Reworked the tables

This commit is contained in:
Thomas Dehaeze 2020-04-29 14:55:15 +02:00
parent 5e20587e6d
commit 7ad9601cbf

View File

@ -5,14 +5,14 @@ draft = false
+++
Tags
:
: [Inertial Sensors]({{< relref "inertial_sensors" >}})
## Reviews of position sensors {#reviews-of-position-sensors}
- <sup id="0b0b67de6dddc4d28031ab2d3b28cd3d"><a href="#collette12_compar" title="Collette, Janssens, Mokrani, Fueyo-Roza, L, Artoos, Esposito, Fernandez-Carmona, , Guinchard \&amp; Leuxe, Comparison of new absolute displacement sensors, in in: {International Conference on Noise and Vibration Engineering
(ISMA)}, edited by (2012)">(Collette {\it et al.}, 2012)</a></sup>
- <sup id="3fb5b61524290e36d639a4fac65703d0"><a href="#fleming13_review_nanom_resol_posit_sensor" title="Andrew Fleming, A Review of Nanometer Resolution Position Sensors: Operation and Performance, {Sensors and Actuators A: Physical}, v(nil), 106-126 (2013).">(Andrew Fleming, 2013)</a></sup>
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance <sup id="3fb5b61524290e36d639a4fac65703d0"><a href="#fleming13_review_nanom_resol_posit_sensor" title="Andrew Fleming, A Review of Nanometer Resolution Position Sensors: Operation and Performance, {Sensors and Actuators A: Physical}, v(nil), 106-126 (2013).">(Andrew Fleming, 2013)</a></sup> ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
## Relative Position Sensors {#relative-position-sensors}
@ -23,31 +23,31 @@ Tags
Characteristics of relative measurement sensors <a class='org-ref-reference' href="#collette11_review">collette11_review</a>
</div>
| Technology | Frequency | Resolution | Range | T Range |
|----------------|----------------------------|--------------------------|--------------------------|------------------------|
| LVDT | \\(\text{DC}-200\,[Hz]\\) | \\(10\,[nm\ rms]\\) | \\(1-10\,[mm]\\) | \\(-50,100\,[^o C]\\) |
| Eddy current | \\(5\,[kHz]\\) | \\(0.1-100\,[nm\ rms]\\) | \\(0.5-55\,[mm]\\) | \\(-50,100\,[^o C]\\) |
| Capacitive | \\(\text{DC}-100\,[kHz]\\) | \\(0.05-50\,[nm\ rms]\\) | \\(50\,[nm] - 1\,[cm]\\) | \\(-40,100\,[^o C]\\) |
| Interferometer | \\(300\,[kHz]\\) | \\(0.1\,[nm\ rms]\\) | \\(10\,[cm]\\) | \\(-250,100\,[^o C]\\) |
| Encoder | \\(\text{DC}-1\,[MHz]\\) | \\(1\,[nm\ rms]\\) | \\(7-27\,[mm]\\) | \\(0,40\,[^o C]\\) |
| Bragg Fibers | \\(\text{DC}-150\,[Hz]\\) | \\(0.3\,[nm\ rms]\\) | \\(3.5\,[cm]\\) | \\(-30,80\,[^o C]\\) |
| Technology | Frequency | Resolution | Range | T Range |
|----------------|------------|----------------|--------------|-------------|
| LVDT | DC-200 Hz | 10 nm rms | 1-10 mm | -50,100 °C |
| Eddy current | 5 kHz | 0.1-100 nm rms | 0.5-55 mm | -50,100 °C |
| Capacitive | DC-100 kHz | 0.05-50 nm rms | 50 nm - 1 cm | -40,100 °C |
| Interferometer | 300 kHz | 0.1 nm rms | 10 cm | -250,100 °C |
| Encoder | DC-1 MHz | 1 nm rms | 7-27 mm | 0,40 °C |
| Bragg Fibers | DC-150 Hz | 0.3 nm rms | 3.5 cm | -30,80 °C |
<a id="table--tab:summary-position-sensors"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:summary-position-sensors">Table 2</a></span>:
Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of \(100\,\mu m\) and a first order bandwidth of \(1\,kHz\) <a class='org-ref-reference' href="#fleming13_review_nanom_resol_posit_sensor">fleming13_review_nanom_resol_posit_sensor</a> (<a href="fleming13_review_nanom_resol_posit_sensor.html">notes</a>)
Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of \(100 \mu m\) and a first order bandwidth of \(1 kHz\) <a class='org-ref-reference' href="#fleming13_review_nanom_resol_posit_sensor">fleming13_review_nanom_resol_posit_sensor</a>
</div>
| Sensor Type | Range | DNR | Resolution | Max. BW | Accuracy |
|----------------|----------------------------------|---------|------------|----------|-----------|
| Metal foil | \\(10-500\,\mu m\\) | 230 ppm | 23 nm | 1-10 kHz | 1% FSR |
| Piezoresistive | \\(1-500\,\mu m\\) | 5 ppm | 0.5 nm | >100 kHz | 1% FSR |
| Capacitive | \\(10\,\mu m\\) to \\(10\,mm\\) | 24 ppm | 2.4 nm | 100 kHz | 0.1% FSR |
| Electrothermal | \\(10\,\mu m\\) to \\(1\,mm\\) | 100 ppm | 10 nm | 10 kHz | 1% FSR |
| Eddy current | \\(100\,\mu m\\) to \\(80\,mm\\) | 10 ppm | 1 nm | 40 kHz | 0.1% FSR |
| LVDT | \\(0.5-500\,mm\\) | 10 ppm | 5 nm | 1 kHz | 0.25% FSR |
| Interferometer | Meters | | 0.5 nm | >100kHz | 1 ppm FSR |
| Encoder | Meters | | 6 nm | >100kHz | 5 ppm FSR |
| Sensor Type | Range | DNR | Resolution | Max. BW | Accuracy |
|----------------|--------------------------------|---------|------------|----------|-----------|
| Metal foil | \\(10-500 \mu m\\) | 230 ppm | 23 nm | 1-10 kHz | 1% FSR |
| Piezoresistive | \\(1-500 \mu m\\) | 5 ppm | 0.5 nm | >100 kHz | 1% FSR |
| Capacitive | \\(10 \mu m\\) to \\(10 mm\\) | 24 ppm | 2.4 nm | 100 kHz | 0.1% FSR |
| Electrothermal | \\(10 \mu m\\) to \\(1 mm\\) | 100 ppm | 10 nm | 10 kHz | 1% FSR |
| Eddy current | \\(100 \mu m\\) to \\(80 mm\\) | 10 ppm | 1 nm | 40 kHz | 0.1% FSR |
| LVDT | \\(0.5-500 mm\\) | 10 ppm | 5 nm | 1 kHz | 0.25% FSR |
| Interferometer | Meters | | 0.5 nm | >100kHz | 1 ppm FSR |
| Encoder | Meters | | 6 nm | >100kHz | 5 ppm FSR |
### Strain Gauge {#strain-gauge}
@ -102,17 +102,16 @@ Description:
Characteristics of Environmental Units
</div>
| | Temperature (\\(\pm\ ^oC\\)) | Pressure (\\(\pm\ hPa\\)) | Humidity \\(\pm\ \% RH\\) | Wavelength Accuracy (\\(\pm\ \text{ppm}\\)) |
|-----------|------------------------------|---------------------------|---------------------------|---------------------------------------------|
| Attocube | 0.1 | 1 | 2 | 0.5 |
| Renishaw | 0.2 | 1 | 6 | 1 |
| Picoscale | 0.2 | 2 | 2 | 1 |
| | Temperature (\\(\pm\ ^oC\\)) | Pressure (\\(\pm\ hPa\\)) | Humidity \\(\pm\\% RH\\) | Wavelength Accuracy (\\(\pm\ \text{ppm}\\)) |
|-----------|------------------------------|---------------------------|--------------------------|---------------------------------------------|
| Attocube | 0.1 | 1 | 2 | 0.5 |
| Renishaw | 0.2 | 1 | 6 | 1 |
| Picoscale | 0.2 | 2 | 2 | 1 |
Figure [1](#org35ec018) is taken from
<sup id="7658b1219a4458a62ae8c6f51b767542"><a href="#jang17_compen_refrac_index_air_laser" title="Yoon-Soo Jang \&amp; Seung-Woo Kim, Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: a Review, {International Journal of Precision Engineering and
Manufacturing}, v(12), 1881-1890 (2017).">(Yoon-Soo Jang \& Seung-Woo Kim, 2017)</a></sup>.
Manufacturing}, v(12), 1881-1890 (2017).">(Yoon-Soo Jang \& Seung-Woo Kim, 2017)</a></sup>
<a id="org35ec018"></a>
<a id="orge1e204f"></a>
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}