noise processes can usually be approximated by a Gaussian random process.<br /></p>
<p>A Gaussian random process is usually described by its autocorrelation function or its Power Spectral Density.</p>
<p>The autocorrelation function of a random process \(\mathcal{X}\) is</p>
<p>\begin{equation}
R_{\mathcal{X}}(\tau) = E[\mathcal{X}(t)\mathcal{X}(t + \tau)]
\end{equation}</p>
<p>where \(E\) is the expected value operator.</p>
<p>The variance of the process is equal to \(R_\mathcal{X}(0)\) and is the expected value of the varying part squared:</p>
<p>\begin{equation}
\text{Var} \mathcal{X} = E \left[ (\mathcal{X} - E[\mathcal{X}])^2 \right]
\end{equation}</p>
<p>The standard deviation \(\sigma\) is the square root of the variance:</p>
<p>\begin{equation}
\sigma_\mathcal{X} = \sqrt{\text{Var} \mathcal{X}}
\end{equation}</p>
<p>The standard deviation is also the Root Mean Square (RMS) value of a zero-mean random process.</p>
<p>The Power Spectral Density \(S_\mathcal{X}(f)\) of a random process represents the distribution of power (or variance) across frequency \(f\).</p>
<p>For example, if the random process under consideration was measured in volts, the power spectral density would have the units of \(V^2/\text{Hz}\).</p>
<p>The Power Spectral Density can be obtained from the autocorrelation function from the Wiener-Khinchin relation:</p>
<p>\begin{equation}
S_{\mathcal{X}} = 2 \mathcal{F}\{ R_\mathcal{X}(\tau) \} = 2 \int_{-\infty}^{\infty} R_\mathcal{X}(\tau) e^{-2j\pi f \tau} d\tau
\end{equation}</p>
<p>If the power Spectral Density is known, the variance of the generating process can be found from the area under the curve:</p>
<p>\begin{equation}
\sigma_\mathcal{X}^2 = E[\mathcal{X}^2(t)] = R_\mathcal{X}(0) = \int_0^\infty S_\mathcal{X}(f) df
\end{equation}</p>
<p>Rather than plotting the frequency distribution of power, it is often convenient to plot the frequency distribution of the standard deviation, which is referred to as the spectral density.
It is related to the power spectral density by a square root:</p>
<p>\begin{equation}
\text{spectral density} = \sqrt{S_\mathcal{X}(f)}
\end{equation}</p>
<p>The units of \(\sqrt{S_\mathcal{X}(f)}\) are \(\text{units}/\sqrt{Hz}\).</p>
<p>The spectral density if preferred in the electronics literature as the RMS value of a noise process can be determined directly from the noise density and effective bandwidth.</p>
<h3 id="resolution">Resolution</h3>
<p>The random noise of a position sensor causes an uncertainty in the measured position.
If the distance between two measured locations is smaller than the uncertainty, it is possible to mistake one point for the other.</p>
<p>To characterize the resolution, we use the probability that the measured value is within a certain error bound.</p>
<p>If the measurement noise is approximately Gaussian, the resolution can be quantified by the standard deviation \(\sigma\) (RMS value).</p>
<p>The empirical rule states that there is a \(99.7%\) probability that a sample of a Gaussian random process lie within \(\pm 3 \sigma\).
This if we define the resolution as \(\delta = 6 \sigma\), we will referred to as the \(6\sigma\text{-resolution}\).</p>
<p>Another important parameter that must be specified when quoting resolution is the sensor bandwidth.
There is usually a trade-off between bandwidth and resolution (figure <a href="#org954f29f">3</a>).</p>
<p><a id="org954f29f"></a></p>
<figure>
<img src="/ox-hugo/fleming13_tradeoff_res_bandwidth.png"
alt="Figure 3: The resolution versus banwidth of a position sensor."/> <figcaption>
<p>Figure 3: The resolution versus banwidth of a position sensor.</p>
</figcaption>
</figure>
<p>Many type of sensor have a limited full-scale-range (FSR) and tend to have an approximated proportional relationship between the resolution and range.
As a result, it is convenient to consider the ratio of resolution to the FSR, or equivalently, the dynamic range (DNR).
A convenient method for reporting this ratio is in parts-per-million (ppm):</p>
<p>\begin{equation}
\text{DNR}_{\text{ppm}} = 10^6 \frac{\text{full scale range}}{6\sigma\text{-resolution}}
\end{equation}</p>
<h2 id="comparison-and-summary">Comparison and summary</h2>
<p><a id="table--tab:summary-position-sensors"></a></p>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:summary-position-sensors">Table 1</a></span>:
Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of \(100\,\mu m\) and a first order bandwidth of \(1\,kHz\)
</div>
<table>
<thead>
<tr>
<th>Sensor Type</th>
<th>Range</th>
<th>DNR</th>
<th>Resolution</th>
<th>Max. BW</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal foil</td>
<td>\(10-500,\mu m\)</td>
<td>230 ppm</td>
<td>23 nm</td>
<td>1-10 kHz</td>
<td>1% FSR</td>
</tr>
<tr>
<td>Piezoresistive</td>
<td>\(1-500,\mu m\)</td>
<td>5 ppm</td>
<td>0.5 nm</td>
<td>&gt;100 kHz</td>
<td>1% FSR</td>
</tr>
<tr>
<td>Capacitive</td>
<td>\(10,\mu m\) to \(10,mm\)</td>
<td>24 ppm</td>
<td>2.4 nm</td>
<td>100 kHz</td>
<td>0.1% FSR</td>
</tr>
<tr>
<td>Electrothermal</td>
<td>\(10,\mu m\) to \(1,mm\)</td>
<td>100 ppm</td>
<td>10 nm</td>
<td>10 kHz</td>
<td>1% FSR</td>
</tr>
<tr>
<td>Eddy current</td>
<td>\(100,\mu m\) to \(80,mm\)</td>
<td>10 ppm</td>
<td>1 nm</td>
<td>40 kHz</td>
<td>0.1% FSR</td>
</tr>
<tr>
<td>LVDT</td>
<td>\(0.5-500,mm\)</td>
<td>10 ppm</td>
<td>5 nm</td>
<td>1 kHz</td>
<td>0.25% FSR</td>
</tr>
<tr>
<td>Interferometer</td>
<td>Meters</td>
<td></td>
<td>0.5 nm</td>
<td>&gt;100kHz</td>
<td>1 ppm FSR</td>
</tr>
<tr>
<td>Encoder</td>
<td>Meters</td>
<td></td>
<td>6 nm</td>
<td>&gt;100kHz</td>
<td>5 ppm FSR</td>
</tr>
</tbody>
</table>
<h1 id="bibliography">Bibliography</h1>
<p><a id="fleming13_review_nanom_resol_posit_sensor"></a>Fleming, A. J., <em>A review of nanometer resolution position sensors: operation and performance</em>, Sensors and Actuators A: Physical, <em>190(nil)</em>, 106126 (2013). <a href="http://dx.doi.org/10.1016/j.sna.2012.10.016">http://dx.doi.org/10.1016/j.sna.2012.10.016</a> <a href="#3fb5b61524290e36d639a4fac65703d0"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/legnani12_new_isotr_decoup_paral_manip/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">A new isotropic and decoupled 6-dof parallel manipulator</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/preumont07_six_axis_singl_stage_activ/">
<span class="next-text nav-default">A six-axis single-stage active vibration isolator based on stewart platform</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,205 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Studies on stewart platform manipulator: a review - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Stewart Platforms Reference (Mohd Furqan {\it et al.}, 2017) Author(s) Furqan, M., Suhaib, M., &amp;amp; Ahmad, N. Year 2017 Lots of references.
Bibliography Furqan, M., Suhaib, M., &amp;amp; Ahmad, N., Studies on stewart platform manipulator: a review, Journal of Mechanical Science and Technology, 31(9), 44594470 (2017). http://dx.doi.org/10.1007/s12206-017-0846-1 ↩" />
<link rel="canonical" href="/paper/furqan17_studies_stewar_platf_manip/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Studies on stewart platform manipulator: a review</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/stewart_platforms/">Stewart Platforms</a></dd>
<dt>Reference</dt>
<dd><sup id="cc10fe9545c7c381cc2b610e8f91a071"><a href="#furqan17_studies_stewar_platf_manip" title="Mohd Furqan, Mohd Suhaib \&amp; Nazeer Ahmad, Studies on Stewart Platform Manipulator: a Review, {Journal of Mechanical Science and Technology}, v(9), 4459-4470 (2017).">(Mohd Furqan {\it et al.}, 2017)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Furqan, M., Suhaib, M., &amp; Ahmad, N.</dd>
<dt>Year</dt>
<dd>2017</dd>
</dl>
<p>Lots of references.</p>
<h1 id="bibliography">Bibliography</h1>
<p><a id="furqan17_studies_stewar_platf_manip"></a>Furqan, M., Suhaib, M., &amp; Ahmad, N., <em>Studies on stewart platform manipulator: a review</em>, Journal of Mechanical Science and Technology, <em>31(9)</em>, 44594470 (2017). <a href="http://dx.doi.org/10.1007/s12206-017-0846-1">http://dx.doi.org/10.1007/s12206-017-0846-1</a> <a href="#cc10fe9545c7c381cc2b610e8f91a071"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/zhang11_six_dof/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Six dof active vibration control using stewart platform with non-cubic configuration</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/dasgupta00_stewar_platf_manip/">
<span class="next-text nav-default">The stewart platform manipulator: a review</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,225 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Nanometre-cutting machine using a stewart-platform parallel mechanism - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Stewart Platforms, Flexible Joints Reference (Katsushi Furutani {\it et al.}, 2004) Author(s) Furutani, K., Suzuki, M., &amp;amp; Kudoh, R. Year 2004 Lever mechanism to amplify the motion of piezoelectric stack actuators Use of flexure joints Eddy current displacement sensors for control (decentralized) Isotropic performance (cubic configuration even if not said so) Possible sources of error:
position error of the link ends in assembly =&amp;gt; simulation of position error and it is not significant Inaccurate modelling of the links insufficient generative force unwanted deformation of the links To minimize the errors, a calibration is done between the required leg length and the wanted platform pose." />
<link rel="canonical" href="/paper/furutani04_nanom_cuttin_machin_using_stewar/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Nanometre-cutting machine using a stewart-platform parallel mechanism</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/stewart_platforms/">Stewart Platforms</a>, <a href="/zettels/flexible_joints/">Flexible Joints</a></dd>
<dt>Reference</dt>
<dd><sup id="bedab298599c84f60236313ebaad2714"><a href="#furutani04_nanom_cuttin_machin_using_stewar" title="Katsushi Furutani, Michio Suzuki \&amp; Ryusei Kudoh, Nanometre-Cutting Machine Using a Stewart-Platform Parallel Mechanism, {Measurement Science and Technology}, v(2), 467-474 (2004).">(Katsushi Furutani {\it et al.}, 2004)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Furutani, K., Suzuki, M., &amp; Kudoh, R.</dd>
<dt>Year</dt>
<dd>2004</dd>
</dl>
<ul>
<li>Lever mechanism to amplify the motion of piezoelectric stack actuators</li>
<li>Use of flexure joints</li>
<li>Eddy current displacement sensors for control (decentralized)</li>
</ul>
<figure>
<img src="/ox-hugo/furutani04_ctrl_arch.png"/>
</figure>
<ul>
<li>Isotropic performance (cubic configuration even if not said so)</li>
</ul>
<p>Possible sources of error:</p>
<ul>
<li>position error of the link ends in assembly =&gt; simulation of position error and it is not significant</li>
<li>Inaccurate modelling of the links</li>
<li>insufficient generative force</li>
<li>unwanted deformation of the links</li>
</ul>
<p>To minimize the errors, a calibration is done between the required leg length and the wanted platform pose.
Then, it is fitted with 4th order polynomial and included in the control architecture.</p>
<h1 id="bibliography">Bibliography</h1>
<p><a id="furutani04_nanom_cuttin_machin_using_stewar"></a>Furutani, K., Suzuki, M., &amp; Kudoh, R., <em>Nanometre-cutting machine using a stewart-platform parallel mechanism</em>, Measurement Science and Technology, <em>15(2)</em>, 467474 (2004). <a href="http://dx.doi.org/10.1088/0957-0233/15/2/022">http://dx.doi.org/10.1088/0957-0233/15/2/022</a> <a href="#bedab298599c84f60236313ebaad2714"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/gao15_measur_techn_precis_posit/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Measurement technologies for precision positioning</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/fleming10_nanop_system_with_force_feedb/">
<span class="next-text nav-default">Nanopositioning system with force feedback for high-performance tracking and vibration control</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,203 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Measurement technologies for precision positioning - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Position Sensors Reference (Gao {\it et al.}, 2015) Author(s) Gao, W., Kim, S., Bosse, H., Haitjema, H., Chen, Y., Lu, X., Knapp, W., … Year 2015 Bibliography Gao, W., Kim, S., Bosse, H., Haitjema, H., Chen, Y., Lu, X., Knapp, W., …, Measurement technologies for precision positioning, CIRP Annals, 64(2), 773796 (2015). http://dx.doi.org/10.1016/j.cirp.2015.05.009 ↩" />
<link rel="canonical" href="/paper/gao15_measur_techn_precis_posit/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Measurement technologies for precision positioning</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/position_sensors/">Position Sensors</a></dd>
<dt>Reference</dt>
<dd><sup id="b820b918ced36901ea0ad4bf653202c6"><a href="#gao15_measur_techn_precis_posit" title="Gao, Kim, Bosse, Haitjema, , Chen, Lu, Knapp, Weckenmann, , Estler \&amp; Kunzmann, Measurement Technologies for Precision Positioning, {CIRP Annals}, v(2), 773-796 (2015).">(Gao {\it et al.}, 2015)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Gao, W., Kim, S., Bosse, H., Haitjema, H., Chen, Y., Lu, X., Knapp, W., …</dd>
<dt>Year</dt>
<dd>2015</dd>
</dl>
<h1 id="bibliography">Bibliography</h1>
<p><a id="gao15_measur_techn_precis_posit"></a>Gao, W., Kim, S., Bosse, H., Haitjema, H., Chen, Y., Lu, X., Knapp, W., …, <em>Measurement technologies for precision positioning</em>, CIRP Annals, <em>64(2)</em>, 773796 (2015). <a href="http://dx.doi.org/10.1016/j.cirp.2015.05.009">http://dx.doi.org/10.1016/j.cirp.2015.05.009</a> <a href="#b820b918ced36901ea0ad4bf653202c6"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/wang16_inves_activ_vibrat_isolat_stewar/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Investigation on active vibration isolation of a stewart platform with piezoelectric actuators</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/furutani04_nanom_cuttin_machin_using_stewar/">
<span class="next-text nav-default">Nanometre-cutting machine using a stewart-platform parallel mechanism</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,225 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Implementation challenges for multivariable control: what you did not learn in school! - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Multivariable Control Reference (Sanjay Garg, 2007) Author(s) Garg, S. Year 2007 Discusses:
When to use multivariable control and when not to? Two major issues with implementing multivariable control: gain scheduling and integrator wind up protection Inline simple gain and phase margin measured for SISO, &amp;ldquo;robustness&amp;rdquo; determination of multivariable control requires complex analyses using singular value techniques and Monte Carlo simulations.
When to use multivariable control:" />
<link rel="canonical" href="/paper/garg07_implem_chall_multiv_contr/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Implementation challenges for multivariable control: what you did not learn in school!</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/multivariable_control/">Multivariable Control</a></dd>
<dt>Reference</dt>
<dd><sup id="07f63c751c1d9fcfe628178688f7ec24"><a href="#garg07_implem_chall_multiv_contr" title="Sanjay Garg, Implementation Challenges for Multivariable Control: What you did not learn in school!, nil, in in: {AIAA Guidance, Navigation and Control Conference and
Exhibit}, edited by (2007)">(Sanjay Garg, 2007)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Garg, S.</dd>
<dt>Year</dt>
<dd>2007</dd>
</dl>
<p>Discusses:</p>
<ul>
<li>When to use multivariable control and when not to?</li>
<li>Two major issues with implementing multivariable control: <strong>gain scheduling</strong> and <strong>integrator wind up protection</strong></li>
</ul>
<blockquote>
<p>Inline simple gain and phase margin measured for SISO, &ldquo;robustness&rdquo; determination of multivariable control requires complex analyses using <strong>singular value techniques</strong> and <strong>Monte Carlo</strong> simulations.</p>
</blockquote>
<p><strong>When to use multivariable control</strong>:</p>
<ul>
<li>System has high input/output coupling and not much separation between loop bandwidth</li>
<li>System is complex with large number of states</li>
<li>When sequential SISO loop closure will not meet performance requirements</li>
</ul>
<p>Importance of having a mechanism to limit the control rate in the synthesis process.
The control rate should be weighted appropriately in order to not saturate the system and stay in the linearity regime.</p>
<ul>
<li>importance of scaling the plant prior to synthesis and also replacing pure integrators with slow poles</li>
</ul>
<h1 id="bibliography">Bibliography</h1>
<p><a id="garg07_implem_chall_multiv_contr"></a>Garg, S., <em>Implementation challenges for multivariable control: what you did not learn in school!</em>, In , AIAA Guidance, Navigation and Control Conference and Exhibit (pp. ) (2007). : . <a href="#07f63c751c1d9fcfe628178688f7ec24"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/chen00_ident_decoup_contr_flexur_joint_hexap/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Identification and decoupling control of flexure jointed hexapods</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/stankevic17_inter_charac_rotat_stages_x_ray_nanot/">
<span class="next-text nav-default">Interferometric characterization of rotation stages for x-ray nanotomography</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,213 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>An intelligent control system for multiple degree-of-freedom vibration isolation - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Stewart Platforms, Vibration Isolation Reference (Jason Geng {\it et al.}, 1995) Author(s) Geng, Z. J., Pan, G. G., Haynes, L. S., Wada, B. K., &amp;amp; Garba, J. A. Year 1995
Figure 1: Local force feedback and adaptive acceleration feedback for active isolation
Bibliography Geng, Z. J., Pan, G. G., Haynes, L. S., Wada, B. K., &amp;amp; Garba, J. A., An intelligent control system for multiple degree-of-freedom vibration isolation, Journal of Intelligent Material Systems and Structures, 6(6), 787800 (1995)." />
<link rel="canonical" href="/paper/geng95_intel_contr_system_multip_degree/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">An intelligent control system for multiple degree-of-freedom vibration isolation</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/stewart_platforms/">Stewart Platforms</a>, <a href="/zettels/vibration_isolation/">Vibration Isolation</a></dd>
<dt>Reference</dt>
<dd><sup id="76af0f5c88615842fa91864c8618fb58"><a class="reference-link" href="#geng95_intel_contr_system_multip_degree" title="Jason Geng, George Pan, Leonard Haynes, , Ben Wada \&amp; John Garba, An Intelligent Control System for Multiple Degree-Of-Freedom Vibration Isolation, {Journal of Intelligent Material Systems and Structures}, v(6), 787-800 (1995).">(Jason Geng {\it et al.}, 1995)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Geng, Z. J., Pan, G. G., Haynes, L. S., Wada, B. K., &amp; Garba, J. A.</dd>
<dt>Year</dt>
<dd>1995</dd>
</dl>
<p><a id="org1384437"></a></p>
<figure>
<img src="/ox-hugo/geng95_control_structure.png"
alt="Figure 1: Local force feedback and adaptive acceleration feedback for active isolation"/> <figcaption>
<p>Figure 1: Local force feedback and adaptive acceleration feedback for active isolation</p>
</figcaption>
</figure>
<h1 id="bibliography">Bibliography</h1>
<p><a class="bibtex-entry" id="geng95_intel_contr_system_multip_degree"></a>Geng, Z. J., Pan, G. G., Haynes, L. S., Wada, B. K., &amp; Garba, J. A., <em>An intelligent control system for multiple degree-of-freedom vibration isolation</em>, Journal of Intelligent Material Systems and Structures, <em>6(6)</em>, 787800 (1995). <a href="http://dx.doi.org/10.1177/1045389x9500600607">http://dx.doi.org/10.1177/1045389x9500600607</a> <a href="#76af0f5c88615842fa91864c8618fb58"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/holler12_instr_x_ray_nano_imagin/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">An instrument for 3d x-ray nano-imaging</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/wang12_autom_marker_full_field_hard/">
<span class="next-text nav-default">Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,217 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Active isolation and damping of vibrations via stewart platform - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Stewart Platforms, Vibration Isolation, Active Damping Reference @phdthesis{hanieh03_activ_stewar, author = {Hanieh, Ahmed Abu}, school = {Universit{&#39;e} Libre de Bruxelles, Brussels, Belgium}, title = {Active isolation and damping of vibrations via Stewart platform}, year = 2003, tags = {parallel robot}, } Author(s) Hanieh, A. A. Year 2003 Bibliography Hanieh, A. A., Active isolation and damping of vibrations via stewart platform (Doctoral dissertation) (2003). Universit{&#39;e} Libre de Bruxelles, Brussels, Belgium, ." />
<link rel="canonical" href="/paper/hanieh03_activ_stewar/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Active isolation and damping of vibrations via stewart platform</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/stewart_platforms/">Stewart Platforms</a>, <a href="/zettels/vibration_isolation/">Vibration Isolation</a>, <a href="/zettels/active_damping/">Active Damping</a></dd>
<dt>Reference</dt>
<dd><sup id="10e535e895bdcd6b921bff33ef68cd81"><a href="#hanieh03_activ_stewar" title="@phdthesis{hanieh03_activ_stewar,
author = {Hanieh, Ahmed Abu},
school = {Universit{\'e} Libre de Bruxelles, Brussels, Belgium},
title = {Active isolation and damping of vibrations via Stewart
platform},
year = 2003,
tags = {parallel robot},
}">@phdthesis{hanieh03_activ_stewar,
author = {Hanieh, Ahmed Abu},
school = {Universit{'e} Libre de Bruxelles, Brussels, Belgium},
title = {Active isolation and damping of vibrations via Stewart
platform},
year = 2003,
tags = {parallel robot},
}</a></sup></dd>
<dt>Author(s)</dt>
<dd>Hanieh, A. A.</dd>
<dt>Year</dt>
<dd>2003</dd>
</dl>
<h1 id="bibliography">Bibliography</h1>
<p><a id="hanieh03_activ_stewar"></a>Hanieh, A. A., <em>Active isolation and damping of vibrations via stewart platform</em> (Doctoral dissertation) (2003). Universit{'e} Libre de Bruxelles, Brussels, Belgium, . <a href="#10e535e895bdcd6b921bff33ef68cd81"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/holterman05_activ_dampin_based_decoup_colloc_contr/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Active damping based on decoupled collocated control</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/alkhatib03_activ_struc_vibrat_contr/">
<span class="next-text nav-default">Active structural vibration control: a review</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,377 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Sensors and control of a space-based six-axis vibration isolation system - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Stewart Platforms, Vibration Isolation, Cubic Architecture Reference (Hauge &amp;amp; Campbell, 2004) Author(s) Hauge, G., &amp;amp; Campbell, M. Year 2004 Discusses:
Choice of sensors and control architecture Predictability and limitations of the system dynamics Two-Sensor control architecture Vibration isolation using a Stewart platform Experimental comparison of Force sensor and Inertial Sensor and associated control architecture for vibration isolation
Figure 1: Hexapod for active vibration isolation" />
<link rel="canonical" href="/paper/hauge04_sensor_contr_space_based_six/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Sensors and control of a space-based six-axis vibration isolation system</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/stewart_platforms/">Stewart Platforms</a>, <a href="/zettels/vibration_isolation/">Vibration Isolation</a>, <a href="/zettels/cubic_architecture/">Cubic Architecture</a></dd>
<dt>Reference</dt>
<dd><sup id="f9698a1741fe7492aa9b7b42c7724670"><a href="#hauge04_sensor_contr_space_based_six" title="Hauge \&amp; Campbell, Sensors and Control of a Space-Based Six-Axis Vibration Isolation System, {Journal of Sound and Vibration}, v(3-5), 913-931 (2004).">(Hauge &amp; Campbell, 2004)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Hauge, G., &amp; Campbell, M.</dd>
<dt>Year</dt>
<dd>2004</dd>
</dl>
<p><strong>Discusses</strong>:</p>
<ul>
<li>Choice of sensors and control architecture</li>
<li>Predictability and limitations of the system dynamics</li>
<li>Two-Sensor control architecture</li>
<li>Vibration isolation using a Stewart platform</li>
<li>Experimental comparison of Force sensor and Inertial Sensor and associated control architecture for vibration isolation</li>
</ul>
<p><a id="org666133a"></a></p>
<figure>
<img src="/ox-hugo/hauge04_stewart_platform.png"
alt="Figure 1: Hexapod for active vibration isolation"/> <figcaption>
<p>Figure 1: Hexapod for active vibration isolation</p>
</figcaption>
</figure>
<p><strong>Stewart platform</strong> (Figure <a href="#org666133a">1</a>):</p>
<ul>
<li>Low corner frequency</li>
<li>Large actuator stroke (\(\pm5mm\))</li>
<li>Sensors in each strut (Figure <a href="#org4d96564">2</a>):
<ul>
<li>three-axis load cell</li>
<li>base and payload geophone in parallel with the struts</li>
<li>LVDT</li>
</ul>
</li>
</ul>
<p><a id="org4d96564"></a></p>
<figure>
<img src="/ox-hugo/hauge05_struts.png"
alt="Figure 2: Strut"/> <figcaption>
<p>Figure 2: Strut</p>
</figcaption>
</figure>
<blockquote>
<p>Force sensors typically work well because they are not as sensitive to payload and base dynamics, but are limited in performance by a low-frequency zero pair resulting from the cross-axial stiffness.</p>
</blockquote>
<p><strong>Performance Objective</strong> (frequency domain metric):</p>
<ul>
<li>The transmissibility should be close to 1 between 0-1.5Hz
\(-3dB &lt; |T(\omega)| &lt; 3db\)</li>
<li>The transmissibility should be below -20dB in the 5-20Hz range
\(|T(\omega)| &lt; -20db\)</li>
</ul>
<p>With \(|T(\omega)|\) is the Frobenius norm of the transmissibility matrix and is used to obtain a scalar performance metric.</p>
<p><strong>Challenge</strong>:</p>
<ul>
<li>small frequency separation between the two requirements</li>
</ul>
<p><strong>Robustness</strong>:</p>
<ul>
<li>minimization of the transmissibility amplification (Bode&rsquo;s &ldquo;pop&rdquo;) outside the performance region</li>
</ul>
<p><strong>Model</strong>:</p>
<ul>
<li>single strut axis as the cubic Stewart platform can be decomposed into 6 single-axis systems</li>
</ul>
<p><a id="org74432f8"></a></p>
<figure>
<img src="/ox-hugo/hauge04_strut_model.png"
alt="Figure 3: Strut model"/> <figcaption>
<p>Figure 3: Strut model</p>
</figcaption>
</figure>
<p><strong>Zero Pair when using a Force Sensor</strong>:</p>
<ul>
<li>The frequency of the zero pair corresponds to the resonance frequency of the payload mass and the &ldquo;parasitic&rdquo; stiffness (sum of the cross-axial, suspension, wiring stiffnesses)</li>
<li>This zero pair is usually not predictable nor repeatable</li>
<li>In this Stewart platform, this zero pair uncertainty is due to the internal wiring of the struts</li>
</ul>
<p><strong>Control</strong>:</p>
<ul>
<li>Single-axis controllers =&gt; combine them into a full six-axis controller =&gt; evaluate the full controller in terms of stability and robustness</li>
<li>Sensitivity weighted LQG controller (SWLQG) =&gt; address robustness in flexible dynamic systems</li>
<li>Three type of controller:
<ul>
<li>Force feedback (cell-based)</li>
<li>Inertial feedback (geophone-based)</li>
<li>Combined force/velocity feedback (load cell/geophone based)</li>
</ul>
</li>
</ul>
<blockquote>
<p>The use of multivariable and robust control on the full 6x6 hexapod does not improve performance over single-axis designs.</p>
</blockquote>
<p><a id="table--tab:hauge05-comp-load-cell-geophone"></a></p>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:hauge05-comp-load-cell-geophone">Table 1</a></span>:
Typical characteristics of sensors used for isolation in hexapod systems
</div>
<table>
<thead>
<tr>
<th></th>
<th><strong>Load cell</strong></th>
<th><strong>Geophone</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Relative</td>
<td>Inertial</td>
</tr>
<tr>
<td>Relationship with voice coil</td>
<td>Collocated and Dual</td>
<td>Non-Collocated and non-Dual</td>
</tr>
<tr>
<td>Open loop transfer function</td>
<td>(+) Alternating poles/zeros</td>
<td>(-) Large phase drop</td>
</tr>
<tr>
<td>Limitation from low-frequency zero pair</td>
<td>(-) Yes</td>
<td>(+) No</td>
</tr>
<tr>
<td>Sensitive to payload/base dynamics</td>
<td>(+) No</td>
<td>(-) Yes</td>
</tr>
<tr>
<td>Best frequency range</td>
<td>High (low-freq zero limitation)</td>
<td>Low (high-freq toll-off limitation)</td>
</tr>
</tbody>
</table>
<p><strong>Ability of a sensor-actuator pair to improve performance</strong>:
General system with input \(u\), performance \(z\), output \(y\) disturbance \(u\).</p>
<p>Given a sensor \(u\) and actuator \(y\) and a controller \(u = -K(s) y\), the closed loop disturbance to performance transfer function can be written as:</p>
<p>\[ \left[ \frac{z}{w} \right]_\text{CL} = \frac{G(s)_{zw} + K(G(s)_{zw} G(s)_{yu} - G(s)_{zu} G(s)_{yw})}{1 + K G(s)_{yu}} \]</p>
<p>In order to obtain a significant performance improvement is to use a high gain controller, <em>provided</em> the term \(G(s)_{zw} + K(G(s)_{zw} G(s)_{yu} - G(s)_{zu} G(s)_{yw})\) is small.</p>
<p>We can compare the transfer function from \(w\) to \(z\) with and without a high gain controller.
And we find that for \(u\) and \(y\) to be an acceptable pair for high gain control:
\[ \left| \frac{G(j\omega)_{zw} G(j\omega)_{yu} - G(j\omega)_{zu} G(j\omega)_{yw}}{K G(j\omega)_{yu}} \right| \ll |G_{zw}(j\omega)| \]</p>
<p><strong>Controllers</strong>:</p>
<p><strong>Force feedback</strong>:</p>
<ul>
<li>Performance limited by the low frequency zero-pair</li>
<li>It is desirable to separate the zero-pair and first most are separated by at least a decade in frequency</li>
<li>This can be achieve by reducing the cross-axis stiffness</li>
<li>If the low frequency zero pair is inverted, robustness is lost</li>
<li>Thus, the force feedback controller should be designed to have combined performance and robustness at frequencies at least a decade above the zero pair</li>
<li>The presented controller as a high pass filter at to reduce the gain below the zero-pair, a lag at low frequency to improve phase margin, and a low pass filter for roll off</li>
</ul>
<p><strong>Inertial feedback</strong>:</p>
<ul>
<li>Non-Collocated =&gt; multiple phase drops that limit the bandwidth of the controller</li>
<li>Good performance, but the transmissibility &ldquo;pops&rdquo; due to low phase margin and thus this indicates robustness problems</li>
</ul>
<p><strong>Combined force/velocity feedback</strong>:</p>
<ul>
<li>Use the low frequency performance advantages of geophone sensor with the high robustness advantages of the load cell sensor</li>
<li>A Single-Input-Multiple-Outputs (SIMO) controller is found using LQG</li>
<li>The performance requirements are met</li>
<li>Good robustness</li>
</ul>
<p><a id="orgca6905f"></a></p>
<figure>
<img src="/ox-hugo/hauge04_obtained_transmissibility.png"
alt="Figure 4: Experimental open loop (solid) and closed loop six-axis transmissibility using the geophone only controller (dotted), and combined geophone/load cell controller (dashed)"/> <figcaption>
<p>Figure 4: Experimental open loop (solid) and closed loop six-axis transmissibility using the geophone only controller (dotted), and combined geophone/load cell controller (dashed)</p>
</figcaption>
</figure>
<h1 id="bibliography">Bibliography</h1>
<p><a id="hauge04_sensor_contr_space_based_six"></a>Hauge, G., &amp; Campbell, M., <em>Sensors and control of a space-based six-axis vibration isolation system</em>, Journal of Sound and Vibration, <em>269(3-5)</em>, 913931 (2004). <a href="http://dx.doi.org/10.1016/s0022-460x(03)00206-2">http://dx.doi.org/10.1016/s0022-460x(03)00206-2</a> <a href="#f9698a1741fe7492aa9b7b42c7724670"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/collette15_sensor_fusion_method_high_perfor/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Sensor fusion methods for high performance active vibration isolation systems</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/li01_simul_vibrat_isolat_point_contr/">
<span class="next-text nav-default">Simultaneous vibration isolation and pointing control of flexure jointed hexapods</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,241 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>An instrument for 3d x-ray nano-imaging - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Nano Active Stabilization System, Positioning Stations Reference (Holler {\it et al.}, 2012) Author(s) Holler, M., Raabe, J., Diaz, A., Guizar-Sicairos, M., Quitmann, C., Menzel, A., &amp;amp; Bunk, O. Year 2012 Instrument similar to the NASS. Obtain position stability of 10nm (standard deviation).
Figure 1: Schematic of the tomography setup
Limited resolution due to instrumentation: The resolution of ptychographic tomography remains above 100nm due to instabilities and drifts of the scanning systems." />
<link rel="canonical" href="/paper/holler12_instr_x_ray_nano_imagin/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">An instrument for 3d x-ray nano-imaging</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/nano_active_stabilization_system/">Nano Active Stabilization System</a>, <a href="/zettels/positioning_stations/">Positioning Stations</a></dd>
<dt>Reference</dt>
<dd><sup id="66ab0e7602a1dedda963d7da60533b0d"><a href="#holler12_instr_x_ray_nano_imagin" title="Holler, Raabe, Diaz, Guizar-Sicairos, , Quitmann, Menzel \&amp; Bunk, An Instrument for 3d X-Ray Nano-Imaging, {Review of Scientific Instruments}, v(7), 073703 (2012).">(Holler {\it et al.}, 2012)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Holler, M., Raabe, J., Diaz, A., Guizar-Sicairos, M., Quitmann, C., Menzel, A., &amp; Bunk, O.</dd>
<dt>Year</dt>
<dd>2012</dd>
</dl>
<p>Instrument similar to the NASS.
Obtain position stability of 10nm (standard deviation).</p>
<p><a id="orgba4a339"></a></p>
<figure>
<img src="/ox-hugo/holler12_station.png"
alt="Figure 1: Schematic of the tomography setup"/> <figcaption>
<p>Figure 1: Schematic of the tomography setup</p>
</figcaption>
</figure>
<ul>
<li>
<p><strong>Limited resolution due to instrumentation</strong>:
The resolution of ptychographic tomography remains above 100nm due to instabilities and drifts of the scanning systems.</p>
</li>
<li>
<p><strong>Need of a Metrology System</strong>:</p>
<blockquote>
<p>To achieve positioning accuracy and stability in the nanometer range, one cannot rely on the position encoders built into individual positioning stages.
A precise exteroceptive measurement of the relative position of the optical elements with respect to the sample is mandatory.
Thus, thermal drifts and parasitic motions can be measured and compensated for.</p>
</blockquote>
</li>
<li>
<p><strong>Interferometer System Concept</strong>:
The sample is aligned with the X-ray with the XYZ piezo stage.
As a result, the metrology sphere will be usually off center with respect to the rotation axis of the spindle.
That implies that the laser will not propagate back to the interferometer at all rotation angles.
A position sensitive detector (PSD) is used, it provides a measurement of the position of the sphere in the plane perpendicular to the laser.
The interferometer is positionned on top of a translation stage. The PSD information is used to close the loop so that the interferometer follows the displacement of the metrology sphere.</p>
</li>
<li>
<p><strong>Feedback Loop</strong>: Using the signals from the 2 interferometers, the loop is closed to compensate low frequency vibrations and thermal drifts.</p>
</li>
</ul>
<h1 id="bibliography">Bibliography</h1>
<p><a id="holler12_instr_x_ray_nano_imagin"></a>Holler, M., Raabe, J., Diaz, A., Guizar-Sicairos, M., Quitmann, C., Menzel, A., &amp; Bunk, O., <em>An instrument for 3d x-ray nano-imaging</em>, Review of Scientific Instruments, <em>83(7)</em>, 073703 (2012). <a href="http://dx.doi.org/10.1063/1.4737624">http://dx.doi.org/10.1063/1.4737624</a> <a href="#66ab0e7602a1dedda963d7da60533b0d"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/poel10_explor_activ_hard_mount_vibrat/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">An exploration of active hard mount vibration isolation for precision equipment</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/geng95_intel_contr_system_multip_degree/">
<span class="next-text nav-default">An intelligent control system for multiple degree-of-freedom vibration isolation</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,203 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Active damping based on decoupled collocated control - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Active Damping Reference (Holterman &amp;amp; deVries, 2005) Author(s) Holterman, J., &amp;amp; deVries, T. Year 2005 Bibliography Holterman, J., &amp;amp; deVries, T., Active damping based on decoupled collocated control, IEEE/ASME Transactions on Mechatronics, 10(2), 135145 (2005). http://dx.doi.org/10.1109/tmech.2005.844702 ↩" />
<link rel="canonical" href="/paper/holterman05_activ_dampin_based_decoup_colloc_contr/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Active damping based on decoupled collocated control</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/active_damping/">Active Damping</a></dd>
<dt>Reference</dt>
<dd><sup id="cc7836a555fe4dbae791e17008c29bfd"><a href="#holterman05_activ_dampin_based_decoup_colloc_contr" title="Holterman \&amp; deVries, Active Damping Based on Decoupled Collocated Control, {IEEE/ASME Transactions on Mechatronics}, v(2), 135-145 (2005).">(Holterman &amp; deVries, 2005)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Holterman, J., &amp; deVries, T.</dd>
<dt>Year</dt>
<dd>2005</dd>
</dl>
<h1 id="bibliography">Bibliography</h1>
<p><a id="holterman05_activ_dampin_based_decoup_colloc_contr"></a>Holterman, J., &amp; deVries, T., <em>Active damping based on decoupled collocated control</em>, IEEE/ASME Transactions on Mechatronics, <em>10(2)</em>, 135145 (2005). <a href="http://dx.doi.org/10.1109/tmech.2005.844702">http://dx.doi.org/10.1109/tmech.2005.844702</a> <a href="#cc7836a555fe4dbae791e17008c29bfd"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/devasia07_survey_contr_issues_nanop/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">A survey of control issues in nanopositioning</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/hanieh03_activ_stewar/">
<span class="next-text nav-default">Active isolation and damping of vibrations via stewart platform</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

398
public/paper/index.html Normal file
View File

@@ -0,0 +1,398 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Archive - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="My personnal digital brain" />
<link rel="canonical" href="/paper/" />
<link href="/paper/index.xml" rel="alternate" type="application/rss+xml" title="My digital brain" />
<link href="/paper/index.xml" rel="feed" type="application/rss+xml" title="My digital brain" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<section id="archive" class="archive"><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/legnani12_new_isotr_decoup_paral_manip/" class="archive-post-link">
A new isotropic and decoupled 6-dof parallel manipulator
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/fleming13_review_nanom_resol_posit_sensor/" class="archive-post-link">
A review of nanometer resolution position sensors: operation and performance
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/preumont07_six_axis_singl_stage_activ/" class="archive-post-link">
A six-axis single-stage active vibration isolator based on stewart platform
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/spanos95_soft_activ_vibrat_isolat/" class="archive-post-link">
A soft 6-axis active vibration isolator
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/devasia07_survey_contr_issues_nanop/" class="archive-post-link">
A survey of control issues in nanopositioning
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/holterman05_activ_dampin_based_decoup_colloc_contr/" class="archive-post-link">
Active damping based on decoupled collocated control
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/hanieh03_activ_stewar/" class="archive-post-link">
Active isolation and damping of vibrations via stewart platform
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/alkhatib03_activ_struc_vibrat_contr/" class="archive-post-link">
Active structural vibration control: a review
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/oomen18_advan_motion_contr_precis_mechat/" class="archive-post-link">
Advanced motion control for precision mechatronics: control, identification, and learning of complex systems
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/saxena12_advan_inter_model_contr_techn/" class="archive-post-link">
Advances in internal model control technique: a review and future prospects
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/poel10_explor_activ_hard_mount_vibrat/" class="archive-post-link">
An exploration of active hard mount vibration isolation for precision equipment
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/holler12_instr_x_ray_nano_imagin/" class="archive-post-link">
An instrument for 3d x-ray nano-imaging
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/geng95_intel_contr_system_multip_degree/" class="archive-post-link">
An intelligent control system for multiple degree-of-freedom vibration isolation
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/wang12_autom_marker_full_field_hard/" class="archive-post-link">
Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/ito16_compar_class_high_precis_actuat/" class="archive-post-link">
Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/bryson93_contr_spacec_aircr/" class="archive-post-link">
Control of spacecraft and aircraft
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/tang18_decen_vibrat_contr_voice_coil/" class="archive-post-link">
Decentralized vibration control of a voice coil motor-based stewart parallel mechanism: simulation and experiments
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/schellekens98_desig_precis/" class="archive-post-link">
Design for precision: current status and trends
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/yang19_dynam_model_decoup_contr_flexib/" class="archive-post-link">
Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/jiao18_dynam_model_exper_analy_stewar/" class="archive-post-link">
Dynamic modeling and experimental analyses of stewart platform with flexible hinges
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/fleming12_estim/" class="archive-post-link">
Estimating the resolution of nanopositioning systems from frequency domain data
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/preumont02_force_feedb_versus_accel_feedb/" class="archive-post-link">
Force feedback versus acceleration feedback in active vibration isolation
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/bibel92_guidel_h/" class="archive-post-link">
Guidelines for the selection of weighting functions for h-infinity control
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/chen00_ident_decoup_contr_flexur_joint_hexap/" class="archive-post-link">
Identification and decoupling control of flexure jointed hexapods
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/garg07_implem_chall_multiv_contr/" class="archive-post-link">
Implementation challenges for multivariable control: what you did not learn in school!
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/stankevic17_inter_charac_rotat_stages_x_ray_nanot/" class="archive-post-link">
Interferometric characterization of rotation stages for x-ray nanotomography
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/wang16_inves_activ_vibrat_isolat_stewar/" class="archive-post-link">
Investigation on active vibration isolation of a stewart platform with piezoelectric actuators
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/gao15_measur_techn_precis_posit/" class="archive-post-link">
Measurement technologies for precision positioning
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/furutani04_nanom_cuttin_machin_using_stewar/" class="archive-post-link">
Nanometre-cutting machine using a stewart-platform parallel mechanism
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/fleming10_nanop_system_with_force_feedb/" class="archive-post-link">
Nanopositioning system with force feedback for high-performance tracking and vibration control
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/sebastian12_nanop_with_multip_sensor/" class="archive-post-link">
Nanopositioning with multiple sensors: a case study in data storage
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/butler11_posit_contr_lithog_equip/" class="archive-post-link">
Position control in lithographic equipment
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/collette11_review_activ_vibrat_isolat_strat/" class="archive-post-link">
Review of active vibration isolation strategies
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip/" class="archive-post-link">
Sensor fusion for active vibration isolation in precision equipment
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/collette15_sensor_fusion_method_high_perfor/" class="archive-post-link">
Sensor fusion methods for high performance active vibration isolation systems
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/hauge04_sensor_contr_space_based_six/" class="archive-post-link">
Sensors and control of a space-based six-axis vibration isolation system
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/li01_simul_vibrat_isolat_point_contr/" class="archive-post-link">
Simultaneous vibration isolation and pointing control of flexure jointed hexapods
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/li01_simul_fault_vibrat_isolat_point/" class="archive-post-link">
Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/zhang11_six_dof/" class="archive-post-link">
Six dof active vibration control using stewart platform with non-cubic configuration
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/furqan17_studies_stewar_platf_manip/" class="archive-post-link">
Studies on stewart platform manipulator: a review
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/dasgupta00_stewar_platf_manip/" class="archive-post-link">
The stewart platform manipulator: a review
</a>
</span>
</div><div class="archive-post">
<span class="archive-post-title">
<a href="/paper/collette14_vibrat/" class="archive-post-link">
Vibration control of flexible structures using fusion of inertial sensors and hyper-stable actuator-sensor pairs
</a>
</span>
</div></section>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

439
public/paper/index.xml Normal file
View File

@@ -0,0 +1,439 @@
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
<channel>
<title>Papers on My digital brain</title>
<link>/paper/</link>
<description>Recent content in Papers on My digital brain</description>
<generator>Hugo -- gohugo.io</generator>
<language>en</language>
<atom:link href="/paper/index.xml" rel="self" type="application/rss+xml" />
<item>
<title>A new isotropic and decoupled 6-dof parallel manipulator</title>
<link>/paper/legnani12_new_isotr_decoup_paral_manip/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/legnani12_new_isotr_decoup_paral_manip/</guid>
<description>Tags Stewart Platforms Reference (Legnani {\it et al.}, 2012) Author(s) Legnani, G., Fassi, I., Giberti, H., Cinquemani, S., &amp;amp; Tosi, D. Year 2012 Concepts of isotropy and decoupling for parallel manipulators isotropy: the kinetostatic properties (same applicable force, same possible velocity, same stiffness) are identical in all directions (e.g. cubic configuration for Stewart platform) decoupling: each DoF of the end effector can be controlled by a single actuator (not the case for the Stewart platform) Example of generated isotropic manipulator (not decoupled).</description>
</item>
<item>
<title>A review of nanometer resolution position sensors: operation and performance</title>
<link>/paper/fleming13_review_nanom_resol_posit_sensor/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/fleming13_review_nanom_resol_posit_sensor/</guid>
<description>Tags Position Sensors Reference (Andrew Fleming, 2013) Author(s) Fleming, A. J. Year 2013 Define concise performance metric and provide expressions for errors sources (non-linearity, drift, noise) Review current position sensor technologies and compare their performance Sensor Characteristics Calibration and nonlinearity Usually quoted as a percentage of the fill-scale range (FSR):
\begin{equation} \text{mapping error (%)} = \pm 100 \frac{\max{}|e_m(v)|}{\text{FSR}} \end{equation}
With \(e_m(v)\) is the mapping error.</description>
</item>
<item>
<title>A six-axis single-stage active vibration isolator based on stewart platform</title>
<link>/paper/preumont07_six_axis_singl_stage_activ/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/preumont07_six_axis_singl_stage_activ/</guid>
<description>Tags Vibration Isolation, Stewart Platforms, Flexible Joints Reference (Preumont {\it et al.}, 2007) Author(s) Preumont, A., Horodinca, M., Romanescu, I., Marneffe, B. d., Avraam, M., Deraemaeker, A., Bossens, F., … Year 2007 Summary:
Cubic Stewart platform (Figure 3) Provides uniform control capability Uniform stiffness in all directions minimizes the cross-coupling among actuators and sensors of different legs Flexible joints (Figure 2) Piezoelectric force sensors Voice coil actuators Decentralized feedback control approach for vibration isolation Effect of parasitic stiffness of the flexible joints on the IFF performance (Figure 1) The Stewart platform has 6 suspension modes at different frequencies.</description>
</item>
<item>
<title>A soft 6-axis active vibration isolator</title>
<link>/paper/spanos95_soft_activ_vibrat_isolat/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/spanos95_soft_activ_vibrat_isolat/</guid>
<description>Tags Stewart Platforms, Vibration Isolation Reference (Spanos {\it et al.}, 1995) Author(s) Spanos, J., Rahman, Z., &amp;amp; Blackwood, G. Year 1995 Stewart Platform (Figure 1):
Voice Coil Flexible joints (cross-blades) Force Sensors Cubic Configuration
Figure 1: Stewart Platform
Total mass of the paylaod: 30kg Center of gravity is 9cm above the geometry center of the mount (cube&amp;rsquo;s center?).
Limitation of the Decentralized Force Feedback:</description>
</item>
<item>
<title>A survey of control issues in nanopositioning</title>
<link>/paper/devasia07_survey_contr_issues_nanop/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/devasia07_survey_contr_issues_nanop/</guid>
<description>Tags :
Reference (Devasia {\it et al.}, 2007) Author(s) Devasia, S., Eleftheriou, E., &amp;amp; Moheimani, S. R. Year 2007 Talks about Scanning Tunneling Microscope (STM) and Scanning Probe Microscope (SPM) Piezoelectric actuators: Creep, Hysteresis, Vibrations, Modeling errors Interesting analysis about Bandwidth-Precision-Range tradeoffs Control approaches for piezoelectric actuators: feedforward, Feedback, Iterative, Sensorless controls
Figure 1: Tradeoffs between bandwidth, precision and range
Bibliography Devasia, S.</description>
</item>
<item>
<title>Active damping based on decoupled collocated control</title>
<link>/paper/holterman05_activ_dampin_based_decoup_colloc_contr/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/holterman05_activ_dampin_based_decoup_colloc_contr/</guid>
<description>Tags Active Damping Reference (Holterman &amp;amp; deVries, 2005) Author(s) Holterman, J., &amp;amp; deVries, T. Year 2005 Bibliography Holterman, J., &amp;amp; deVries, T., Active damping based on decoupled collocated control, IEEE/ASME Transactions on Mechatronics, 10(2), 135145 (2005). http://dx.doi.org/10.1109/tmech.2005.844702 ↩</description>
</item>
<item>
<title>Active isolation and damping of vibrations via stewart platform</title>
<link>/paper/hanieh03_activ_stewar/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/hanieh03_activ_stewar/</guid>
<description>Tags Stewart Platforms, Vibration Isolation, Active Damping Reference @phdthesis{hanieh03_activ_stewar, author = {Hanieh, Ahmed Abu}, school = {Universit{&#39;e} Libre de Bruxelles, Brussels, Belgium}, title = {Active isolation and damping of vibrations via Stewart platform}, year = 2003, tags = {parallel robot}, } Author(s) Hanieh, A. A. Year 2003 Bibliography Hanieh, A. A., Active isolation and damping of vibrations via stewart platform (Doctoral dissertation) (2003). Universit{&#39;e} Libre de Bruxelles, Brussels, Belgium, .</description>
</item>
<item>
<title>Active structural vibration control: a review</title>
<link>/paper/alkhatib03_activ_struc_vibrat_contr/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/alkhatib03_activ_struc_vibrat_contr/</guid>
<description>Tags :
Reference (Rabih Alkhatib &amp;amp; Golnaraghi, 2003) Author(s) Alkhatib, R., &amp;amp; Golnaraghi, M. F. Year 2003 Process of designing an active vibration control system Analyze the structure to be controled Obtain an idealized mathematical model with FEM or experimental modal analysis Reduce the model order is necessary Analyze the resulting model: dynamics properties, types of disturbances, &amp;hellip; Quantify sensors and actuators requirements. Decide on their types and location Analyze the impact of the sensors and actuators on the overall dynamic characteristics Specify performance criteria and stability tradeoffs Device of the type of control algorythm to be employed and design a controller to meet the specifications Simulate the resulting controlled system on a computer If the controller does not meet the requirements, adjust the specifications or modify the type of controller Choose hardware and software and integrate the components on a pilot plant Formulate experiments and perform system identification and model updating Implement controller and carry out system test to evaluate the performance Feedback control Active damping The objective is to reduce the resonance peaks of the closed loop transfer function.</description>
</item>
<item>
<title>Advanced motion control for precision mechatronics: control, identification, and learning of complex systems</title>
<link>/paper/oomen18_advan_motion_contr_precis_mechat/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/oomen18_advan_motion_contr_precis_mechat/</guid>
<description>Tags Motion Control Reference (Tom Oomen, 2018) Author(s) Oomen, T. Year 2018
Figure 1: Envisaged developments in motion systems. In traditional motion systems, the control bandwidth takes place in the rigid-body region. In the next generation systemes, flexible dynamics are foreseen to occur within the control bandwidth.
Bibliography Oomen, T., Advanced motion control for precision mechatronics: control, identification, and learning of complex systems, IEEJ Journal of Industry Applications, 7(2), 127140 (2018).</description>
</item>
<item>
<title>Advances in internal model control technique: a review and future prospects</title>
<link>/paper/saxena12_advan_inter_model_contr_techn/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/saxena12_advan_inter_model_contr_techn/</guid>
<description>Tags Complementary Filters Reference (Sahaj Saxena &amp;amp; YogeshV Hote, 2012) Author(s) Saxena, S., &amp;amp; Hote, Y. Year 2012 Proposed Filter \(F(s)\) \begin{align*} F(s) &amp;amp;= \frac{1}{(\lambda s + 1)^n} \\\
F(s) &amp;amp;= \frac{n \lambda + 1}{(\lambda s + 1)^n} \end{align*}
Internal Model Control Central concept in IMC: control can be acheive only if the control system involves, either implicitly or explicitly, some representation of the process to be controlled.</description>
</item>
<item>
<title>An exploration of active hard mount vibration isolation for precision equipment</title>
<link>/paper/poel10_explor_activ_hard_mount_vibrat/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/poel10_explor_activ_hard_mount_vibrat/</guid>
<description>Tags Vibration Isolation Reference @phdthesis{poel10_explor_activ_hard_mount_vibrat, author = {van der Poel, Gerrit Wijnand}, doi = {10.3990/1.9789036530163}, isbn = {978-90-365-3016-3}, school = {University of Twente}, title = {An Exploration of Active Hard Mount Vibration Isolation for Precision Equipment}, url = {https://doi.org/10.3990/1.9789036530163}, year = 2010, year = 2010, tags = {parallel robot}, } Author(s) van der Poel, G. W. Year 2010 Bibliography van der Poel, G. W., An exploration of active hard mount vibration isolation for precision equipment (Doctoral dissertation) (2010).</description>
</item>
<item>
<title>An instrument for 3d x-ray nano-imaging</title>
<link>/paper/holler12_instr_x_ray_nano_imagin/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/holler12_instr_x_ray_nano_imagin/</guid>
<description>Tags Nano Active Stabilization System, Positioning Stations Reference (Holler {\it et al.}, 2012) Author(s) Holler, M., Raabe, J., Diaz, A., Guizar-Sicairos, M., Quitmann, C., Menzel, A., &amp;amp; Bunk, O. Year 2012 Instrument similar to the NASS. Obtain position stability of 10nm (standard deviation).
Figure 1: Schematic of the tomography setup
Limited resolution due to instrumentation: The resolution of ptychographic tomography remains above 100nm due to instabilities and drifts of the scanning systems.</description>
</item>
<item>
<title>An intelligent control system for multiple degree-of-freedom vibration isolation</title>
<link>/paper/geng95_intel_contr_system_multip_degree/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/geng95_intel_contr_system_multip_degree/</guid>
<description>Tags Stewart Platforms, Vibration Isolation Reference (Jason Geng {\it et al.}, 1995) Author(s) Geng, Z. J., Pan, G. G., Haynes, L. S., Wada, B. K., &amp;amp; Garba, J. A. Year 1995
Figure 1: Local force feedback and adaptive acceleration feedback for active isolation
Bibliography Geng, Z. J., Pan, G. G., Haynes, L. S., Wada, B. K., &amp;amp; Garba, J. A., An intelligent control system for multiple degree-of-freedom vibration isolation, Journal of Intelligent Material Systems and Structures, 6(6), 787800 (1995).</description>
</item>
<item>
<title>Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution</title>
<link>/paper/wang12_autom_marker_full_field_hard/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/wang12_autom_marker_full_field_hard/</guid>
<description>Tags Nano Active Stabilization System Reference (Jun Wang {\it et al.}, 2012) Author(s) Wang, J., Chen, Y. K., Yuan, Q., Tkachuk, A., Erdonmez, C., Hornberger, B., &amp;amp; Feser, M. Year 2012 Introduction of Markers: That limits the type of samples that is studied
There is a need for markerless nano-tomography =&amp;gt; the key requirement is the precision and stability of the positioning stages.
Passive rotational run-out error system: It uses calibrated metrology disc and capacitive sensors</description>
</item>
<item>
<title>Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation</title>
<link>/paper/ito16_compar_class_high_precis_actuat/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/ito16_compar_class_high_precis_actuat/</guid>
<description>Tags Vibration Isolation, Actuators Reference (Shingo Ito &amp;amp; Georg Schitter, 2016) Author(s) Ito, S., &amp;amp; Schitter, G. Year 2016 Classification of high-precision actuators Table 1: Zero/Low and High stiffness actuators Categories Pros Cons Zero stiffness No vibration transmission Large and Heavy Low stiffness High vibration isolation Typically for low load High Stiffness High control bandwidth High vibration transmission Time Delay of Piezoelectric Electronics In this paper, the piezoelectric actuator/electronics adds a time delay which is much higher than the time delay added by the voice coil/electronics.</description>
</item>
<item>
<title>Control of spacecraft and aircraft</title>
<link>/paper/bryson93_contr_spacec_aircr/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/bryson93_contr_spacec_aircr/</guid>
<description>Tags HAC-HAC Reference (Bryson, 1993) Author(s) Bryson, A. E. Year 1993 9.2.3 Roll-Off Filters Synthesizing control logic using only one vibration mode means we are consciously neglecting the higher-order vibration modes. When doing this, it is a good idea to insert &amp;ldquo;roll-off&amp;rdquo; into the control logic, so that the loop-transfer gain decreases rapidly with frequency beyond the control bandwidth. This reduces the possibility of destabilizing the unmodelled higher frequency dynamics (&amp;quot;spillover&amp;quot;).</description>
</item>
<item>
<title>Decentralized vibration control of a voice coil motor-based stewart parallel mechanism: simulation and experiments</title>
<link>/paper/tang18_decen_vibrat_contr_voice_coil/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/tang18_decen_vibrat_contr_voice_coil/</guid>
<description>Tags Stewart Platforms Reference (Jie Tang {\it et al.}, 2018) Author(s) Tang, J., Cao, D., &amp;amp; Yu, T. Year 2018 Bibliography Tang, J., Cao, D., &amp;amp; Yu, T., Decentralized vibration control of a voice coil motor-based stewart parallel mechanism: simulation and experiments, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(1), 132145 (2018). http://dx.doi.org/10.1177/0954406218756941 ↩</description>
</item>
<item>
<title>Design for precision: current status and trends</title>
<link>/paper/schellekens98_desig_precis/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/schellekens98_desig_precis/</guid>
<description>Tags Precision Engineering Reference (Schellekens {\it et al.}, 1998) Author(s) Schellekens, P., Rosielle, N., Vermeulen, H., Vermeulen, M., Wetzels, S., &amp;amp; Pril, W. Year 1998 Bibliography Schellekens, P., Rosielle, N., Vermeulen, H., Vermeulen, M., Wetzels, S., &amp;amp; Pril, W., Design for precision: current status and trends, Cirp Annals, (2), 557586 (1998). http://dx.doi.org/10.1016/s0007-8506(07)63243-0 ↩</description>
</item>
<item>
<title>Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation</title>
<link>/paper/yang19_dynam_model_decoup_contr_flexib/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/yang19_dynam_model_decoup_contr_flexib/</guid>
<description>Tags Stewart Platforms, Vibration Isolation, Flexible Joints, Cubic Architecture Reference (Yang {\it et al.}, 2019) Author(s) Yang, X., Wu, H., Chen, B., Kang, S., &amp;amp; Cheng, S. Year 2019 Discusses:
flexible-rigid model of Stewart platform the impact of joint stiffness is compensated using a displacement sensor and a force sensor then the MIMO system is decoupled in modal space and 6 SISO controllers are applied for vibration isolation using force sensors The joint stiffness impose a limitation on the control performance using force sensors as it adds a zero at low frequency in the dynamics.</description>
</item>
<item>
<title>Dynamic modeling and experimental analyses of stewart platform with flexible hinges</title>
<link>/paper/jiao18_dynam_model_exper_analy_stewar/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/jiao18_dynam_model_exper_analy_stewar/</guid>
<description>Tags Stewart Platforms, Flexible Joints Reference (Jian Jiao {\it et al.}, 2018) Author(s) Jiao, J., Wu, Y., Yu, K., &amp;amp; Zhao, R. Year 2018 Bibliography Jiao, J., Wu, Y., Yu, K., &amp;amp; Zhao, R., Dynamic modeling and experimental analyses of stewart platform with flexible hinges, Journal of Vibration and Control, 25(1), 151171 (2018). http://dx.doi.org/10.1177/1077546318772474 ↩</description>
</item>
<item>
<title>Estimating the resolution of nanopositioning systems from frequency domain data</title>
<link>/paper/fleming12_estim/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/fleming12_estim/</guid>
<description>Tags :
Reference (Andrew Fleming, 2012) Author(s) Fleming, A. J. Year 2012 Bibliography Fleming, A. J., Estimating the resolution of nanopositioning systems from frequency domain data, In , 2012 IEEE International Conference on Robotics and Automation (pp. ) (2012). : . ↩</description>
</item>
<item>
<title>Force feedback versus acceleration feedback in active vibration isolation</title>
<link>/paper/preumont02_force_feedb_versus_accel_feedb/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/preumont02_force_feedb_versus_accel_feedb/</guid>
<description>Tags Vibration Isolation Reference (Preumont {\it et al.}, 2002) Author(s) Preumont, A., A. Francois, Bossens, F., &amp;amp; Abu-Hanieh, A. Year 2002 Summary:
Compares the force feedback and acceleration feedback for active damping The use of a force sensor always give alternating poles and zeros in the open-loop transfer function between for force actuator and the force sensor which guarantees the stability of the closed loop Acceleration feedback produces alternating poles and zeros only when the flexible structure is stiff compared to the isolation system The force applied to a rigid body is proportional to its acceleration, thus sensing the total interface force gives a measured of the absolute acceleration of the solid body.</description>
</item>
<item>
<title>Guidelines for the selection of weighting functions for h-infinity control</title>
<link>/paper/bibel92_guidel_h/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/bibel92_guidel_h/</guid>
<description>Tags H Infinity Control Reference (Bibel &amp;amp; Malyevac, 1992) Author(s) Bibel, J. E., &amp;amp; Malyevac, D. S. Year 1992 Properties of feedback control
Figure 1: Control System Diagram
From the figure 1, we have:
\begin{align*} y(s) &amp;amp;= T(s) r(s) + S(s) d(s) - T(s) n(s)\\\
e(s) &amp;amp;= S(s) r(s) - S(s) d(s) - S(s) n(s)\\\
u(s) &amp;amp;= S(s)K(s) r(s) - S(s)K(s) d(s) - S(s)K(s) n(s) \end{align*}</description>
</item>
<item>
<title>Identification and decoupling control of flexure jointed hexapods</title>
<link>/paper/chen00_ident_decoup_contr_flexur_joint_hexap/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/chen00_ident_decoup_contr_flexur_joint_hexap/</guid>
<description>Tags Stewart Platforms, Flexible Joints Reference (Yixin Chen &amp;amp; McInroy, 2000) Author(s) Chen, Y., &amp;amp; McInroy, J. Year 2000 Bibliography Chen, Y., &amp;amp; McInroy, J., Identification and decoupling control of flexure jointed hexapods, In , Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065) (pp. ) (2000). : . ↩</description>
</item>
<item>
<title>Implementation challenges for multivariable control: what you did not learn in school!</title>
<link>/paper/garg07_implem_chall_multiv_contr/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/garg07_implem_chall_multiv_contr/</guid>
<description>Tags Multivariable Control Reference (Sanjay Garg, 2007) Author(s) Garg, S. Year 2007 Discusses:
When to use multivariable control and when not to? Two major issues with implementing multivariable control: gain scheduling and integrator wind up protection Inline simple gain and phase margin measured for SISO, &amp;ldquo;robustness&amp;rdquo; determination of multivariable control requires complex analyses using singular value techniques and Monte Carlo simulations.
When to use multivariable control:</description>
</item>
<item>
<title>Interferometric characterization of rotation stages for x-ray nanotomography</title>
<link>/paper/stankevic17_inter_charac_rotat_stages_x_ray_nanot/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/stankevic17_inter_charac_rotat_stages_x_ray_nanot/</guid>
<description>Tags Nano Active Stabilization System, Positioning Stations Reference (Tomas Stankevic {\it et al.}, 2017) Author(s) Stankevic, T., Engblom, C., Langlois, F., Alves, F., Lestrade, A., Jobert, N., Cauchon, G., … Year 2017 Similar Station than the NASS Similar Metrology with fiber based interferometers and cylindrical reference mirror
Figure 1: Positioning Station
Thermal expansion: Stabilized down to \(5mK/h\) using passive water flow through the baseplate below the sample stage and in the interferometry reference frame.</description>
</item>
<item>
<title>Investigation on active vibration isolation of a stewart platform with piezoelectric actuators</title>
<link>/paper/wang16_inves_activ_vibrat_isolat_stewar/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/wang16_inves_activ_vibrat_isolat_stewar/</guid>
<description>Tags Stewart Platforms, Vibration Isolation, Flexible Joints Reference (Wang {\it et al.}, 2016) Author(s) Wang, C., Xie, X., Chen, Y., &amp;amp; Zhang, Z. Year 2016 Model of the Stewart platform:
Struts are treated as flexible beams Payload and the base are treated as flexible plates The FRF synthesis method permits to derive FRFs of the Stewart platform The model is compared with a Finite Element model and is shown to give the same results.</description>
</item>
<item>
<title>Measurement technologies for precision positioning</title>
<link>/paper/gao15_measur_techn_precis_posit/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/gao15_measur_techn_precis_posit/</guid>
<description>Tags Position Sensors Reference (Gao {\it et al.}, 2015) Author(s) Gao, W., Kim, S., Bosse, H., Haitjema, H., Chen, Y., Lu, X., Knapp, W., … Year 2015 Bibliography Gao, W., Kim, S., Bosse, H., Haitjema, H., Chen, Y., Lu, X., Knapp, W., …, Measurement technologies for precision positioning, CIRP Annals, 64(2), 773796 (2015). http://dx.doi.org/10.1016/j.cirp.2015.05.009 ↩</description>
</item>
<item>
<title>Nanometre-cutting machine using a stewart-platform parallel mechanism</title>
<link>/paper/furutani04_nanom_cuttin_machin_using_stewar/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/furutani04_nanom_cuttin_machin_using_stewar/</guid>
<description>Tags Stewart Platforms, Flexible Joints Reference (Katsushi Furutani {\it et al.}, 2004) Author(s) Furutani, K., Suzuki, M., &amp;amp; Kudoh, R. Year 2004 Lever mechanism to amplify the motion of piezoelectric stack actuators Use of flexure joints Eddy current displacement sensors for control (decentralized) Isotropic performance (cubic configuration even if not said so) Possible sources of error:
position error of the link ends in assembly =&amp;gt; simulation of position error and it is not significant Inaccurate modelling of the links insufficient generative force unwanted deformation of the links To minimize the errors, a calibration is done between the required leg length and the wanted platform pose.</description>
</item>
<item>
<title>Nanopositioning system with force feedback for high-performance tracking and vibration control</title>
<link>/paper/fleming10_nanop_system_with_force_feedb/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/fleming10_nanop_system_with_force_feedb/</guid>
<description>Tags Sensor Fusion, Force Sensors Reference (Fleming, 2010) Author(s) Fleming, A. Year 2010 Summary:
The noise generated by a piezoelectric force sensor is much less than a capacitive sensor Dynamical model of a piezoelectric stack actuator and piezoelectric force sensor Noise of a piezoelectric force sensor IFF with a piezoelectric stack actuator and piezoelectric force sensor A force sensor is used as a displacement sensor below the frequency of the first zero Sensor fusion architecture with a capacitive sensor and a force sensor and using complementary filters Virtual sensor fusion architecture (called low-frequency bypass) Analog implementation of the control strategies to avoid quantization noise, finite resolution and sampling delay Model of a multi-layer monolithic piezoelectric stack actuator</description>
</item>
<item>
<title>Nanopositioning with multiple sensors: a case study in data storage</title>
<link>/paper/sebastian12_nanop_with_multip_sensor/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/sebastian12_nanop_with_multip_sensor/</guid>
<description>Tags Sensor Fusion Reference (Abu Sebastian &amp;amp; Angeliki Pantazi, 2012) Author(s) Sebastian, A., &amp;amp; Pantazi, A. Year 2012 Bibliography Sebastian, A., &amp;amp; Pantazi, A., Nanopositioning with multiple sensors: a case study in data storage, IEEE Transactions on Control Systems Technology, 20(2), 382394 (2012). http://dx.doi.org/10.1109/tcst.2011.2177982 ↩</description>
</item>
<item>
<title>Position control in lithographic equipment</title>
<link>/paper/butler11_posit_contr_lithog_equip/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/butler11_posit_contr_lithog_equip/</guid>
<description>Tags Multivariable Control, Positioning Stations Reference (Hans Butler, 2011) Author(s) Butler, H. Year 2011 Bibliography Butler, H., Position control in lithographic equipment, IEEE Control Systems, 31(5), 2847 (2011). http://dx.doi.org/10.1109/mcs.2011.941882 ↩</description>
</item>
<item>
<title>Review of active vibration isolation strategies</title>
<link>/paper/collette11_review_activ_vibrat_isolat_strat/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/collette11_review_activ_vibrat_isolat_strat/</guid>
<description>Tags Vibration Isolation Reference (Christophe Collette {\it et al.}, 2011) Author(s) Collette, C., Janssens, S., &amp;amp; Artoos, K. Year 2011 Background and Motivations Passive Isolation Tradeoffs \[ X(s) = \underbrace{\frac{cs + k}{ms^2 + cs + k}}_{T_{wx}(s)} W(s) + \underbrace{\frac{1}{ms^2 + cs + k}}_{T_{Fx}(s)} F(s) \]
\(T_{wx}(s)\) is called the transmissibility of the isolator. It characterize the way seismic vibrations \(w\) are transmitted to the equipment. \(T_{Fx}(s)\) is called the compliance.</description>
</item>
<item>
<title>Sensor fusion for active vibration isolation in precision equipment</title>
<link>/paper/tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip/</guid>
<description>Tags Sensor Fusion, Vibration Isolation Reference (Tjepkema {\it et al.}, 2012) Author(s) Tjepkema, D., Dijk, J. v., &amp;amp; Soemers, H. Year 2012 Relative motion Control Control law: \(f = -G(x-w)\)
\[ \frac{x}{w} = \frac{k+G}{ms^2 + k+G} \] \[ \frac{x}{F} = \frac{1}{ms^2 + k+G} \]
Force Control Control law: \(f = -G F_a = -G \left(f-k(x-w)\right)\)
\[ \frac{x}{w} = \frac{k}{(1+G)ms^2 + k} \] \[ \frac{x}{F} = \frac{1+G}{(1+G)ms^2 + k} \]</description>
</item>
<item>
<title>Sensor fusion methods for high performance active vibration isolation systems</title>
<link>/paper/collette15_sensor_fusion_method_high_perfor/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/collette15_sensor_fusion_method_high_perfor/</guid>
<description>Tags Sensor Fusion, Vibration Isolation Reference (Collette &amp;amp; Matichard, 2015) Author(s) Collette, C., &amp;amp; Matichard, F. Year 2015 In order to have good stability margins, it is common practice to collocate sensors and actuators. This ensures alternating poles and zeros along the imaginary axis. Then, each phase lag introduced by the poles is compensed by phase leag introduced by the zeroes. This guarantees stability and such system is referred to as hyperstable.</description>
</item>
<item>
<title>Sensors and control of a space-based six-axis vibration isolation system</title>
<link>/paper/hauge04_sensor_contr_space_based_six/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/hauge04_sensor_contr_space_based_six/</guid>
<description>Tags Stewart Platforms, Vibration Isolation, Cubic Architecture Reference (Hauge &amp;amp; Campbell, 2004) Author(s) Hauge, G., &amp;amp; Campbell, M. Year 2004 Discusses:
Choice of sensors and control architecture Predictability and limitations of the system dynamics Two-Sensor control architecture Vibration isolation using a Stewart platform Experimental comparison of Force sensor and Inertial Sensor and associated control architecture for vibration isolation
Figure 1: Hexapod for active vibration isolation</description>
</item>
<item>
<title>Simultaneous vibration isolation and pointing control of flexure jointed hexapods</title>
<link>/paper/li01_simul_vibrat_isolat_point_contr/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/li01_simul_vibrat_isolat_point_contr/</guid>
<description>Tags Stewart Platforms, Vibration Isolation Reference (Xiaochun Li {\it et al.}, 2001) Author(s) Li, X., Hamann, J. C., &amp;amp; McInroy, J. E. Year 2001 if the hexapod is designed such that the payload mass/inertia matrix (\(M_x\)) and \(J^T J\) are diagonal, the dynamics from \(u\) to \(y\) are decoupled. Bibliography Li, X., Hamann, J. C., &amp;amp; McInroy, J. E., Simultaneous vibration isolation and pointing control of flexure jointed hexapods, In , Smart Structures and Materials 2001: Smart Structures and Integrated Systems (pp.</description>
</item>
<item>
<title>Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods</title>
<link>/paper/li01_simul_fault_vibrat_isolat_point/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/li01_simul_fault_vibrat_isolat_point/</guid>
<description>Tags Stewart Platforms, Vibration Isolation, Cubic Architecture, Flexible Joints, Multivariable Control Reference @phdthesis{li01_simul_fault_vibrat_isolat_point, author = {Li, Xiaochun}, school = {University of Wyoming}, title = {Simultaneous, Fault-tolerant Vibration Isolation and Pointing Control of Flexure Jointed Hexapods}, year = 2001, tags = {parallel robot}, } Author(s) Li, X. Year 2001 Introduction Stewart Platform:
Cubic (mutually orthogonal) Flexure Joints =&amp;gt; eliminate friction and backlash but add complexity to the dynamics</description>
</item>
<item>
<title>Six dof active vibration control using stewart platform with non-cubic configuration</title>
<link>/paper/zhang11_six_dof/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/zhang11_six_dof/</guid>
<description>Tags Stewart Platforms, Vibration Isolation Reference (Zhen Zhang {\it et al.}, 2011) Author(s) Zhang, Z., Liu, J., Mao, J., Guo, Y., &amp;amp; Ma, Y. Year 2011 Non-cubic stewart platform Flexible joints Magnetostrictive actuators Strong coupled motions along different axes Non-cubic architecture =&amp;gt; permits to have larger workspace which was required Structure parameters (radius of plates, length of struts) are determined by optimization of the condition number of the Jacobian matrix Accelerometers for active isolation Adaptive FIR filters for active isolation control</description>
</item>
<item>
<title>Studies on stewart platform manipulator: a review</title>
<link>/paper/furqan17_studies_stewar_platf_manip/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/furqan17_studies_stewar_platf_manip/</guid>
<description>Tags Stewart Platforms Reference (Mohd Furqan {\it et al.}, 2017) Author(s) Furqan, M., Suhaib, M., &amp;amp; Ahmad, N. Year 2017 Lots of references.
Bibliography Furqan, M., Suhaib, M., &amp;amp; Ahmad, N., Studies on stewart platform manipulator: a review, Journal of Mechanical Science and Technology, 31(9), 44594470 (2017). http://dx.doi.org/10.1007/s12206-017-0846-1 ↩</description>
</item>
<item>
<title>The stewart platform manipulator: a review</title>
<link>/paper/dasgupta00_stewar_platf_manip/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/dasgupta00_stewar_platf_manip/</guid>
<description>Tags Stewart Platforms Reference (Bhaskar Dasgupta &amp;amp; Mruthyunjaya, 2000) Author(s) Dasgupta, B., &amp;amp; Mruthyunjaya, T. Year 2000
Table 1: Parallel VS serial manipulators Advantages Disadvantages Serial Manoeuverability Poor precision Large workspace Bends under high load Vibrate at high speed Parallel High stiffness Small workspace Good dynamic performances Precise positioning The generalized Stewart platforms consists of two rigid bodies (referred to as the base and the platoform) connected through six extensible legs, each with sherical joints at both ends.</description>
</item>
<item>
<title>Vibration control of flexible structures using fusion of inertial sensors and hyper-stable actuator-sensor pairs</title>
<link>/paper/collette14_vibrat/</link>
<pubDate>Mon, 01 Jan 0001 00:00:00 +0000</pubDate>
<guid>/paper/collette14_vibrat/</guid>
<description>Tags Vibration Isolation, Sensor Fusion Reference (Collette &amp;amp; Matichard, 2014) Author(s) Collette, C., &amp;amp; Matichard, F. Year 2014 Introduction Sensor fusion is used to combine the benefits of different types of sensors:
Relative sensor for DC positioning capability at low frequency Inertial sensors for isolation at high frequency Force sensor / collocated sensor to improve the robustness Different types of sensors In this paper, three types of sensors are used.</description>
</item>
</channel>
</rss>

View File

@@ -0,0 +1,284 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Vibration Isolation, Actuators Reference (Shingo Ito &amp;amp; Georg Schitter, 2016) Author(s) Ito, S., &amp;amp; Schitter, G. Year 2016 Classification of high-precision actuators Table 1: Zero/Low and High stiffness actuators Categories Pros Cons Zero stiffness No vibration transmission Large and Heavy Low stiffness High vibration isolation Typically for low load High Stiffness High control bandwidth High vibration transmission Time Delay of Piezoelectric Electronics In this paper, the piezoelectric actuator/electronics adds a time delay which is much higher than the time delay added by the voice coil/electronics." />
<link rel="canonical" href="/paper/ito16_compar_class_high_precis_actuat/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents">
<ul>
<li><a href="#classification-of-high-precision-actuators">Classification of high-precision actuators</a></li>
<li><a href="#time-delay-of-piezoelectric-electronics">Time Delay of Piezoelectric Electronics</a></li>
<li><a href="#definition-of-low-stiffness-and-high-stiffness-actuator">Definition of low-stiffness and high-stiffness actuator</a></li>
<li><a href="#low-stiffness-high-stiffness-characteristics">Low-Stiffness / High-Stiffness characteristics</a></li>
<li><a href="#controller-design">Controller Design</a></li>
<li><a href="#discussion">Discussion</a></li>
</ul>
<ul>
<li><a href="#backlinks">Backlinks</a></li>
</ul>
</nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/vibration_isolation/">Vibration Isolation</a>, <a href="/zettels/actuators/">Actuators</a></dd>
<dt>Reference</dt>
<dd><sup id="aad53368e29e8a519e2f63857044fa46"><a href="#ito16_compar_class_high_precis_actuat" title="Shingo Ito \&amp; Georg Schitter, Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation, {IEEE/ASME Transactions on Mechatronics}, v(2), 1169-1178 (2016).">(Shingo Ito &amp; Georg Schitter, 2016)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Ito, S., &amp; Schitter, G.</dd>
<dt>Year</dt>
<dd>2016</dd>
</dl>
<h2 id="classification-of-high-precision-actuators">Classification of high-precision actuators</h2>
<div class="table-caption">
<span class="table-number">Table 1</span>:
Zero/Low and High stiffness actuators
</div>
<table>
<thead>
<tr>
<th><strong>Categories</strong></th>
<th><strong>Pros</strong></th>
<th><strong>Cons</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero stiffness</td>
<td>No vibration transmission</td>
<td>Large and Heavy</td>
</tr>
<tr>
<td>Low stiffness</td>
<td>High vibration isolation</td>
<td>Typically for low load</td>
</tr>
<tr>
<td>High Stiffness</td>
<td>High control bandwidth</td>
<td>High vibration transmission</td>
</tr>
</tbody>
</table>
<h2 id="time-delay-of-piezoelectric-electronics">Time Delay of Piezoelectric Electronics</h2>
<p>In this paper, the piezoelectric actuator/electronics adds a time delay which is much higher than the time delay added by the voice coil/electronics.</p>
<h2 id="definition-of-low-stiffness-and-high-stiffness-actuator">Definition of low-stiffness and high-stiffness actuator</h2>
<ul>
<li><strong>Low Stiffness</strong> actuator is defined as the ones where the transmissibility stays below 0dB at all frequency</li>
<li><strong>High Stiffness</strong> actuator is defined as the ones where the transmissibility goes above 0dB at some frequency</li>
</ul>
<p><a id="org6e18c94"></a></p>
<figure>
<img src="/ox-hugo/ito16_low_high_stiffness_actuators.png"
alt="Figure 1: Definition of low-stiffness and high-stiffness actuator"/> <figcaption>
<p>Figure 1: Definition of low-stiffness and high-stiffness actuator</p>
</figcaption>
</figure>
<h2 id="low-stiffness-high-stiffness-characteristics">Low-Stiffness / High-Stiffness characteristics</h2>
<ul>
<li>The low stiffness actuators achieve smooth transition from active isolation to passive isolation.</li>
<li>The high stiffness actuators can have a gap between the passive and active isolation vibration where the vibrations are amplified in a certain frequency band.</li>
</ul>
<h2 id="controller-design">Controller Design</h2>
<p><a id="orgc911fbe"></a></p>
<figure>
<img src="/ox-hugo/ito16_transmissibility.png"
alt="Figure 2: Obtained transmissibility"/> <figcaption>
<p>Figure 2: Obtained transmissibility</p>
</figcaption>
</figure>
<h2 id="discussion">Discussion</h2>
<p>The stiffness requirement for low-stiffness actuators can be rephrased in the frequency domain as: &ldquo;the cross-over frequency of the sensitivity function of the feedback system must be larger than \(\sqrt{2} \omega_r\) with \(\omega_r\) is the resonant frequency of the uncontrolled system&rdquo;.</p>
<p>In practice, this is difficult to achieve with piezoelectric actuators as their first resonant frequency \(\omega_r\) is <strong>too close to other resonant frequencies to ensure close-loop stability</strong>.
In contrast, the frequency band between the first and the other resonances of Lorentz actuators can be broad by design making them more suitable to construct a low-stiffness actuators.</p>
<h1 id="bibliography">Bibliography</h1>
<p><a id="ito16_compar_class_high_precis_actuat"></a>Ito, S., &amp; Schitter, G., <em>Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation</em>, IEEE/ASME Transactions on Mechatronics, <em>21(2)</em>, 11691178 (2016). <a href="http://dx.doi.org/10.1109/tmech.2015.2478658">http://dx.doi.org/10.1109/tmech.2015.2478658</a> <a href="#aad53368e29e8a519e2f63857044fa46"></a></p>
<h2 id="backlinks">Backlinks</h2>
<ul>
<li><a href="/zettels/actuators/">Actuators</a></li>
</ul>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/wang12_autom_marker_full_field_hard/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/bryson93_contr_spacec_aircr/">
<span class="next-text nav-default">Control of spacecraft and aircraft</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,203 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Dynamic modeling and experimental analyses of stewart platform with flexible hinges - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Stewart Platforms, Flexible Joints Reference (Jian Jiao {\it et al.}, 2018) Author(s) Jiao, J., Wu, Y., Yu, K., &amp;amp; Zhao, R. Year 2018 Bibliography Jiao, J., Wu, Y., Yu, K., &amp;amp; Zhao, R., Dynamic modeling and experimental analyses of stewart platform with flexible hinges, Journal of Vibration and Control, 25(1), 151171 (2018). http://dx.doi.org/10.1177/1077546318772474 ↩" />
<link rel="canonical" href="/paper/jiao18_dynam_model_exper_analy_stewar/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Dynamic modeling and experimental analyses of stewart platform with flexible hinges</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/stewart_platforms/">Stewart Platforms</a>, <a href="/zettels/flexible_joints/">Flexible Joints</a></dd>
<dt>Reference</dt>
<dd><sup id="ee917739f88877d6c2758c1c36565deb"><a href="#jiao18_dynam_model_exper_analy_stewar" title="Jian Jiao, Ying Wu, Kaiping Yu \&amp; Rui Zhao, Dynamic Modeling and Experimental Analyses of Stewart Platform With Flexible Hinges, {Journal of Vibration and Control}, v(1), 151-171 (2018).">(Jian Jiao {\it et al.}, 2018)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Jiao, J., Wu, Y., Yu, K., &amp; Zhao, R.</dd>
<dt>Year</dt>
<dd>2018</dd>
</dl>
<h1 id="bibliography">Bibliography</h1>
<p><a id="jiao18_dynam_model_exper_analy_stewar"></a>Jiao, J., Wu, Y., Yu, K., &amp; Zhao, R., <em>Dynamic modeling and experimental analyses of stewart platform with flexible hinges</em>, Journal of Vibration and Control, <em>25(1)</em>, 151171 (2018). <a href="http://dx.doi.org/10.1177/1077546318772474">http://dx.doi.org/10.1177/1077546318772474</a> <a href="#ee917739f88877d6c2758c1c36565deb"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/yang19_dynam_model_decoup_contr_flexib/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/fleming12_estim/">
<span class="next-text nav-default">Estimating the resolution of nanopositioning systems from frequency domain data</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,221 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>A new isotropic and decoupled 6-dof parallel manipulator - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Stewart Platforms Reference (Legnani {\it et al.}, 2012) Author(s) Legnani, G., Fassi, I., Giberti, H., Cinquemani, S., &amp;amp; Tosi, D. Year 2012 Concepts of isotropy and decoupling for parallel manipulators isotropy: the kinetostatic properties (same applicable force, same possible velocity, same stiffness) are identical in all directions (e.g. cubic configuration for Stewart platform) decoupling: each DoF of the end effector can be controlled by a single actuator (not the case for the Stewart platform) Example of generated isotropic manipulator (not decoupled)." />
<link rel="canonical" href="/paper/legnani12_new_isotr_decoup_paral_manip/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">A new isotropic and decoupled 6-dof parallel manipulator</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/stewart_platforms/">Stewart Platforms</a></dd>
<dt>Reference</dt>
<dd><sup id="17295cbc2858c65ecc60d51b450233e3"><a href="#legnani12_new_isotr_decoup_paral_manip" title="Legnani, Fassi, Giberti, Cinquemani, \&amp; Tosi, A New Isotropic and Decoupled 6-dof Parallel Manipulator, {Mechanism and Machine Theory}, v(nil), 64-81 (2012).">(Legnani {\it et al.}, 2012)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Legnani, G., Fassi, I., Giberti, H., Cinquemani, S., &amp; Tosi, D.</dd>
<dt>Year</dt>
<dd>2012</dd>
</dl>
<ul>
<li>Concepts of isotropy and decoupling for parallel manipulators</li>
<li><strong>isotropy</strong>: the kinetostatic properties (same applicable force, same possible velocity, same stiffness) are identical in all directions (e.g. cubic configuration for Stewart platform)</li>
<li><strong>decoupling</strong>: each DoF of the end effector can be controlled by a <strong>single</strong> actuator (not the case for the Stewart platform)</li>
</ul>
<p>Example of generated isotropic manipulator (not decoupled).</p>
<p><a id="orgd015b7e"></a></p>
<figure>
<img src="/ox-hugo/legnani12_isotropy_gen.png"
alt="Figure 1: Location of the leg axes using an isotropy generator"/> <figcaption>
<p>Figure 1: Location of the leg axes using an isotropy generator</p>
</figcaption>
</figure>
<p><a id="orgb3cab58"></a></p>
<figure>
<img src="/ox-hugo/legnani12_generated_isotropy.png"
alt="Figure 2: Isotropic configuration"/> <figcaption>
<p>Figure 2: Isotropic configuration</p>
</figcaption>
</figure>
<h1 id="bibliography">Bibliography</h1>
<p><a id="legnani12_new_isotr_decoup_paral_manip"></a>Legnani, G., Fassi, I., Giberti, H., Cinquemani, S., &amp; Tosi, D., <em>A new isotropic and decoupled 6-dof parallel manipulator</em>, Mechanism and Machine Theory, <em>58(nil)</em>, 6481 (2012). <a href="http://dx.doi.org/10.1016/j.mechmachtheory.2012.07.008">http://dx.doi.org/10.1016/j.mechmachtheory.2012.07.008</a> <a href="#17295cbc2858c65ecc60d51b450233e3"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="next" href="/paper/fleming13_review_nanom_resol_posit_sensor/">
<span class="next-text nav-default">A review of nanometer resolution position sensors: operation and performance</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,462 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Stewart Platforms, Vibration Isolation, Cubic Architecture, Flexible Joints, Multivariable Control Reference @phdthesis{li01_simul_fault_vibrat_isolat_point, author = {Li, Xiaochun}, school = {University of Wyoming}, title = {Simultaneous, Fault-tolerant Vibration Isolation and Pointing Control of Flexure Jointed Hexapods}, year = 2001, tags = {parallel robot}, } Author(s) Li, X. Year 2001 Introduction Stewart Platform:
Cubic (mutually orthogonal) Flexure Joints =&amp;gt; eliminate friction and backlash but add complexity to the dynamics" />
<link rel="canonical" href="/paper/li01_simul_fault_vibrat_isolat_point/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents">
<ul>
<li><a href="#introduction">Introduction</a></li>
<li><a href="#simultaneous-vibration-isolation-and-pointing-control">Simultaneous Vibration Isolation and Pointing Control</a>
<ul>
<li><a href="#vibration-isolation">Vibration Isolation</a></li>
<li><a href="#pointing-control">Pointing Control</a></li>
<li><a href="#simultaneous-control">Simultaneous Control</a></li>
<li><a href="#experimental-results">Experimental results</a></li>
</ul>
</li>
<li><a href="#future-research-areas">Future research areas</a></li>
</ul>
</nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/stewart_platforms/">Stewart Platforms</a>, <a href="/zettels/vibration_isolation/">Vibration Isolation</a>, <a href="/zettels/cubic_architecture/">Cubic Architecture</a>, <a href="/zettels/flexible_joints/">Flexible Joints</a>, <a href="/zettels/multivariable_control/">Multivariable Control</a></dd>
<dt>Reference</dt>
<dd><sup id="f885df380638b868e509fbbf75912d1e"><a href="#li01_simul_fault_vibrat_isolat_point" title="@phdthesis{li01_simul_fault_vibrat_isolat_point,
author = {Li, Xiaochun},
school = {University of Wyoming},
title = {Simultaneous, Fault-tolerant Vibration Isolation and
Pointing Control of Flexure Jointed Hexapods},
year = 2001,
tags = {parallel robot},
}">@phdthesis{li01_simul_fault_vibrat_isolat_point,
author = {Li, Xiaochun},
school = {University of Wyoming},
title = {Simultaneous, Fault-tolerant Vibration Isolation and
Pointing Control of Flexure Jointed Hexapods},
year = 2001,
tags = {parallel robot},
}</a></sup></dd>
<dt>Author(s)</dt>
<dd>Li, X.</dd>
<dt>Year</dt>
<dd>2001</dd>
</dl>
<h2 id="introduction">Introduction</h2>
<p><strong>Stewart Platform</strong>:</p>
<ul>
<li>Cubic (mutually orthogonal)</li>
<li>Flexure Joints =&gt; eliminate friction and backlash but add complexity to the dynamics</li>
</ul>
<p><a id="orgd72b050"></a></p>
<figure>
<img src="/ox-hugo/li01_stewart_platform.png"
alt="Figure 1: Flexure jointed Stewart platform used for analysis and control"/> <figcaption>
<p>Figure 1: Flexure jointed Stewart platform used for analysis and control</p>
</figcaption>
</figure>
<p><strong>Goal</strong>:</p>
<ul>
<li>Precise pointing in two axes (sub micro-radians)</li>
<li>simultaneously, providing both passive and active vibration isolation in six axes</li>
</ul>
<p><strong>Jacobian Analysis</strong>:
\[ \delta \mathcal{L} = J \delta \mathcal{X} \]
The origin of \(\{P\}\) is taken as the center of mass of the payload.</p>
<p><strong>Decoupling</strong>:
If we refine the (force) inputs and (displacement) outputs as shown in Figure <a href="#org2d875d1">2</a> or in Figure <a href="#org3e247bd">3</a>, we obtain a decoupled plant provided that:</p>
<ol>
<li>the payload mass/inertia matrix must be diagonal (the CoM is coincident with the origin of frame \(\{P\}\))</li>
<li>the geometry of the hexapod and the attachment of the payload to the hexapod must be carefully chosen</li>
</ol>
<blockquote>
<p>For instance, if the hexapod has a mutually orthogonal geometry (cubic configuration), the payload&rsquo;s center of mass must coincide with the center of the cube formed by the orthogonal struts.</p>
</blockquote>
<p><a id="org2d875d1"></a></p>
<figure>
<img src="/ox-hugo/li01_decoupling_conf.png"
alt="Figure 2: Decoupling the dynamics of the Stewart Platform using the Jacobians"/> <figcaption>
<p>Figure 2: Decoupling the dynamics of the Stewart Platform using the Jacobians</p>
</figcaption>
</figure>
<p><a id="org3e247bd"></a></p>
<figure>
<img src="/ox-hugo/li01_decoupling_conf_bis.png"
alt="Figure 3: Decoupling the dynamics of the Stewart Platform using the Jacobians"/> <figcaption>
<p>Figure 3: Decoupling the dynamics of the Stewart Platform using the Jacobians</p>
</figcaption>
</figure>
<h2 id="simultaneous-vibration-isolation-and-pointing-control">Simultaneous Vibration Isolation and Pointing Control</h2>
<p>Basic idea:</p>
<ul>
<li>acceleration feedback is used to provide high-frequency vibration isolation</li>
<li>cartesian pointing feedback can be used to provide low-frequency pointing</li>
</ul>
<p>The compensation is divided in frequency because:</p>
<ul>
<li>pointing sensors often have low bandwidth</li>
<li>acceleration sensors often have a poor low frequency response</li>
</ul>
<p>The control bandwidth is divided as follows:</p>
<ul>
<li>low-frequency disturbances as attenuated and tracking is accomplished by feedback from low bandwidth pointing sensors</li>
<li>mid-frequency disturbances are attenuated by feedback from band-pass sensors like accelerometer or load cells</li>
<li>high-frequency disturbances are attenuated by passive isolation techniques</li>
</ul>
<h3 id="vibration-isolation">Vibration Isolation</h3>
<p>The system is decoupled into six independent SISO subsystems using the architecture shown in Figure <a href="#org3c42849">4</a>.</p>
<p><a id="org3c42849"></a></p>
<figure>
<img src="/ox-hugo/li01_vibration_isolation_control.png"
alt="Figure 4: Figure caption"/> <figcaption>
<p>Figure 4: Figure caption</p>
</figcaption>
</figure>
<p>One of the subsystem plant transfer function is shown in Figure <a href="#org3c42849">4</a></p>
<p><a id="orga10e0a5"></a></p>
<figure>
<img src="/ox-hugo/li01_vibration_control_plant.png"
alt="Figure 5: Plant transfer function of one of the SISO subsystem for Vibration Control"/> <figcaption>
<p>Figure 5: Plant transfer function of one of the SISO subsystem for Vibration Control</p>
</figcaption>
</figure>
<p>Each compensator is designed using simple loop-shaping techniques.</p>
<p>The unity control bandwidth of the isolation loop is designed to be from <strong>5Hz to 50Hz</strong>.</p>
<blockquote>
<p>Despite a reasonably good match between the modeled and the measured transfer functions, the model based decoupling algorithm does not produce the expected decoupling.
Only about 20 dB separation is achieve between the diagonal and off-diagonal responses.</p>
</blockquote>
<h3 id="pointing-control">Pointing Control</h3>
<p>A block diagram of the pointing control system is shown in Figure <a href="#org3c3e6ad">6</a>.</p>
<p><a id="org3c3e6ad"></a></p>
<figure>
<img src="/ox-hugo/li01_pointing_control.png"
alt="Figure 6: Figure caption"/> <figcaption>
<p>Figure 6: Figure caption</p>
</figcaption>
</figure>
<p>The plant is decoupled into two independent SISO subsystems.
The compensators are design with inverse-dynamics methods.</p>
<p>The unity control bandwidth of the pointing loop is designed to be from <strong>0Hz to 20Hz</strong>.</p>
<p>A feedforward control is added as shown in Figure <a href="#orgc8fa614">7</a>.</p>
<p><a id="orgc8fa614"></a></p>
<figure>
<img src="/ox-hugo/li01_feedforward_control.png"
alt="Figure 7: Feedforward control"/> <figcaption>
<p>Figure 7: Feedforward control</p>
</figcaption>
</figure>
<h3 id="simultaneous-control">Simultaneous Control</h3>
<p>The simultaneous vibration isolation and pointing control is approached in two ways:</p>
<ol>
<li>design and implement the vibration isolation control first, identify the pointing plant when the isolation loops are closed, then implement the pointing compensators</li>
<li>the reverse design order</li>
</ol>
<p>Figure <a href="#org987b709">8</a> shows a parallel control structure where \(G_1(s)\) is the dynamics from input force to output strut length.</p>
<p><a id="org987b709"></a></p>
<figure>
<img src="/ox-hugo/li01_parallel_control.png"
alt="Figure 8: A parallel scheme"/> <figcaption>
<p>Figure 8: A parallel scheme</p>
</figcaption>
</figure>
<p>The transfer function matrix for the pointing loop after the vibration isolation is closed is still decoupled. The same happens when closing the pointing loop first and looking at the transfer function matrix of the vibration isolation.</p>
<p>The effect of the isolation loop on the pointing loop is large around the natural frequency of the plant as shown in Figure <a href="#orgb070c43">9</a>.</p>
<p><a id="orgb070c43"></a></p>
<figure>
<img src="/ox-hugo/li01_effect_isolation_loop_closed.png"
alt="Figure 9: \(\theta_x/\theta_{x_d}\) transfer function with the isolation loop closed (simulation)"/> <figcaption>
<p>Figure 9: \(\theta_x/\theta_{x_d}\) transfer function with the isolation loop closed (simulation)</p>
</figcaption>
</figure>
<p>The effect of pointing control on the isolation plant has not much effect.</p>
<blockquote>
<p>The interaction between loops may affect the transfer functions of the <strong>first</strong> closed loop, and thus affect its relative stability.</p>
</blockquote>
<p>The dynamic interaction effect:</p>
<ul>
<li>only happens in the unity bandwidth of the loop transmission of the first closed loop.</li>
<li>affect the closed loop transmission of the loop first closed (see Figures <a href="#org0d64bc7">10</a> and <a href="#orgb43f022">11</a>)</li>
</ul>
<p>As shown in Figure <a href="#org0d64bc7">10</a>, the peak resonance of the pointing loop increase after the isolation loop is closed.
The resonances happen at both crossovers of the isolation loop (15Hz and 50Hz) and they may show of loss of robustness.</p>
<p><a id="org0d64bc7"></a></p>
<figure>
<img src="/ox-hugo/li01_closed_loop_pointing.png"
alt="Figure 10: Closed-loop transfer functions \(\theta_y/\theta_{y_d}\) of the pointing loop before and after the vibration isolation loop is closed"/> <figcaption>
<p>Figure 10: Closed-loop transfer functions \(\theta_y/\theta_{y_d}\) of the pointing loop before and after the vibration isolation loop is closed</p>
</figcaption>
</figure>
<p>The same happens when first closing the vibration isolation loop and after the pointing loop (Figure <a href="#orgb43f022">11</a>).
The first peak resonance of the vibration isolation loop at 15Hz is increased when closing the pointing loop.</p>
<p><a id="orgb43f022"></a></p>
<figure>
<img src="/ox-hugo/li01_closed_loop_vibration.png"
alt="Figure 11: Closed-loop transfer functions of the vibration isolation loop before and after the pointing control loop is closed"/> <figcaption>
<p>Figure 11: Closed-loop transfer functions of the vibration isolation loop before and after the pointing control loop is closed</p>
</figcaption>
</figure>
<blockquote>
<p>The isolation loop adds a second resonance peak at its high-frequency crossover in the pointing closed-loop transfer function, which may cause instability.
Thus, it is recommended to design and implement the isolation control system first, and then identify the pointing plant with the isolation loop closed.</p>
</blockquote>
<h3 id="experimental-results">Experimental results</h3>
<p>Two hexapods are stacked (Figure <a href="#org12b1e53">12</a>):</p>
<ul>
<li>the bottom hexapod is used to generate disturbances matching candidate applications</li>
<li>the top hexapod provide simultaneous vibration isolation and pointing control</li>
</ul>
<p><a id="org12b1e53"></a></p>
<figure>
<img src="/ox-hugo/li01_test_bench.png"
alt="Figure 12: Stacked Hexapods"/> <figcaption>
<p>Figure 12: Stacked Hexapods</p>
</figcaption>
</figure>
<p>Using the vibration isolation control alone, no attenuation is achieved below 1Hz as shown in figure <a href="#org4b99c02">13</a>.</p>
<p><a id="org4b99c02"></a></p>
<figure>
<img src="/ox-hugo/li01_vibration_isolation_control_results.png"
alt="Figure 13: Vibration isolation control: open-loop (solid) vs. closed-loop (dashed)"/> <figcaption>
<p>Figure 13: Vibration isolation control: open-loop (solid) vs. closed-loop (dashed)</p>
</figcaption>
</figure>
<p>The simultaneous control is of dual use:</p>
<ul>
<li>it provide simultaneous pointing and isolation control</li>
<li>it can also be used to expand the bandwidth of the isolation control to low frequencies because the pointing loops suppress pointing errors due to both base vibrations and tracking</li>
</ul>
<p>The results of simultaneous control is shown in Figure <a href="#orged11c63">14</a> where the bandwidth of the isolation control is expanded to very low frequency.</p>
<p><a id="orged11c63"></a></p>
<figure>
<img src="/ox-hugo/li01_simultaneous_control_results.png"
alt="Figure 14: Simultaneous control: open-loop (solid) vs. closed-loop (dashed)"/> <figcaption>
<p>Figure 14: Simultaneous control: open-loop (solid) vs. closed-loop (dashed)</p>
</figcaption>
</figure>
<h2 id="future-research-areas">Future research areas</h2>
<p>Proposed future research areas include:</p>
<ul>
<li><strong>Include base dynamics in the control</strong>:
The base dynamics is here neglected since the movements of the base are very small.
The base dynamics could be measured by mounting accelerometers at the bottom of each strut or by using force sensors.
It then could be included in the feedforward path.</li>
<li><strong>Robust control and MIMO design</strong></li>
<li><strong>New decoupling method</strong>:
The proposed decoupling algorithm do not produce the expected decoupling, despite a reasonably good match between the modeled and the measured transfer functions.
Incomplete decoupling increases the difficulty in designing the controller.
New decoupling methods are needed.
These methods must be static in order to be implemented practically on precision hexapods</li>
<li><strong>Identification</strong>:
Many advanced control methods require a more accurate model or identified plant.
A closed-loop identification method is propose to solve some problems with the current identification methods used.</li>
<li><strong>Other possible sensors</strong>:
Many sensors can be used to expand the utility of the Stewart platform:
<ul>
<li><strong>3-axis load cells</strong> to investigate the Coriolis and centripetal terms and new decoupling methods</li>
<li><strong>LVDT</strong> to provide differential position of the hexapod payload with respect to the base</li>
<li><strong>Geophones</strong> to provide payload and base velocity information</li>
</ul>
</li>
</ul>
<h1 id="bibliography">Bibliography</h1>
<p><a id="li01_simul_fault_vibrat_isolat_point"></a>Li, X., <em>Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods</em> (Doctoral dissertation) (2001). University of Wyoming, . <a href="#f885df380638b868e509fbbf75912d1e"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/li01_simul_vibrat_isolat_point_contr/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Simultaneous vibration isolation and pointing control of flexure jointed hexapods</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/zhang11_six_dof/">
<span class="next-text nav-default">Six dof active vibration control using stewart platform with non-cubic configuration</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,207 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Simultaneous vibration isolation and pointing control of flexure jointed hexapods - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Stewart Platforms, Vibration Isolation Reference (Xiaochun Li {\it et al.}, 2001) Author(s) Li, X., Hamann, J. C., &amp;amp; McInroy, J. E. Year 2001 if the hexapod is designed such that the payload mass/inertia matrix (\(M_x\)) and \(J^T J\) are diagonal, the dynamics from \(u\) to \(y\) are decoupled. Bibliography Li, X., Hamann, J. C., &amp;amp; McInroy, J. E., Simultaneous vibration isolation and pointing control of flexure jointed hexapods, In , Smart Structures and Materials 2001: Smart Structures and Integrated Systems (pp." />
<link rel="canonical" href="/paper/li01_simul_vibrat_isolat_point_contr/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Simultaneous vibration isolation and pointing control of flexure jointed hexapods</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/stewart_platforms/">Stewart Platforms</a>, <a href="/zettels/vibration_isolation/">Vibration Isolation</a></dd>
<dt>Reference</dt>
<dd><sup id="e3df2691f750617c3995644d056d553a"><a href="#li01_simul_vibrat_isolat_point_contr" title="Xiaochun Li, Jerry Hamann \&amp; John McInroy, Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods, nil, in in: {Smart Structures and Materials 2001: Smart Structures and
Integrated Systems}, edited by (2001)">(Xiaochun Li {\it et al.}, 2001)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Li, X., Hamann, J. C., &amp; McInroy, J. E.</dd>
<dt>Year</dt>
<dd>2001</dd>
</dl>
<ul>
<li>if the hexapod is designed such that the payload mass/inertia matrix (\(M_x\)) and \(J^T J\) are diagonal, the dynamics from \(u\) to \(y\) are decoupled.</li>
</ul>
<h1 id="bibliography">Bibliography</h1>
<p><a id="li01_simul_vibrat_isolat_point_contr"></a>Li, X., Hamann, J. C., &amp; McInroy, J. E., <em>Simultaneous vibration isolation and pointing control of flexure jointed hexapods</em>, In , Smart Structures and Materials 2001: Smart Structures and Integrated Systems (pp. ) (2001). : . <a href="#e3df2691f750617c3995644d056d553a"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/hauge04_sensor_contr_space_based_six/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Sensors and control of a space-based six-axis vibration isolation system</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/li01_simul_fault_vibrat_isolat_point/">
<span class="next-text nav-default">Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,213 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Advanced motion control for precision mechatronics: control, identification, and learning of complex systems - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Motion Control Reference (Tom Oomen, 2018) Author(s) Oomen, T. Year 2018
Figure 1: Envisaged developments in motion systems. In traditional motion systems, the control bandwidth takes place in the rigid-body region. In the next generation systemes, flexible dynamics are foreseen to occur within the control bandwidth.
Bibliography Oomen, T., Advanced motion control for precision mechatronics: control, identification, and learning of complex systems, IEEJ Journal of Industry Applications, 7(2), 127140 (2018)." />
<link rel="canonical" href="/paper/oomen18_advan_motion_contr_precis_mechat/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Advanced motion control for precision mechatronics: control, identification, and learning of complex systems</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/motion_control/">Motion Control</a></dd>
<dt>Reference</dt>
<dd><sup id="73fd325bd20a6ef8972145e535f38198"><a href="#oomen18_advan_motion_contr_precis_mechat" title="Tom Oomen, Advanced Motion Control for Precision Mechatronics: Control, Identification, and Learning of Complex Systems, {IEEJ Journal of Industry Applications}, v(2), 127-140 (2018).">(Tom Oomen, 2018)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Oomen, T.</dd>
<dt>Year</dt>
<dd>2018</dd>
</dl>
<p><a id="org55ab131"></a></p>
<figure>
<img src="/ox-hugo/oomen18_next_gen_loop_gain.png"
alt="Figure 1: Envisaged developments in motion systems. In traditional motion systems, the control bandwidth takes place in the rigid-body region. In the next generation systemes, flexible dynamics are foreseen to occur within the control bandwidth."/> <figcaption>
<p>Figure 1: Envisaged developments in motion systems. In traditional motion systems, the control bandwidth takes place in the rigid-body region. In the next generation systemes, flexible dynamics are foreseen to occur within the control bandwidth.</p>
</figcaption>
</figure>
<h1 id="bibliography">Bibliography</h1>
<p><a id="oomen18_advan_motion_contr_precis_mechat"></a>Oomen, T., <em>Advanced motion control for precision mechatronics: control, identification, and learning of complex systems</em>, IEEJ Journal of Industry Applications, <em>7(2)</em>, 127140 (2018). <a href="http://dx.doi.org/10.1541/ieejjia.7.127">http://dx.doi.org/10.1541/ieejjia.7.127</a> <a href="#73fd325bd20a6ef8972145e535f38198"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/alkhatib03_activ_struc_vibrat_contr/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Active structural vibration control: a review</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/saxena12_advan_inter_model_contr_techn/">
<span class="next-text nav-default">Advances in internal model control technique: a review and future prospects</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,225 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>An exploration of active hard mount vibration isolation for precision equipment - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Vibration Isolation Reference @phdthesis{poel10_explor_activ_hard_mount_vibrat, author = {van der Poel, Gerrit Wijnand}, doi = {10.3990/1.9789036530163}, isbn = {978-90-365-3016-3}, school = {University of Twente}, title = {An Exploration of Active Hard Mount Vibration Isolation for Precision Equipment}, url = {https://doi.org/10.3990/1.9789036530163}, year = 2010, year = 2010, tags = {parallel robot}, } Author(s) van der Poel, G. W. Year 2010 Bibliography van der Poel, G. W., An exploration of active hard mount vibration isolation for precision equipment (Doctoral dissertation) (2010)." />
<link rel="canonical" href="/paper/poel10_explor_activ_hard_mount_vibrat/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">An exploration of active hard mount vibration isolation for precision equipment</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/vibration_isolation/">Vibration Isolation</a></dd>
<dt>Reference</dt>
<dd><sup id="bcab548922e0e1ad6a2c310f63879596"><a href="#poel10_explor_activ_hard_mount_vibrat" title="@phdthesis{poel10_explor_activ_hard_mount_vibrat,
author = {van der Poel, Gerrit Wijnand},
doi = {10.3990/1.9789036530163},
isbn = {978-90-365-3016-3},
school = {University of Twente},
title = {An Exploration of Active Hard Mount Vibration Isolation for
Precision Equipment},
url = {https://doi.org/10.3990/1.9789036530163},
year = 2010,
year = 2010,
tags = {parallel robot},
}">@phdthesis{poel10_explor_activ_hard_mount_vibrat,
author = {van der Poel, Gerrit Wijnand},
doi = {10.3990/1.9789036530163},
isbn = {978-90-365-3016-3},
school = {University of Twente},
title = {An Exploration of Active Hard Mount Vibration Isolation for
Precision Equipment},
url = {https://doi.org/10.3990/1.9789036530163},
year = 2010,
year = 2010,
tags = {parallel robot},
}</a></sup></dd>
<dt>Author(s)</dt>
<dd>van der Poel, G. W.</dd>
<dt>Year</dt>
<dd>2010</dd>
</dl>
<h1 id="bibliography">Bibliography</h1>
<p><a id="poel10_explor_activ_hard_mount_vibrat"></a>van der Poel, G. W., <em>An exploration of active hard mount vibration isolation for precision equipment</em> (Doctoral dissertation) (2010). University of Twente, . <a href="#bcab548922e0e1ad6a2c310f63879596"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/saxena12_advan_inter_model_contr_techn/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Advances in internal model control technique: a review and future prospects</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/holler12_instr_x_ray_nano_imagin/">
<span class="next-text nav-default">An instrument for 3d x-ray nano-imaging</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,241 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Force feedback versus acceleration feedback in active vibration isolation - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Vibration Isolation Reference (Preumont {\it et al.}, 2002) Author(s) Preumont, A., A. Francois, Bossens, F., &amp;amp; Abu-Hanieh, A. Year 2002 Summary:
Compares the force feedback and acceleration feedback for active damping The use of a force sensor always give alternating poles and zeros in the open-loop transfer function between for force actuator and the force sensor which guarantees the stability of the closed loop Acceleration feedback produces alternating poles and zeros only when the flexible structure is stiff compared to the isolation system The force applied to a rigid body is proportional to its acceleration, thus sensing the total interface force gives a measured of the absolute acceleration of the solid body." />
<link rel="canonical" href="/paper/preumont02_force_feedb_versus_accel_feedb/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Force feedback versus acceleration feedback in active vibration isolation</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/vibration_isolation/">Vibration Isolation</a></dd>
<dt>Reference</dt>
<dd><sup id="525e1e237b885f81fae3c25a3036ba6f"><a href="#preumont02_force_feedb_versus_accel_feedb" title="Preumont, Fran\ccois, Bossens, \&amp; Abu-Hanieh, Force Feedback Versus Acceleration Feedback in Active Vibration Isolation, {Journal of Sound and Vibration}, v(4), 605-613 (2002).">(Preumont {\it et al.}, 2002)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Preumont, A., A. Francois, Bossens, F., &amp; Abu-Hanieh, A.</dd>
<dt>Year</dt>
<dd>2002</dd>
</dl>
<p>Summary:</p>
<ul>
<li>Compares the force feedback and acceleration feedback for active damping</li>
<li>The use of a force sensor always give alternating poles and zeros in the open-loop transfer function between for force actuator and the force sensor which <strong>guarantees the stability of the closed loop</strong></li>
<li>Acceleration feedback produces alternating poles and zeros only when the flexible structure is stiff compared to the isolation system</li>
</ul>
<p>The force applied to a <strong>rigid body</strong> is proportional to its acceleration, thus sensing the total interface force gives a measured of the absolute acceleration of the solid body.
Thus force feedback and acceleration feedback are equivalent for solid bodies.
When there is a flexible payload, the two sensing options are not longer equivalent.</p>
<ul>
<li>For light payload (Figure <a href="#org7b4f6ee">1</a>), the acceleration feedback gives larger damping on the higher mode.</li>
<li>For heavy payload (Figure <a href="#org361b58f">2</a>), the acceleration feedback do not give alternating poles and zeros and thus for high control gains, the system becomes unstable</li>
</ul>
<p><a id="org7b4f6ee"></a></p>
<figure>
<img src="/ox-hugo/preumont02_force_acc_fb_light.png"
alt="Figure 1: Root locus for light flexible payload, (a) Force feedback, (b) acceleration feedback"/> <figcaption>
<p>Figure 1: Root locus for <strong>light</strong> flexible payload, (a) Force feedback, (b) acceleration feedback</p>
</figcaption>
</figure>
<p><a id="org361b58f"></a></p>
<figure>
<img src="/ox-hugo/preumont02_force_acc_fb_heavy.png"
alt="Figure 2: Root locus for heavy flexible payload, (a) Force feedback, (b) acceleration feedback"/> <figcaption>
<p>Figure 2: Root locus for <strong>heavy</strong> flexible payload, (a) Force feedback, (b) acceleration feedback</p>
</figcaption>
</figure>
<p>Guaranteed stability of the force feedback:</p>
<blockquote>
<p>If two arbitrary flexible, undamped structures are connected with a single-axis soft isolator with force feedback, the poles and zeros of the open-loop transfer function from the force actuator to the force sensor alternate on the imaginary axis.</p>
</blockquote>
<p>The same is true for the transfer function from the force actuator to the relative displacement of the actuator.</p>
<blockquote>
<p>According to physical interpretation of the zeros, they represent the resonances of the subsystem constrained by the sensor and the actuator.</p>
</blockquote>
<h1 id="bibliography">Bibliography</h1>
<p><a id="preumont02_force_feedb_versus_accel_feedb"></a>Preumont, A., A. Fran\ccois, Bossens, F., &amp; Abu-Hanieh, A., <em>Force feedback versus acceleration feedback in active vibration isolation</em>, Journal of Sound and Vibration, <em>257(4)</em>, 605613 (2002). <a href="http://dx.doi.org/10.1006/jsvi.2002.5047">http://dx.doi.org/10.1006/jsvi.2002.5047</a> <a href="#525e1e237b885f81fae3c25a3036ba6f"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/fleming12_estim/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Estimating the resolution of nanopositioning systems from frequency domain data</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/bibel92_guidel_h/">
<span class="next-text nav-default">Guidelines for the selection of weighting functions for h-infinity control</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,248 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>A six-axis single-stage active vibration isolator based on stewart platform - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Vibration Isolation, Stewart Platforms, Flexible Joints Reference (Preumont {\it et al.}, 2007) Author(s) Preumont, A., Horodinca, M., Romanescu, I., Marneffe, B. d., Avraam, M., Deraemaeker, A., Bossens, F., … Year 2007 Summary:
Cubic Stewart platform (Figure 3) Provides uniform control capability Uniform stiffness in all directions minimizes the cross-coupling among actuators and sensors of different legs Flexible joints (Figure 2) Piezoelectric force sensors Voice coil actuators Decentralized feedback control approach for vibration isolation Effect of parasitic stiffness of the flexible joints on the IFF performance (Figure 1) The Stewart platform has 6 suspension modes at different frequencies." />
<link rel="canonical" href="/paper/preumont07_six_axis_singl_stage_activ/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">A six-axis single-stage active vibration isolator based on stewart platform</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/vibration_isolation/">Vibration Isolation</a>, <a href="/zettels/stewart_platforms/">Stewart Platforms</a>, <a href="/zettels/flexible_joints/">Flexible Joints</a></dd>
<dt>Reference</dt>
<dd><sup id="8096d5b2df73551d836ef96b7ca7efa4"><a href="#preumont07_six_axis_singl_stage_activ" title="Preumont, Horodinca, Romanescu, de, Marneffe, Avraam, Deraemaeker, Bossens, \&amp; Abu Hanieh, A Six-Axis Single-Stage Active Vibration Isolator Based on Stewart Platform, {Journal of Sound and Vibration}, v(3-5), 644-661 (2007).">(Preumont {\it et al.}, 2007)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Preumont, A., Horodinca, M., Romanescu, I., Marneffe, B. d., Avraam, M., Deraemaeker, A., Bossens, F., …</dd>
<dt>Year</dt>
<dd>2007</dd>
</dl>
<p>Summary:</p>
<ul>
<li><strong>Cubic</strong> Stewart platform (Figure <a href="#org32a4f7c">3</a>)
<ul>
<li>Provides uniform control capability</li>
<li>Uniform stiffness in all directions</li>
<li>minimizes the cross-coupling among actuators and sensors of different legs</li>
</ul>
</li>
<li>Flexible joints (Figure <a href="#orgf807976">2</a>)</li>
<li>Piezoelectric force sensors</li>
<li>Voice coil actuators</li>
<li>Decentralized feedback control approach for vibration isolation</li>
<li>Effect of parasitic stiffness of the flexible joints on the IFF performance (Figure <a href="#org744bdc9">1</a>)</li>
<li>The Stewart platform has 6 suspension modes at different frequencies.
Thus the gain of the IFF controller cannot be optimal for all the modes.
It is better if all the modes of the platform are near to each other.</li>
<li>Discusses the design of the legs in order to maximize the natural frequency of the local modes.</li>
<li>To estimate the isolation performance of the Stewart platform, a scalar indicator is defined as the Frobenius norm of the transmissibility matrix</li>
</ul>
<p><a id="org744bdc9"></a></p>
<figure>
<img src="/ox-hugo/preumont07_iff_effect_stiffness.png"
alt="Figure 1: Root locus with IFF with no parasitic stiffness and with parasitic stiffness"/> <figcaption>
<p>Figure 1: Root locus with IFF with no parasitic stiffness and with parasitic stiffness</p>
</figcaption>
</figure>
<p><a id="orgf807976"></a></p>
<figure>
<img src="/ox-hugo/preumont07_flexible_joints.png"
alt="Figure 2: Flexible joints used for the Stewart platform"/> <figcaption>
<p>Figure 2: Flexible joints used for the Stewart platform</p>
</figcaption>
</figure>
<p><a id="org32a4f7c"></a></p>
<figure>
<img src="/ox-hugo/preumont07_stewart_platform.png"
alt="Figure 3: Stewart platform"/> <figcaption>
<p>Figure 3: Stewart platform</p>
</figcaption>
</figure>
<h1 id="bibliography">Bibliography</h1>
<p><a id="preumont07_six_axis_singl_stage_activ"></a>Preumont, A., Horodinca, M., Romanescu, I., Marneffe, B. d., Avraam, M., Deraemaeker, A., Bossens, F., …, <em>A six-axis single-stage active vibration isolator based on stewart platform</em>, Journal of Sound and Vibration, <em>300(3-5)</em>, 644661 (2007). <a href="http://dx.doi.org/10.1016/j.jsv.2006.07.050">http://dx.doi.org/10.1016/j.jsv.2006.07.050</a> <a href="#8096d5b2df73551d836ef96b7ca7efa4"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/fleming13_review_nanom_resol_posit_sensor/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">A review of nanometer resolution position sensors: operation and performance</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/spanos95_soft_activ_vibrat_isolat/">
<span class="next-text nav-default">A soft 6-axis active vibration isolator</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,265 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Advances in internal model control technique: a review and future prospects - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Complementary Filters Reference (Sahaj Saxena &amp;amp; YogeshV Hote, 2012) Author(s) Saxena, S., &amp;amp; Hote, Y. Year 2012 Proposed Filter \(F(s)\) \begin{align*} F(s) &amp;amp;= \frac{1}{(\lambda s &#43; 1)^n} \\\
F(s) &amp;amp;= \frac{n \lambda &#43; 1}{(\lambda s &#43; 1)^n} \end{align*}
Internal Model Control Central concept in IMC: control can be acheive only if the control system involves, either implicitly or explicitly, some representation of the process to be controlled." />
<link rel="canonical" href="/paper/saxena12_advan_inter_model_contr_techn/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Advances in internal model control technique: a review and future prospects</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents">
<ul>
<li><a href="#proposed-filter--fs">Proposed Filter \(F(s)\)</a></li>
<li><a href="#internal-model-control">Internal Model Control</a>
<ul>
<li><a href="#basic-imc-structure">Basic IMC structure</a></li>
<li><a href="#features-of-imc-structure">Features of IMC Structure</a></li>
</ul>
</li>
<li><a href="#design-procedure-for-imc-compensator">Design procedure for IMC Compensator</a></li>
<li><a href="#issues-in-imc">Issues in IMC</a>
<ul>
<li><a href="#filter-selection-and-tuning-guidelines">Filter selection and tuning guidelines</a></li>
</ul>
</li>
<li><a href="#some-advantages-and-future-prospects">Some advantages and future prospects</a></li>
<li><a href="#conclusion">Conclusion</a></li>
</ul>
</nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/complementary_filters/">Complementary Filters</a></dd>
<dt>Reference</dt>
<dd><sup id="14f767d8ba71d58fa8a3ec876628d750"><a href="#saxena12_advan_inter_model_contr_techn" title="Sahaj Saxena \&amp; YogeshV Hote, Advances in Internal Model Control Technique: a Review and Future Prospects, {IETE Technical Review}, v(6), 461 (2012).">(Sahaj Saxena &amp; YogeshV Hote, 2012)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Saxena, S., &amp; Hote, Y.</dd>
<dt>Year</dt>
<dd>2012</dd>
</dl>
<h2 id="proposed-filter--fs">Proposed Filter \(F(s)\)</h2>
<p>\begin{align*}
F(s) &amp;= \frac{1}{(\lambda s + 1)^n} \\\<br>
F(s) &amp;= \frac{n \lambda + 1}{(\lambda s + 1)^n}
\end{align*}</p>
<h2 id="internal-model-control">Internal Model Control</h2>
<p>Central concept in IMC: control can be acheive only if the control system involves, either implicitly or explicitly, some representation of the process to be controlled.</p>
<h3 id="basic-imc-structure">Basic IMC structure</h3>
<p>IMC can be considered as a special case of classical feedback structure with plant \(G(s)\) and controller \(C(s)\).</p>
<p>The plan model \(G_M(s)\) is added and substracted into the feedback path of feedback controller.</p>
<p>The structure can then be modified and we obtain a new controller \(Q(s)\).</p>
<p>IMC is related to the classical controller through:</p>
<p>\begin{align*}
Q(s) = \frac{C(s)}{1+G_M(s)C(s)} \\\<br>
C(s) = \frac{Q(s)}{1-G_M(s)Q(s)}
\end{align*}</p>
<p>Internal model control system is characterized by a control device consisting of the controller \(Q(s)\) and a predictive model \(G_M(s)\) of the process (internal model).
The internal model loop uses the difference between the outputs of the process \(G(s)\) to be controlled and the internal model.
This difference \(E(s)\) represents the effect of disturbance and mismatch of the model.</p>
<h3 id="features-of-imc-structure">Features of IMC Structure</h3>
<p>Three properties:</p>
<ul>
<li><strong>Dual stability</strong>: assume that, if the plant model is perfect (\(G_M(s) = G(s)\)) and disturbance is absent, the system becomes open-loop and the closed-loop stability is characterized by the stability of \(G(s)\) and \(Q(s)\)</li>
<li><strong>Perfect control</strong>: assume that, if the controller is equal to the model inverse (\(Q(s) = G_M^{-1}\)) and \(G(s) = G_M(s)\) with \(G(s)\) stable, then the system is perfectly controlled.</li>
<li><strong>Zero Offset</strong>: assume that, if the steady state gain of the controller is equal to the inverse of model gain, then offset free control is obtained for constant step of ramp type inputs and disturbances. As expected, the equivalent classical controller leads to integral action.</li>
</ul>
<p>Issues:</p>
<ul>
<li>the plant model is never perfect</li>
<li>inverting the model can cause instability</li>
<li>control signal may have large magnitude</li>
</ul>
<h2 id="design-procedure-for-imc-compensator">Design procedure for IMC Compensator</h2>
<ol>
<li>factorize the plant model as \(G_M(s) = G_{M-}(s)G_{M+}(s)\) where \(G_{M-}(s)\) is invertible and minimum phase and \(G_{M+}(s)\) is non-invertible and contains all non-minimum phase elements (delays, RHP zeros). Then, the controller is the inverse of the invertible portion of the plant model: \(Q_1(s) = G_{M-}^{-1}(s)\).</li>
<li>Filter selection: to make the controller proper and robust against the plant-model mismatch, a low pass filter of the form \(F(s) = \frac{n \lambda}{(\lambda s + 1)^n}\) is augmented with the inverted model \(Q_1(s)\): \(Q(s) = Q_1(s) F(s)\). \(\lambda\) is a tuning parameter which has an inverse relationship with the speed of closed loop response, \(n\) is selected such that \(Q(s)\) becomes proper.</li>
</ol>
<h2 id="issues-in-imc">Issues in IMC</h2>
<h3 id="filter-selection-and-tuning-guidelines">Filter selection and tuning guidelines</h3>
<h2 id="some-advantages-and-future-prospects">Some advantages and future prospects</h2>
<h2 id="conclusion">Conclusion</h2>
<p>The interesting feature regarding IMC is that the design scheme is identical to the open-loop control design procedure and the implementation of IMC results in a feedback system, thereby copying the disturbances and parameter uncertainties, while open-loop control is not.</p>
<h1 id="bibliography">Bibliography</h1>
<p><a id="saxena12_advan_inter_model_contr_techn"></a>Saxena, S., &amp; Hote, Y., <em>Advances in internal model control technique: a review and future prospects</em>, IETE Technical Review, <em>29(6)</em>, 461 (2012). <a href="http://dx.doi.org/10.4103/0256-4602.105001">http://dx.doi.org/10.4103/0256-4602.105001</a> <a href="#14f767d8ba71d58fa8a3ec876628d750"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/oomen18_advan_motion_contr_precis_mechat/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Advanced motion control for precision mechatronics: control, identification, and learning of complex systems</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/poel10_explor_activ_hard_mount_vibrat/">
<span class="next-text nav-default">An exploration of active hard mount vibration isolation for precision equipment</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,203 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Design for precision: current status and trends - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Precision Engineering Reference (Schellekens {\it et al.}, 1998) Author(s) Schellekens, P., Rosielle, N., Vermeulen, H., Vermeulen, M., Wetzels, S., &amp;amp; Pril, W. Year 1998 Bibliography Schellekens, P., Rosielle, N., Vermeulen, H., Vermeulen, M., Wetzels, S., &amp;amp; Pril, W., Design for precision: current status and trends, Cirp Annals, (2), 557586 (1998). http://dx.doi.org/10.1016/s0007-8506(07)63243-0 ↩" />
<link rel="canonical" href="/paper/schellekens98_desig_precis/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Design for precision: current status and trends</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/precision_engineering/">Precision Engineering</a></dd>
<dt>Reference</dt>
<dd><sup id="89f7d8f4c31f79f83e3666017687f525"><a href="#schellekens98_desig_precis" title="Schellekens, Rosielle, Vermeulen, , Vermeulen, Wetzels \&amp; Pril, Design for Precision: Current Status and Trends, {Cirp Annals}, v(2), 557-586 (1998).">(Schellekens {\it et al.}, 1998)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Schellekens, P., Rosielle, N., Vermeulen, H., Vermeulen, M., Wetzels, S., &amp; Pril, W.</dd>
<dt>Year</dt>
<dd>1998</dd>
</dl>
<h1 id="bibliography">Bibliography</h1>
<p><a id="schellekens98_desig_precis"></a>Schellekens, P., Rosielle, N., Vermeulen, H., Vermeulen, M., Wetzels, S., &amp; Pril, W., <em>Design for precision: current status and trends</em>, Cirp Annals, <em>(2)</em>, 557586 (1998). <a href="http://dx.doi.org/10.1016/s0007-8506(07)63243-0">http://dx.doi.org/10.1016/s0007-8506(07)63243-0</a> <a href="#89f7d8f4c31f79f83e3666017687f525"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/tang18_decen_vibrat_contr_voice_coil/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Decentralized vibration control of a voice coil motor-based stewart parallel mechanism: simulation and experiments</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/yang19_dynam_model_decoup_contr_flexib/">
<span class="next-text nav-default">Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,203 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Nanopositioning with multiple sensors: a case study in data storage - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Sensor Fusion Reference (Abu Sebastian &amp;amp; Angeliki Pantazi, 2012) Author(s) Sebastian, A., &amp;amp; Pantazi, A. Year 2012 Bibliography Sebastian, A., &amp;amp; Pantazi, A., Nanopositioning with multiple sensors: a case study in data storage, IEEE Transactions on Control Systems Technology, 20(2), 382394 (2012). http://dx.doi.org/10.1109/tcst.2011.2177982 ↩" />
<link rel="canonical" href="/paper/sebastian12_nanop_with_multip_sensor/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Nanopositioning with multiple sensors: a case study in data storage</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/sensor_fusion/">Sensor Fusion</a></dd>
<dt>Reference</dt>
<dd><sup id="eb5a15a8c900d93de0b9bab520e1b6da"><a href="#sebastian12_nanop_with_multip_sensor" title="Abu Sebastian \&amp; Angeliki Pantazi, Nanopositioning With Multiple Sensors: a Case Study in Data Storage, {IEEE Transactions on Control Systems Technology}, v(2), 382-394 (2012).">(Abu Sebastian &amp; Angeliki Pantazi, 2012)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Sebastian, A., &amp; Pantazi, A.</dd>
<dt>Year</dt>
<dd>2012</dd>
</dl>
<h1 id="bibliography">Bibliography</h1>
<p><a id="sebastian12_nanop_with_multip_sensor"></a>Sebastian, A., &amp; Pantazi, A., <em>Nanopositioning with multiple sensors: a case study in data storage</em>, IEEE Transactions on Control Systems Technology, <em>20(2)</em>, 382394 (2012). <a href="http://dx.doi.org/10.1109/tcst.2011.2177982">http://dx.doi.org/10.1109/tcst.2011.2177982</a> <a href="#eb5a15a8c900d93de0b9bab520e1b6da"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/fleming10_nanop_system_with_force_feedb/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Nanopositioning system with force feedback for high-performance tracking and vibration control</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/butler11_posit_contr_lithog_equip/">
<span class="next-text nav-default">Position control in lithographic equipment</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,259 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>A soft 6-axis active vibration isolator - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Stewart Platforms, Vibration Isolation Reference (Spanos {\it et al.}, 1995) Author(s) Spanos, J., Rahman, Z., &amp;amp; Blackwood, G. Year 1995 Stewart Platform (Figure 1):
Voice Coil Flexible joints (cross-blades) Force Sensors Cubic Configuration
Figure 1: Stewart Platform
Total mass of the paylaod: 30kg Center of gravity is 9cm above the geometry center of the mount (cube&amp;rsquo;s center?).
Limitation of the Decentralized Force Feedback:" />
<link rel="canonical" href="/paper/spanos95_soft_activ_vibrat_isolat/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">A soft 6-axis active vibration isolator</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/stewart_platforms/">Stewart Platforms</a>, <a href="/zettels/vibration_isolation/">Vibration Isolation</a></dd>
<dt>Reference</dt>
<dd><sup id="a48f6708d087625a42ca2375407a2bc4"><a href="#spanos95_soft_activ_vibrat_isolat" title="Spanos, Rahman \&amp; Blackwood, A Soft 6-axis Active Vibration Isolator, nil, in in: {Proceedings of 1995 American Control Conference - ACC'95}, edited by (1995)">(Spanos {\it et al.}, 1995)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Spanos, J., Rahman, Z., &amp; Blackwood, G.</dd>
<dt>Year</dt>
<dd>1995</dd>
</dl>
<p><strong>Stewart Platform</strong> (Figure <a href="#org4317d08">1</a>):</p>
<ul>
<li>Voice Coil</li>
<li>Flexible joints (cross-blades)</li>
<li>Force Sensors</li>
<li>Cubic Configuration</li>
</ul>
<p><a id="org4317d08"></a></p>
<figure>
<img src="/ox-hugo/spanos95_stewart_platform.png"
alt="Figure 1: Stewart Platform"/> <figcaption>
<p>Figure 1: Stewart Platform</p>
</figcaption>
</figure>
<p>Total mass of the paylaod: 30kg
Center of gravity is 9cm above the geometry center of the mount (cube&rsquo;s center?).</p>
<p>Limitation of the <strong>Decentralized Force Feedback</strong>:</p>
<ul>
<li>high frequency pole due to internal resonances of the struts</li>
<li>low frequency zero due to the rotational stiffness of the flexible joints</li>
</ul>
<p>After redesign of the struts:</p>
<ul>
<li>high frequency pole at 4.7kHz</li>
<li>low frequency zero at 2.6Hz but non-minimum phase (not explained).
Small viscous damping material in the cross blade flexures made the zero minimum phase again.</li>
</ul>
<p><a id="org67e505c"></a></p>
<figure>
<img src="/ox-hugo/spanos95_iff_plant.png"
alt="Figure 2: Experimentally measured transfer function from voice coil drive voltage to collocated load cell output voltage"/> <figcaption>
<p>Figure 2: Experimentally measured transfer function from voice coil drive voltage to collocated load cell output voltage</p>
</figcaption>
</figure>
<p>The controller used consisted of:</p>
<ul>
<li>second order low pass filter to gain stabilize the plant at high frequencies and provide steep roll-off</li>
<li>first order lead filter to provide adequate phase margin at the high frequency crossover</li>
<li>first order lag filter to provide adequate phase margin at the low frequency crossover</li>
<li>a first order high pass filter to attenuate the excess gain resulting from the low frequency zero</li>
</ul>
<p>The results in terms of transmissibility are shown in Figure <a href="#orgf128817">3</a>.</p>
<p><a id="orgf128817"></a></p>
<figure>
<img src="/ox-hugo/spanos95_results.png"
alt="Figure 3: Experimentally measured Frobenius norm of the 6-axis transmissibility"/> <figcaption>
<p>Figure 3: Experimentally measured Frobenius norm of the 6-axis transmissibility</p>
</figcaption>
</figure>
<h1 id="bibliography">Bibliography</h1>
<p><a id="spanos95_soft_activ_vibrat_isolat"></a>Spanos, J., Rahman, Z., &amp; Blackwood, G., <em>A soft 6-axis active vibration isolator</em>, In , Proceedings of 1995 American Control Conference - ACC'95 (pp. ) (1995). : . <a href="#a48f6708d087625a42ca2375407a2bc4"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/preumont07_six_axis_singl_stage_activ/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">A six-axis single-stage active vibration isolator based on stewart platform</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/devasia07_survey_contr_issues_nanop/">
<span class="next-text nav-default">A survey of control issues in nanopositioning</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,224 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Interferometric characterization of rotation stages for x-ray nanotomography - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Nano Active Stabilization System, Positioning Stations Reference (Tomas Stankevic {\it et al.}, 2017) Author(s) Stankevic, T., Engblom, C., Langlois, F., Alves, F., Lestrade, A., Jobert, N., Cauchon, G., … Year 2017 Similar Station than the NASS Similar Metrology with fiber based interferometers and cylindrical reference mirror
Figure 1: Positioning Station
Thermal expansion: Stabilized down to \(5mK/h\) using passive water flow through the baseplate below the sample stage and in the interferometry reference frame." />
<link rel="canonical" href="/paper/stankevic17_inter_charac_rotat_stages_x_ray_nanot/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Interferometric characterization of rotation stages for x-ray nanotomography</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/nano_active_stabilization_system/">Nano Active Stabilization System</a>, <a href="/zettels/positioning_stations/">Positioning Stations</a></dd>
<dt>Reference</dt>
<dd><sup id="abb1be5f48179255f7d8c45b1784bcf8"><a href="#stankevic17_inter_charac_rotat_stages_x_ray_nanot" title="Tomas Stankevic, Christer Engblom, Florent Langlois, , Filipe Alves, Alain Lestrade, Nicolas Jobert, , Gilles Cauchon, Ulrich Vogt \&amp; Stefan Kubsky, Interferometric Characterization of Rotation Stages for X-Ray Nanotomography, {Review of Scientific Instruments}, v(5), 053703 (2017).">(Tomas Stankevic {\it et al.}, 2017)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Stankevic, T., Engblom, C., Langlois, F., Alves, F., Lestrade, A., Jobert, N., Cauchon, G., …</dd>
<dt>Year</dt>
<dd>2017</dd>
</dl>
<ul>
<li>Similar Station than the NASS</li>
<li>Similar Metrology with fiber based interferometers and cylindrical reference mirror</li>
</ul>
<p><a id="orgc1f98d0"></a></p>
<figure>
<img src="/ox-hugo/stankevic17_station.png"
alt="Figure 1: Positioning Station"/> <figcaption>
<p>Figure 1: Positioning Station</p>
</figcaption>
</figure>
<ul>
<li><strong>Thermal expansion</strong>: Stabilized down to \(5mK/h\) using passive water flow through the baseplate below the sample stage and in the interferometry reference frame.</li>
<li><strong>Controller</strong>: Two Independant PID loops</li>
<li>Repeatable errors =&gt; feedforward (Look Up Table)</li>
<li>Non-repeatable errors =&gt; feedback</li>
<li>Result: 40nm runout error</li>
</ul>
<h1 id="bibliography">Bibliography</h1>
<p><a id="stankevic17_inter_charac_rotat_stages_x_ray_nanot"></a>Stankevic, T., Engblom, C., Langlois, F., Alves, F., Lestrade, A., Jobert, N., Cauchon, G., …, <em>Interferometric characterization of rotation stages for x-ray nanotomography</em>, Review of Scientific Instruments, <em>88(5)</em>, 053703 (2017). <a href="http://dx.doi.org/10.1063/1.4983405">http://dx.doi.org/10.1063/1.4983405</a> <a href="#abb1be5f48179255f7d8c45b1784bcf8"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/garg07_implem_chall_multiv_contr/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Implementation challenges for multivariable control: what you did not learn in school!</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/wang16_inves_activ_vibrat_isolat_stewar/">
<span class="next-text nav-default">Investigation on active vibration isolation of a stewart platform with piezoelectric actuators</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,204 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Decentralized vibration control of a voice coil motor-based stewart parallel mechanism: simulation and experiments - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Stewart Platforms Reference (Jie Tang {\it et al.}, 2018) Author(s) Tang, J., Cao, D., &amp;amp; Yu, T. Year 2018 Bibliography Tang, J., Cao, D., &amp;amp; Yu, T., Decentralized vibration control of a voice coil motor-based stewart parallel mechanism: simulation and experiments, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(1), 132145 (2018). http://dx.doi.org/10.1177/0954406218756941 ↩" />
<link rel="canonical" href="/paper/tang18_decen_vibrat_contr_voice_coil/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Decentralized vibration control of a voice coil motor-based stewart parallel mechanism: simulation and experiments</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/stewart_platforms/">Stewart Platforms</a></dd>
<dt>Reference</dt>
<dd><sup id="85f81ff678aabc195636437548e4234a"><a href="#tang18_decen_vibrat_contr_voice_coil" title="Jie Tang, Dengqing Cao \&amp; Tianhu Yu, Decentralized Vibration Control of a Voice Coil Motor-Based Stewart Parallel Mechanism: Simulation and Experiments, {Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science}, v(1), 132-145 (2018).">(Jie Tang {\it et al.}, 2018)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Tang, J., Cao, D., &amp; Yu, T.</dd>
<dt>Year</dt>
<dd>2018</dd>
</dl>
<h1 id="bibliography">Bibliography</h1>
<p><a id="tang18_decen_vibrat_contr_voice_coil"></a>Tang, J., Cao, D., &amp; Yu, T., <em>Decentralized vibration control of a voice coil motor-based stewart parallel mechanism: simulation and experiments</em>, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, <em>233(1)</em>, 132145 (2018). <a href="http://dx.doi.org/10.1177/0954406218756941">http://dx.doi.org/10.1177/0954406218756941</a> <a href="#85f81ff678aabc195636437548e4234a"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/bryson93_contr_spacec_aircr/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Control of spacecraft and aircraft</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/schellekens98_desig_precis/">
<span class="next-text nav-default">Design for precision: current status and trends</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,228 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Sensor fusion for active vibration isolation in precision equipment - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Sensor Fusion, Vibration Isolation Reference (Tjepkema {\it et al.}, 2012) Author(s) Tjepkema, D., Dijk, J. v., &amp;amp; Soemers, H. Year 2012 Relative motion Control Control law: \(f = -G(x-w)\)
\[ \frac{x}{w} = \frac{k&#43;G}{ms^2 &#43; k&#43;G} \] \[ \frac{x}{F} = \frac{1}{ms^2 &#43; k&#43;G} \]
Force Control Control law: \(f = -G F_a = -G \left(f-k(x-w)\right)\)
\[ \frac{x}{w} = \frac{k}{(1&#43;G)ms^2 &#43; k} \] \[ \frac{x}{F} = \frac{1&#43;G}{(1&#43;G)ms^2 &#43; k} \]" />
<link rel="canonical" href="/paper/tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Sensor fusion for active vibration isolation in precision equipment</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents">
<ul>
<li><a href="#relative-motion-control">Relative motion Control</a></li>
<li><a href="#force-control">Force Control</a></li>
<li><a href="#inertial-control">Inertial Control</a></li>
<li><a href="#design-constraints-and-control-bandwidth">Design constraints and control bandwidth</a></li>
</ul>
</nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/sensor_fusion/">Sensor Fusion</a>, <a href="/zettels/vibration_isolation/">Vibration Isolation</a></dd>
<dt>Reference</dt>
<dd><sup id="ef30bc07c91e9d46a42198757dc610de"><a href="#tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip" title="Tjepkema, van Dijk \&amp; Soemers, Sensor Fusion for Active Vibration Isolation in Precision Equipment, {Journal of Sound and Vibration}, v(4), 735-749 (2012).">(Tjepkema {\it et al.}, 2012)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Tjepkema, D., Dijk, J. v., &amp; Soemers, H.</dd>
<dt>Year</dt>
<dd>2012</dd>
</dl>
<h2 id="relative-motion-control">Relative motion Control</h2>
<p>Control law: \(f = -G(x-w)\)</p>
<p>\[ \frac{x}{w} = \frac{k+G}{ms^2 + k+G} \]
\[ \frac{x}{F} = \frac{1}{ms^2 + k+G} \]</p>
<h2 id="force-control">Force Control</h2>
<p>Control law: \(f = -G F_a = -G \left(f-k(x-w)\right)\)</p>
<p>\[ \frac{x}{w} = \frac{k}{(1+G)ms^2 + k} \]
\[ \frac{x}{F} = \frac{1+G}{(1+G)ms^2 + k} \]</p>
<h2 id="inertial-control">Inertial Control</h2>
<p>Control law: \(f = -Gx\)</p>
<p>\[ \frac{x}{w} = \frac{k}{ms^2 + k+G} \]
\[ \frac{x}{F} = \frac{1}{ms^2 + k+G} \]</p>
<h2 id="design-constraints-and-control-bandwidth">Design constraints and control bandwidth</h2>
<p>Heavier sensor =&gt; lower noise but it is harder to maintain collocation with the actuator =&gt; that limits the bandwidth.
There is a compromise between sensor noise and the influence of the sensor size on the system&rsquo;s design and on the control bandwidth.</p>
<h1 id="bibliography">Bibliography</h1>
<p><a id="tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip"></a>Tjepkema, D., Dijk, J. v., &amp; Soemers, H., <em>Sensor fusion for active vibration isolation in precision equipment</em>, Journal of Sound and Vibration, <em>331(4)</em>, 735749 (2012). <a href="http://dx.doi.org/10.1016/j.jsv.2011.09.022">http://dx.doi.org/10.1016/j.jsv.2011.09.022</a> <a href="#ef30bc07c91e9d46a42198757dc610de"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/collette11_review_activ_vibrat_isolat_strat/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Review of active vibration isolation strategies</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/collette15_sensor_fusion_method_high_perfor/">
<span class="next-text nav-default">Sensor fusion methods for high performance active vibration isolation systems</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,211 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Nano Active Stabilization System Reference (Jun Wang {\it et al.}, 2012) Author(s) Wang, J., Chen, Y. K., Yuan, Q., Tkachuk, A., Erdonmez, C., Hornberger, B., &amp;amp; Feser, M. Year 2012 Introduction of Markers: That limits the type of samples that is studied
There is a need for markerless nano-tomography =&amp;gt; the key requirement is the precision and stability of the positioning stages.
Passive rotational run-out error system: It uses calibrated metrology disc and capacitive sensors" />
<link rel="canonical" href="/paper/wang12_autom_marker_full_field_hard/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/nano_active_stabilization_system/">Nano Active Stabilization System</a></dd>
<dt>Reference</dt>
<dd><sup id="1bccbe15e35ed02229afbc6528c5057e"><a href="#wang12_autom_marker_full_field_hard" title="Jun Wang, Yu-chen Karen Chen, Qingxi Yuan, Andrei, Tkachuk, Can Erdonmez, Benjamin Hornberger, Michael \&amp; Feser, Automated Markerless Full Field Hard X-Ray Microscopic Tomography At Sub-50 Nm 3-dimension Spatial Resolution, {Applied Physics Letters}, v(14), 143107 (2012).">(Jun Wang {\it et al.}, 2012)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Wang, J., Chen, Y. K., Yuan, Q., Tkachuk, A., Erdonmez, C., Hornberger, B., &amp; Feser, M.</dd>
<dt>Year</dt>
<dd>2012</dd>
</dl>
<p><strong>Introduction of Markers</strong>:
That limits the type of samples that is studied</p>
<p>There is a need for markerless nano-tomography
=&gt; the key requirement is the precision and stability of the positioning stages.</p>
<p><strong>Passive rotational run-out error system</strong>:
It uses calibrated metrology disc and capacitive sensors</p>
<h1 id="bibliography">Bibliography</h1>
<p><a id="wang12_autom_marker_full_field_hard"></a>Wang, J., Chen, Y. K., Yuan, Q., Tkachuk, A., Erdonmez, C., Hornberger, B., &amp; Feser, M., <em>Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution</em>, Applied Physics Letters, <em>100(14)</em>, 143107 (2012). <a href="http://dx.doi.org/10.1063/1.3701579">http://dx.doi.org/10.1063/1.3701579</a> <a href="#1bccbe15e35ed02229afbc6528c5057e"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/geng95_intel_contr_system_multip_degree/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">An intelligent control system for multiple degree-of-freedom vibration isolation</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/ito16_compar_class_high_precis_actuat/">
<span class="next-text nav-default">Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,248 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Investigation on active vibration isolation of a stewart platform with piezoelectric actuators - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Stewart Platforms, Vibration Isolation, Flexible Joints Reference (Wang {\it et al.}, 2016) Author(s) Wang, C., Xie, X., Chen, Y., &amp;amp; Zhang, Z. Year 2016 Model of the Stewart platform:
Struts are treated as flexible beams Payload and the base are treated as flexible plates The FRF synthesis method permits to derive FRFs of the Stewart platform The model is compared with a Finite Element model and is shown to give the same results." />
<link rel="canonical" href="/paper/wang16_inves_activ_vibrat_isolat_stewar/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Investigation on active vibration isolation of a stewart platform with piezoelectric actuators</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/stewart_platforms/">Stewart Platforms</a>, <a href="/zettels/vibration_isolation/">Vibration Isolation</a>, <a href="/zettels/flexible_joints/">Flexible Joints</a></dd>
<dt>Reference</dt>
<dd><sup id="db95fac7cd46c14e2b4f38e8ca4158fe"><a href="#wang16_inves_activ_vibrat_isolat_stewar" title="Wang, Xie, Chen, Zhang \&amp; Zhiyi, Investigation on Active Vibration Isolation of a Stewart Platform With Piezoelectric Actuators, {Journal of Sound and Vibration}, v(), 1-19 (2016).">(Wang {\it et al.}, 2016)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Wang, C., Xie, X., Chen, Y., &amp; Zhang, Z.</dd>
<dt>Year</dt>
<dd>2016</dd>
</dl>
<p><strong>Model of the Stewart platform</strong>:</p>
<ul>
<li>Struts are treated as flexible beams</li>
<li>Payload and the base are treated as flexible plates</li>
<li>The FRF synthesis method permits to derive FRFs of the Stewart platform</li>
</ul>
<p>The model is compared with a Finite Element model and is shown to give the same results.
The proposed model is thus effective.</p>
<p><a id="orgbc70494"></a></p>
<figure>
<img src="/ox-hugo/wang16_stewart_platform.png"
alt="Figure 1: Stewart Platform"/> <figcaption>
<p>Figure 1: Stewart Platform</p>
</figcaption>
</figure>
<p><strong>Control</strong>:
Combines:</p>
<ul>
<li>the FxLMS-based adaptive inverse control =&gt; suppress transmission of periodic vibrations</li>
<li>direct feedback of integrated forces =&gt; dampen vibration of inherent modes and thus reduce random vibrations</li>
</ul>
<p>Force Feedback (Figure <a href="#org4b1fbd9">2</a>).</p>
<ul>
<li>the force sensor is mounted <strong>between the base and the strut</strong></li>
</ul>
<p><a id="org4b1fbd9"></a></p>
<figure>
<img src="/ox-hugo/wang16_force_feedback.png"
alt="Figure 2: Feedback of integrated forces in the platform"/> <figcaption>
<p>Figure 2: Feedback of integrated forces in the platform</p>
</figcaption>
</figure>
<p>Sorts of HAC-LAC control:</p>
<ul>
<li>LAC: Decentralized integral force feedback</li>
<li>HAC: Inertial control using accelerometers. Use of the Jacobian to decouple the motion and then Fx-LMS based adaptive control is used</li>
</ul>
<p><strong>Experimental validation</strong>:</p>
<ul>
<li>All 6 transfer function from actuator force to force sensors are almost the same (gain offset)</li>
<li>Effectiveness of control methods are shown</li>
</ul>
<h1 id="bibliography">Bibliography</h1>
<p><a id="wang16_inves_activ_vibrat_isolat_stewar"></a>Wang, C., Xie, X., Chen, Y., &amp; Zhang, Z., <em>Investigation on active vibration isolation of a stewart platform with piezoelectric actuators</em>, Journal of Sound and Vibration, <em>383()</em>, 119 (2016). <a href="http://dx.doi.org/10.1016/j.jsv.2016.07.021">http://dx.doi.org/10.1016/j.jsv.2016.07.021</a> <a href="#db95fac7cd46c14e2b4f38e8ca4158fe"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/stankevic17_inter_charac_rotat_stages_x_ray_nanot/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Interferometric characterization of rotation stages for x-ray nanotomography</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/gao15_measur_techn_precis_posit/">
<span class="next-text nav-default">Measurement technologies for precision positioning</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,340 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Stewart Platforms, Vibration Isolation, Flexible Joints, Cubic Architecture Reference (Yang {\it et al.}, 2019) Author(s) Yang, X., Wu, H., Chen, B., Kang, S., &amp;amp; Cheng, S. Year 2019 Discusses:
flexible-rigid model of Stewart platform the impact of joint stiffness is compensated using a displacement sensor and a force sensor then the MIMO system is decoupled in modal space and 6 SISO controllers are applied for vibration isolation using force sensors The joint stiffness impose a limitation on the control performance using force sensors as it adds a zero at low frequency in the dynamics." />
<link rel="canonical" href="/paper/yang19_dynam_model_decoup_contr_flexib/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/stewart_platforms/">Stewart Platforms</a>, <a href="/zettels/vibration_isolation/">Vibration Isolation</a>, <a href="/zettels/flexible_joints/">Flexible Joints</a>, <a href="/zettels/cubic_architecture/">Cubic Architecture</a></dd>
<dt>Reference</dt>
<dd><sup id="d39b6222c8dd2baf188d677733c2826c"><a href="#yang19_dynam_model_decoup_contr_flexib" title="Yang, Wu, Chen, Kang, ShengZheng \&amp; Cheng, Dynamic Modeling and Decoupled Control of a Flexible Stewart Platform for Vibration Isolation, {Journal of Sound and Vibration}, v(), 398-412 (2019).">(Yang {\it et al.}, 2019)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Yang, X., Wu, H., Chen, B., Kang, S., &amp; Cheng, S.</dd>
<dt>Year</dt>
<dd>2019</dd>
</dl>
<p><strong>Discusses</strong>:</p>
<ul>
<li>flexible-rigid model of Stewart platform</li>
<li>the impact of joint stiffness is compensated using a displacement sensor and a force sensor</li>
<li>then the MIMO system is decoupled in modal space and 6 SISO controllers are applied for vibration isolation using force sensors</li>
</ul>
<p>The joint stiffness impose a limitation on the control performance using force sensors as it adds a zero at low frequency in the dynamics.
Thus, this stiffness is taken into account in the dynamics and compensated for.</p>
<p><strong>Stewart platform</strong> (Figure <a href="#org936d8f9">1</a>):</p>
<ul>
<li>piezoelectric actuators</li>
<li>flexible joints (Figure <a href="#orgd8c916a">2</a>)</li>
<li>force sensors (used for vibration isolation)</li>
<li>displacement sensors (used to decouple the dynamics)</li>
<li>cubic (even though not said explicitly)</li>
</ul>
<p><a id="org936d8f9"></a></p>
<figure>
<img src="/ox-hugo/yang19_stewart_platform.png"
alt="Figure 1: Stewart Platform"/> <figcaption>
<p>Figure 1: Stewart Platform</p>
</figcaption>
</figure>
<p><a id="orgd8c916a"></a></p>
<figure>
<img src="/ox-hugo/yang19_flexible_joints.png"
alt="Figure 2: Flexible Joints"/> <figcaption>
<p>Figure 2: Flexible Joints</p>
</figcaption>
</figure>
<p>The stiffness of the flexible joints (Figure <a href="#orgd8c916a">2</a>) are computed with an FEM model and shown in Table <a href="#table--tab:yang19-stiffness-flexible-joints">1</a>.</p>
<p><a id="table--tab:yang19-stiffness-flexible-joints"></a></p>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:yang19-stiffness-flexible-joints">Table 1</a></span>:
Stiffness of flexible joints obtained by FEM
</div>
<table>
<thead>
<tr>
<th>\(k_{\theta u},\ k_{\psi u}\)</th>
<th>\(72 Nm/rad\)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\(k_{\theta s}\)</td>
<td>\(51 Nm/rad\)</td>
</tr>
<tr>
<td>\(k_{\psi s}\)</td>
<td>\(62 Nm/rad\)</td>
</tr>
<tr>
<td>\(k_{\gamma s}\)</td>
<td>\(64 Nm/rad\)</td>
</tr>
</tbody>
</table>
<p><strong>Dynamics</strong>:
If the bending and torsional stiffness of the flexible joints are neglected:
\[ M \ddot{x} + C \dot{x} + K x = J^T f \]</p>
<ul>
<li>\(M\) is the mass matrix</li>
<li>\(C\) is the damping matrix</li>
<li>\(K\) is the stiffness matrix</li>
<li>\(x\) is the generalized coordinates, representing the displacement and orientation of the payload plate</li>
<li>\(f\) is the actuator forces</li>
<li>\(J\) is the Jacobian matrix</li>
</ul>
<p>In this paper, the parasitic bending stiffness of the flexible joints are considered:
\[ M \ddot{x} + C \dot{x} + (K + K_e) x = J^T f \]
where \(K_e\) is the stiffness matrix induced by the parasitic stiffness of the flexible joints.</p>
<p>Analytical expression for \(K_e\) are derived in the paper.</p>
<p><strong>Controller Design</strong>:
There is a strong coupling between the input forces and the state variables in the task space.
The traditional modal decoupled control strategy cannot work with the flexible Stewart platform because it is impossible to achieve simultaneous diagonalization of the mass, damped and stiffness matrices.</p>
<p>To make the six-dof system decoupled into six single-dof isolators, a controller based on the leg&rsquo;s force and position feedback is designed.</p>
<blockquote>
<p>The idea is to synthesize the control force that can compensate the parasitic bending and torsional torques of the flexible joints and simultaneously achieve diagonalization of the matrices \(M\), \(C\) and \(K\)</p>
</blockquote>
<p>The force measured by the force sensors are:
\[ y = f - k J x - c J \dot{x} \]
The displacements measured by the position sensors are:
\[ z = [\Delta l_1\ \dots\ \Delta l_6]^T \]</p>
<p>Let&rsquo;s apply the feedback control based on both the force sensor and the position sensor:
\[ f = -H(s) y + (1 + H(s)) K_{el} z \]
where \(K_{el} = J^{-T} K_e J^T\) is the stiffness matrix of the flexible joints expressed in joint space.</p>
<p>We thus obtain:
\[ f = \frac{H(s)}{1 + H(s)} (k J x + c J \dot{x}) + J^{-T} K_e x \]</p>
<p>If we substitute \(f\) in the dynamic equation, we obtain that the parasitic stiffness effect of the flexible joints has been compensated by the actuation forces and the system can now be decoupled in modal space \(x = \Phi u\).
\(\Phi\) is the modal matrix selected such that \(\Phi^T M \Phi = I_6\) and \(k \Phi^T J^T J \Phi = \text{diag}(\omega_1^2\ \dots\ \omega_6^2)\):
\[ s^2 + \frac{1}{1 + H(s)} \frac{c \omega_i^2}{k} s + \frac{1}{1 + H(s)} \omega_i^2 = 0, \quad i = 1,\ \dots,\ 6 \]</p>
<p>The six-dof system is now transformed into a six one-dof system where \(H(s)\) can be designed for control purpose.</p>
<p>In order to apply this control strategy:</p>
<ul>
<li>A force sensor and displacement sensor are need in each strut</li>
<li>The joint stiffness has to be known</li>
<li>The jacobian has to be computed</li>
<li>No information about modal matrix is needed</li>
</ul>
<p>The block diagram of the control strategy is represented in Figure <a href="#orgeb7080e">3</a>.</p>
<p><a id="orgeb7080e"></a></p>
<figure>
<img src="/ox-hugo/yang19_control_arch.png"
alt="Figure 3: Control Architecture used"/> <figcaption>
<p>Figure 3: Control Architecture used</p>
</figcaption>
</figure>
<p>\(H(s)\) is designed as a proportional plus integral compensator:
\[ H(s) = k_p + k_i/s \]</p>
<p>Substituting \(H(s)\) in the equation of motion gives that:</p>
<ul>
<li>an increase of \(k_i\) increase the damping and thus suppress the resonance peaks</li>
<li>an increase of \(k_p\) lowers the resonance frequency and thus the bandwidth of vibration isolation is examped</li>
</ul>
<p><strong>Experimental Validation</strong>:
An external Shaker is used to excite the base and accelerometers are located on the base and mobile platforms to measure their motion.
The results are shown in Figure <a href="#org48c287d">4</a>.
In theory, the vibration performance can be improved, however in practice, increasing the gain causes saturation of the piezoelectric actuators and then the instability occurs.</p>
<p><a id="org48c287d"></a></p>
<figure>
<img src="/ox-hugo/yang19_results.png"
alt="Figure 4: Frequency response of the acceleration ratio between the paylaod and excitation (Transmissibility)"/> <figcaption>
<p>Figure 4: Frequency response of the acceleration ratio between the paylaod and excitation (Transmissibility)</p>
</figcaption>
</figure>
<blockquote>
<p>A model-based controller is then designed based on the legs force and position feedback.
The position feedback compensates the effect of parasitic bending and torsional stiffness of the flexible joints.
The force feedback makes the six-DOF MIMO system decoupled into six SISO subsystems in modal space, where the control gains can be designed and analyzed more effectively and conveniently.
The proportional and integral gains in the sub-controller are used to separately regulate the vibration isolation bandwidth and active damping simultaneously for the six vibration modes.</p>
</blockquote>
<h1 id="bibliography">Bibliography</h1>
<p><a id="yang19_dynam_model_decoup_contr_flexib"></a>Yang, X., Wu, H., Chen, B., Kang, S., &amp; Cheng, S., <em>Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation</em>, Journal of Sound and Vibration, <em>439()</em>, 398412 (2019). <a href="http://dx.doi.org/10.1016/j.jsv.2018.10.007">http://dx.doi.org/10.1016/j.jsv.2018.10.007</a> <a href="#d39b6222c8dd2baf188d677733c2826c"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/schellekens98_desig_precis/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Design for precision: current status and trends</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/jiao18_dynam_model_exper_analy_stewar/">
<span class="next-text nav-default">Dynamic modeling and experimental analyses of stewart platform with flexible hinges</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>

View File

@@ -0,0 +1,222 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Six dof active vibration control using stewart platform with non-cubic configuration - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Stewart Platforms, Vibration Isolation Reference (Zhen Zhang {\it et al.}, 2011) Author(s) Zhang, Z., Liu, J., Mao, J., Guo, Y., &amp;amp; Ma, Y. Year 2011 Non-cubic stewart platform Flexible joints Magnetostrictive actuators Strong coupled motions along different axes Non-cubic architecture =&amp;gt; permits to have larger workspace which was required Structure parameters (radius of plates, length of struts) are determined by optimization of the condition number of the Jacobian matrix Accelerometers for active isolation Adaptive FIR filters for active isolation control" />
<link rel="canonical" href="/paper/zhang11_six_dof/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Six dof active vibration control using stewart platform with non-cubic configuration</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents"></nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/stewart_platforms/">Stewart Platforms</a>, <a href="/zettels/vibration_isolation/">Vibration Isolation</a></dd>
<dt>Reference</dt>
<dd><sup id="a457d4de462d2fe52a1bbb848182b554"><a href="#zhang11_six_dof" title="Zhen Zhang, J Liu, Jq Mao, Yx Guo \&amp; Yh Ma, Six DOF active vibration control using stewart platform with non-cubic configuration, nil, in in: {2011 6th IEEE Conference on Industrial Electronics and
Applications}, edited by (2011)">(Zhen Zhang {\it et al.}, 2011)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Zhang, Z., Liu, J., Mao, J., Guo, Y., &amp; Ma, Y.</dd>
<dt>Year</dt>
<dd>2011</dd>
</dl>
<ul>
<li><strong>Non-cubic</strong> stewart platform</li>
<li><strong>Flexible</strong> joints</li>
<li>Magnetostrictive actuators</li>
<li>Strong coupled motions along different axes</li>
<li>Non-cubic architecture =&gt; permits to have larger workspace which was required</li>
<li>Structure parameters (radius of plates, length of struts) are determined by optimization of the condition number of the Jacobian matrix</li>
<li><strong>Accelerometers</strong> for active isolation</li>
<li>Adaptive FIR filters for active isolation control</li>
</ul>
<p><a id="orge1b0233"></a></p>
<figure>
<img src="/ox-hugo/zhang11_platform.png"
alt="Figure 1: Prototype of the non-cubic stewart platform"/> <figcaption>
<p>Figure 1: Prototype of the non-cubic stewart platform</p>
</figcaption>
</figure>
<h1 id="bibliography">Bibliography</h1>
<p><a id="zhang11_six_dof"></a>Zhang, Z., Liu, J., Mao, J., Guo, Y., &amp; Ma, Y., <em>Six dof active vibration control using stewart platform with non-cubic configuration</em>, In , 2011 6th IEEE Conference on Industrial Electronics and Applications (pp. ) (2011). : . <a href="#a457d4de462d2fe52a1bbb848182b554"></a></p>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/li01_simul_fault_vibrat_isolat_point/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/furqan17_studies_stewar_platf_manip/">
<span class="next-text nav-default">Studies on stewart platform manipulator: a review</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>