digital-brain/public/paper/ito16_compar_class_high_precis_actuat/index.html
2020-06-03 22:43:54 +02:00

285 lines
11 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title>Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation - My digital brain</title>
<meta name="renderer" content="webkit" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<meta http-equiv="Cache-Control" content="no-transform" />
<meta http-equiv="Cache-Control" content="no-siteapp" />
<meta name="theme-color" content="#f8f5ec" />
<meta name="msapplication-navbutton-color" content="#f8f5ec">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="#f8f5ec">
<meta name="author" content="
&mdash;
Thomas Dehaeze
" /><meta name="description" content="Tags Vibration Isolation, Actuators Reference (Shingo Ito &amp;amp; Georg Schitter, 2016) Author(s) Ito, S., &amp;amp; Schitter, G. Year 2016 Classification of high-precision actuators Table 1: Zero/Low and High stiffness actuators Categories Pros Cons Zero stiffness No vibration transmission Large and Heavy Low stiffness High vibration isolation Typically for low load High Stiffness High control bandwidth High vibration transmission Time Delay of Piezoelectric Electronics In this paper, the piezoelectric actuator/electronics adds a time delay which is much higher than the time delay added by the voice coil/electronics." />
<link rel="canonical" href="/paper/ito16_compar_class_high_precis_actuat/" />
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link href="/sass/main.min.47a894bd6354cc46903f62433747958dc936e1c95c28a76ac80319bca9708ed1.css" rel="stylesheet">
</head>
<body>
<div id="mobile-navbar" class="mobile-navbar">
<div class="mobile-header-logo">
<a href="/" class="logo">Digital Brain</a>
</div>
<div class="mobile-navbar-icon">
<span></span>
<span></span>
<span></span>
</div>
</div>
<nav id="mobile-menu" class="mobile-menu slideout-menu">
<ul class="mobile-menu-list">
<a href="/">
<li class="mobile-menu-item">Home</li>
</a><a href="/zettels/">
<li class="mobile-menu-item">Zettels</li>
</a><a href="/book/">
<li class="mobile-menu-item">Books</li>
</a><a href="/paper/">
<li class="mobile-menu-item">Papers</li>
</a><a href="/search/">
<li class="mobile-menu-item">Search</li>
</a>
</ul>
</nav>
<div class="container" id="mobile-panel">
<header id="header" class="header">
<div class="logo-wrapper">
<a href="/" class="logo">Digital Brain</a>
</div>
<nav class="site-navbar">
<ul id="menu" class="menu">
<li class="menu-item">
<a class="menu-item-link" href="/">Home</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/zettels/">Zettels</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/book/">Books</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/paper/">Papers</a>
</li><li class="menu-item">
<a class="menu-item-link" href="/search/">Search</a>
</li>
</ul>
</nav>
</header>
<main id="main" class="main">
<div class="content-wrapper">
<div id="content" class="content">
<article class="post">
<header class="post-header">
<h1 class="post-title">Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation</h1>
</header>
<div class="post-toc" id="post-toc">
<h2 class="post-toc-title">Contents</h2>
<div class="post-toc-content">
<nav id="TableOfContents">
<ul>
<li><a href="#classification-of-high-precision-actuators">Classification of high-precision actuators</a></li>
<li><a href="#time-delay-of-piezoelectric-electronics">Time Delay of Piezoelectric Electronics</a></li>
<li><a href="#definition-of-low-stiffness-and-high-stiffness-actuator">Definition of low-stiffness and high-stiffness actuator</a></li>
<li><a href="#low-stiffness-high-stiffness-characteristics">Low-Stiffness / High-Stiffness characteristics</a></li>
<li><a href="#controller-design">Controller Design</a></li>
<li><a href="#discussion">Discussion</a></li>
</ul>
<ul>
<li><a href="#backlinks">Backlinks</a></li>
</ul>
</nav>
</div>
</div>
<div class="post-content">
<dl>
<dt>Tags</dt>
<dd><a href="/zettels/vibration_isolation/">Vibration Isolation</a>, <a href="/zettels/actuators/">Actuators</a></dd>
<dt>Reference</dt>
<dd><sup id="aad53368e29e8a519e2f63857044fa46"><a href="#ito16_compar_class_high_precis_actuat" title="Shingo Ito \&amp; Georg Schitter, Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation, {IEEE/ASME Transactions on Mechatronics}, v(2), 1169-1178 (2016).">(Shingo Ito &amp; Georg Schitter, 2016)</a></sup></dd>
<dt>Author(s)</dt>
<dd>Ito, S., &amp; Schitter, G.</dd>
<dt>Year</dt>
<dd>2016</dd>
</dl>
<h2 id="classification-of-high-precision-actuators">Classification of high-precision actuators</h2>
<div class="table-caption">
<span class="table-number">Table 1</span>:
Zero/Low and High stiffness actuators
</div>
<table>
<thead>
<tr>
<th><strong>Categories</strong></th>
<th><strong>Pros</strong></th>
<th><strong>Cons</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero stiffness</td>
<td>No vibration transmission</td>
<td>Large and Heavy</td>
</tr>
<tr>
<td>Low stiffness</td>
<td>High vibration isolation</td>
<td>Typically for low load</td>
</tr>
<tr>
<td>High Stiffness</td>
<td>High control bandwidth</td>
<td>High vibration transmission</td>
</tr>
</tbody>
</table>
<h2 id="time-delay-of-piezoelectric-electronics">Time Delay of Piezoelectric Electronics</h2>
<p>In this paper, the piezoelectric actuator/electronics adds a time delay which is much higher than the time delay added by the voice coil/electronics.</p>
<h2 id="definition-of-low-stiffness-and-high-stiffness-actuator">Definition of low-stiffness and high-stiffness actuator</h2>
<ul>
<li><strong>Low Stiffness</strong> actuator is defined as the ones where the transmissibility stays below 0dB at all frequency</li>
<li><strong>High Stiffness</strong> actuator is defined as the ones where the transmissibility goes above 0dB at some frequency</li>
</ul>
<p><a id="org6e18c94"></a></p>
<figure>
<img src="/ox-hugo/ito16_low_high_stiffness_actuators.png"
alt="Figure 1: Definition of low-stiffness and high-stiffness actuator"/> <figcaption>
<p>Figure 1: Definition of low-stiffness and high-stiffness actuator</p>
</figcaption>
</figure>
<h2 id="low-stiffness-high-stiffness-characteristics">Low-Stiffness / High-Stiffness characteristics</h2>
<ul>
<li>The low stiffness actuators achieve smooth transition from active isolation to passive isolation.</li>
<li>The high stiffness actuators can have a gap between the passive and active isolation vibration where the vibrations are amplified in a certain frequency band.</li>
</ul>
<h2 id="controller-design">Controller Design</h2>
<p><a id="orgc911fbe"></a></p>
<figure>
<img src="/ox-hugo/ito16_transmissibility.png"
alt="Figure 2: Obtained transmissibility"/> <figcaption>
<p>Figure 2: Obtained transmissibility</p>
</figcaption>
</figure>
<h2 id="discussion">Discussion</h2>
<p>The stiffness requirement for low-stiffness actuators can be rephrased in the frequency domain as: &ldquo;the cross-over frequency of the sensitivity function of the feedback system must be larger than \(\sqrt{2} \omega_r\) with \(\omega_r\) is the resonant frequency of the uncontrolled system&rdquo;.</p>
<p>In practice, this is difficult to achieve with piezoelectric actuators as their first resonant frequency \(\omega_r\) is <strong>too close to other resonant frequencies to ensure close-loop stability</strong>.
In contrast, the frequency band between the first and the other resonances of Lorentz actuators can be broad by design making them more suitable to construct a low-stiffness actuators.</p>
<h1 id="bibliography">Bibliography</h1>
<p><a id="ito16_compar_class_high_precis_actuat"></a>Ito, S., &amp; Schitter, G., <em>Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation</em>, IEEE/ASME Transactions on Mechatronics, <em>21(2)</em>, 11691178 (2016). <a href="http://dx.doi.org/10.1109/tmech.2015.2478658">http://dx.doi.org/10.1109/tmech.2015.2478658</a> <a href="#aad53368e29e8a519e2f63857044fa46"></a></p>
<h2 id="backlinks">Backlinks</h2>
<ul>
<li><a href="/zettels/actuators/">Actuators</a></li>
</ul>
</div>
<footer class="post-footer">
<nav class="post-nav">
<a class="prev" href="/paper/wang12_autom_marker_full_field_hard/">
<i class="iconfont icon-left"></i>
<span class="prev-text nav-default">Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution</span>
<span class="prev-text nav-mobile">Prev</span>
</a>
<a class="next" href="/paper/bryson93_contr_spacec_aircr/">
<span class="next-text nav-default">Control of spacecraft and aircraft</span>
<span class="next-text nav-mobile">Next</span>
<i class="iconfont icon-right"></i>
</a>
</nav>
</footer>
</article>
</div>
</div>
</main>
<footer id="footer" class="footer">
<div class="social-links">
<a href="mailto:dehaeze.thomas@gmail.com" class="iconfont icon-email" title="email"></a>
<a href="https://github.com/tdehaeze/" class="iconfont icon-github" title="github"></a>
<a href="/index.xml" type="application/rss+xml" class="iconfont icon-rss" title="rss"></a>
</div>
<div class="copyright">
<span class="power-by">
Powered by <a class="hexo-link" href="https://gohugo.io">Hugo</a>
</span>
<span class="copyright-year">
&copy;
2020
<span class="heart">
<i class="iconfont icon-heart"></i>
</span>
<span class="author">Thomas Dehaeze</span>
</span>
</div>
</footer>
<div class="back-to-top" id="back-to-top">
<i class="iconfont icon-up"></i>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/jquery@3.2.1/dist/jquery.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/slideout@1.0.1/dist/slideout.min.js" integrity="sha256-t+zJ/g8/KXIJMjSVQdnibt4dlaDxc9zXr/9oNPeWqdg=" crossorigin="anonymous"></script>
<script type="text/javascript" src="/js/main.4bada4f824623eea2eb7cfd5cf8c1d99c3dd797297e7e8cbc59a41da450bb334.js"></script>
<script type="text/javascript">
window.MathJax = {
loader: {
load: ['[tex]/ams']
},
tex: {
inlineMath: [
['$','$'], ['\\(','\\)']
],
tags: 'ams',
packages: {'[+]': ['ams']},
}
};
</script>
<script async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/3.2.0/fuse.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/jquery.mark.min.js"></script>
<script type="text/javascript" src="/lib/search/search.js"></script>
</body>
</html>