Add notes about sensors/actuators
This commit is contained in:
parent
e5e6f1aa7a
commit
a2a8b3103d
@ -39,22 +39,22 @@ The actuators for FJHs can be divided into two categories:
|
||||
1. soft (voice coil), which employs a spring flexure mount
|
||||
2. hard (piezoceramic or magnetostrictive), which employs a compressive load spring.
|
||||
|
||||
<a id="org7016c5c"></a>
|
||||
<a id="orgb4329bb"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/mcinroy99_general_hexapod.png" caption="Figure 1: A general Stewart Platform" >}}
|
||||
|
||||
Since both actuator types employ force production in parallel with a spring, they can both be modeled as shown in Figure [2](#orga202dc3).
|
||||
Since both actuator types employ force production in parallel with a spring, they can both be modeled as shown in Figure [2](#org4a04030).
|
||||
|
||||
In order to provide low frequency passive vibration isolation, the hard actuators are sometimes placed in series with additional passive springs.
|
||||
|
||||
<a id="orga202dc3"></a>
|
||||
<a id="org4a04030"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/mcinroy99_strut_model.png" caption="Figure 2: The dynamics of the i'th strut. A parallel spring, damper and actuator drives the moving mass of the strut and a payload" >}}
|
||||
|
||||
<a id="table--tab:mcinroy99-strut-model"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:mcinroy99-strut-model">Table 1</a></span>:
|
||||
Definition of quantities on Figure <a href="#orga202dc3">2</a>
|
||||
Definition of quantities on Figure <a href="#org4a04030">2</a>
|
||||
</div>
|
||||
|
||||
| **Symbol** | **Meaning** |
|
||||
@ -75,7 +75,7 @@ It is here supposed that \\(f\_{p\_i}\\) is predominantly in the strut direction
|
||||
This is a good approximation unless the spherical joints and extremely stiff or massive, of high inertia struts are used.
|
||||
This allows to reduce considerably the complexity of the model.
|
||||
|
||||
From Figure [2](#orga202dc3) (b), forces along the strut direction are summed to yield (projected along the strut direction, hence the \\(\hat{u}\_i^T\\) term):
|
||||
From Figure [2](#org4a04030) (b), forces along the strut direction are summed to yield (projected along the strut direction, hence the \\(\hat{u}\_i^T\\) term):
|
||||
|
||||
\begin{equation}
|
||||
m\_i \hat{u}\_i^T \ddot{p}\_i = f\_{m\_i} - f\_{p\_i} - m\_i \hat{u}\_i^Tg - k\_i(l\_i - l\_{r\_i}) - b\_i \dot{l}\_i
|
@ -8,17 +8,7 @@ Tags
|
||||
: [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}})
|
||||
|
||||
Reference
|
||||
: <sup id="651e626e040250ee71a0847aec41b60c"><a class="reference-link" href="#monkhorst04_dynam_error_budget" title="@phdthesis{monkhorst04_dynam_error_budget,
|
||||
author = {Wouter Monkhorst},
|
||||
school = {Delft University},
|
||||
title = {Dynamic Error Budgeting, a design approach},
|
||||
year = 2004,
|
||||
}">@phdthesis{monkhorst04_dynam_error_budget,
|
||||
author = {Wouter Monkhorst},
|
||||
school = {Delft University},
|
||||
title = {Dynamic Error Budgeting, a design approach},
|
||||
year = 2004,
|
||||
}</a></sup>
|
||||
: <sup id="651e626e040250ee71a0847aec41b60c"><a class="reference-link" href="#monkhorst04_dynam_error_budget" title="Wouter Monkhorst, Dynamic Error Budgeting, a design approach (2004).">(Wouter Monkhorst, 2004)</a></sup>
|
||||
|
||||
Author(s)
|
||||
: Monkhorst, W.
|
||||
@ -105,9 +95,9 @@ Find a controller \\(C\_{\mathcal{H}\_2}\\) which minimizes the \\(\mathcal{H}\_
|
||||
|
||||
In order to synthesize an \\(\mathcal{H}\_2\\) controller that will minimize the output error, the total system including disturbances needs to be modeled as a system with zero mean white noise inputs.
|
||||
|
||||
This is done by using weighting filter \\(V\_w\\), of which the output signal has a PSD \\(S\_w(f)\\) when the input is zero mean white noise (Figure [1](#org7f8d04e)).
|
||||
This is done by using weighting filter \\(V\_w\\), of which the output signal has a PSD \\(S\_w(f)\\) when the input is zero mean white noise (Figure [1](#org76ddb2c)).
|
||||
|
||||
<a id="org7f8d04e"></a>
|
||||
<a id="org76ddb2c"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/monkhorst04_weighting_filter.png" caption="Figure 1: The use of a weighting filter \\(V\_w(f)\,[SI]\\) to give the weighted signal \\(\bar{w}(t)\\) a certain PSD \\(S\_w(f)\\)." >}}
|
||||
|
||||
@ -118,23 +108,23 @@ The PSD \\(S\_w(f)\\) of the weighted signal is:
|
||||
Given \\(S\_w(f)\\), \\(V\_w(f)\\) can be obtained using a technique called _spectral factorization_.
|
||||
However, this can be avoided if the modelling of the disturbances is directly done in terms of weighting filters.
|
||||
|
||||
Output weighting filters can also be used to scale different outputs relative to each other (Figure [2](#org4f416df)).
|
||||
Output weighting filters can also be used to scale different outputs relative to each other (Figure [2](#org425ff37)).
|
||||
|
||||
<a id="org4f416df"></a>
|
||||
<a id="org425ff37"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/monkhorst04_general_weighted_plant.png" caption="Figure 2: The open loop system \\(\bar{G}\\) in series with the diagonal input weightin filter \\(V\_w\\) and diagonal output scaling iflter \\(W\_z\\) defining the generalized plant \\(G\\)" >}}
|
||||
|
||||
|
||||
#### Output scaling and the Pareto curve {#output-scaling-and-the-pareto-curve}
|
||||
|
||||
In this research, the outputs of the closed loop system (Figure [3](#orgc347ae6)) are:
|
||||
In this research, the outputs of the closed loop system (Figure [3](#orgba842f3)) are:
|
||||
|
||||
- the performance (error) signal \\(e\\)
|
||||
- the controller output \\(u\\)
|
||||
|
||||
In this way, the designer can analyze how much control effort is used to achieve the performance level at the performance output.
|
||||
|
||||
<a id="orgc347ae6"></a>
|
||||
<a id="orgba842f3"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/monkhorst04_closed_loop_H2.png" caption="Figure 3: The closed loop system with weighting filters included. The system has \\(n\\) disturbance inputs and two outputs: the error \\(e\\) and the control signal \\(u\\). The \\(\mathcal{H}\_2\\) minimized the \\(\mathcal{H}\_2\\) norm of this system." >}}
|
||||
|
||||
|
@ -7,6 +7,11 @@ draft = false
|
||||
Tags
|
||||
:
|
||||
|
||||
Links to specific actuators:
|
||||
|
||||
- [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
||||
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
|
||||
|
||||
|
||||
## How to choose the correct actuator for my application? {#how-to-choose-the-correct-actuator-for-my-application}
|
||||
|
||||
@ -15,57 +20,9 @@ For vibration isolation:
|
||||
- In <sup id="aad53368e29e8a519e2f63857044fa46"><a class="reference-link" href="#ito16_compar_class_high_precis_actuat" title="Shingo Ito \& Georg Schitter, Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation, {IEEE/ASME Transactions on Mechatronics}, v(2), 1169-1178 (2016).">(Shingo Ito \& Georg Schitter, 2016)</a></sup>, the effect of the actuator stiffness on the attainable vibration isolation is studied ([Notes]({{< relref "ito16_compar_class_high_precis_actuat" >}}))
|
||||
|
||||
|
||||
## Piezoelectric {#piezoelectric}
|
||||
|
||||
| Suppliers | Links |
|
||||
|--------------|------------------------------------------------------------------------------------|
|
||||
| Cedrat | [link](http://www.cedrat-technologies.com/) |
|
||||
| PI | [link](https://www.physikinstrumente.com/en/) |
|
||||
| Piezo System | [link](https://www.piezosystem.com/products/piezo%5Factuators/stacktypeactuators/) |
|
||||
| Noliac | [link](http://www.noliac.com/) |
|
||||
| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) |
|
||||
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in <sup id="c823f68dd2a72b9667a61b3c046b4731"><a class="reference-link" href="#fleming10_nanop_system_with_force_feedb" title="Fleming, Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control, {IEEE/ASME Transactions on Mechatronics}, v(3), 433-447 (2010).">(Fleming, 2010)</a></sup> ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
|
||||
|
||||
### Piezoelectric Stack Actuators {#piezoelectric-stack-actuators}
|
||||
|
||||
Typical strain is \\(0.1\%\\).
|
||||
|
||||
|
||||
### Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
|
||||
|
||||
The Amplified Piezo Actuators principle is presented in <sup id="5decd2b31c4a9842b80c58b56f96590a"><a class="reference-link" href="#claeyssen07_amplif_piezoel_actuat" title="Frank Claeyssen, Le Letty, Barillot, \& Sosnicki, Amplified Piezoelectric Actuators: Static \& Dynamic Applications, {Ferroelectrics}, v(1), 3-14 (2007).">(Frank Claeyssen {\it et al.}, 2007)</a></sup>:
|
||||
|
||||
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
|
||||
> The flatter is the actuator, the higher is the amplification.
|
||||
|
||||
A model of an amplified piezoelectric actuator is described in <sup id="849750850d9986ed326e74bd3c448d03"><a class="reference-link" href="#lucinskis16_dynam_charac" title="@misc{lucinskis16_dynam_charac,
|
||||
author = {R. Lucinskis and C. Mangeot},
|
||||
title = {Dynamic Characterization of an amplified piezoelectric
|
||||
actuator},
|
||||
year = 2016,
|
||||
}">(Lucinskis \& Mangeot, 2016)</a></sup>.
|
||||
|
||||
|
||||
## Voice Coil {#voice-coil}
|
||||
|
||||
| Suppliers | Links |
|
||||
|----------------------|----------------------------------------------|
|
||||
| Geeplus | [link](https://www.geeplus.com/) |
|
||||
| Maccon | [link](https://www.maccon.de/en.html) |
|
||||
| TDS PP | [link](https://www.tds-pp.com/en/) |
|
||||
| H2tech | [link](https://www.h2wtech.com/) |
|
||||
| PBA Systems | [link](http://www.pbasystems.com.sg/) |
|
||||
| Celera Motion | [link](https://www.celeramotion.com/) |
|
||||
| Beikimco | [link](http://www.beikimco.com/) |
|
||||
| Electromate | [link](https://www.electromate.com/) |
|
||||
| Magnetic Innovations | [link](https://www.magneticinnovations.com/) |
|
||||
|
||||
|
||||
## Shaker {#shaker}
|
||||
|
||||
| Suppliers | Links |
|
||||
| Manufacturers | Links |
|
||||
|--------------------|---------------------------------------------------------------|
|
||||
| BKSV | [link](https://www.bksv.com/en/products/shakers-and-exciters) |
|
||||
| Vibration Research | [link](https://vibrationresearch.com/shakers/) |
|
||||
@ -83,15 +40,12 @@ A model of an amplified piezoelectric actuator is described in <sup id="84975085
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="ito16_compar_class_high_precis_actuat">Ito, S., & Schitter, G., *Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation*, IEEE/ASME Transactions on Mechatronics, *21(2)*, 1169–1178 (2016). http://dx.doi.org/10.1109/tmech.2015.2478658</a> [↩](#aad53368e29e8a519e2f63857044fa46)
|
||||
|
||||
<a class="bibtex-entry" id="fleming10_nanop_system_with_force_feedb">Fleming, A., *Nanopositioning system with force feedback for high-performance tracking and vibration control*, IEEE/ASME Transactions on Mechatronics, *15(3)*, 433–447 (2010). http://dx.doi.org/10.1109/tmech.2009.2028422</a> [↩](#c823f68dd2a72b9667a61b3c046b4731)
|
||||
|
||||
<a class="bibtex-entry" id="claeyssen07_amplif_piezoel_actuat">Claeyssen, F., Letty, R. L., Barillot, F., & Sosnicki, O., *Amplified piezoelectric actuators: static \& dynamic applications*, Ferroelectrics, *351(1)*, 3–14 (2007). http://dx.doi.org/10.1080/00150190701351865</a> [↩](#5decd2b31c4a9842b80c58b56f96590a)
|
||||
|
||||
<a class="bibtex-entry" id="lucinskis16_dynam_charac">Lucinskis, R., & Mangeot, C. (2016). *Dynamic characterization of an amplified piezoelectric actuator*. Retrieved from [](). .</a> [↩](#849750850d9986ed326e74bd3c448d03)
|
||||
|
||||
<a class="bibtex-entry" id="yedamale03_brush_dc_bldc_motor_fundam">Yedamale, P., *Brushless dc (bldc) motor fundamentals*, Microchip Technology Inc, *20()*, 3–15 (2003). </a> [↩](#d2e68d39d09d7e8e71ff08a6ebd45400)
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation]({{< relref "ito16_compar_class_high_precis_actuat" >}})
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
- [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
||||
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
|
||||
|
41
content/zettels/collocated_control.md
Normal file
41
content/zettels/collocated_control.md
Normal file
@ -0,0 +1,41 @@
|
||||
+++
|
||||
title = "Collocated Control"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Actuators]({{< relref "actuators" >}}), [Force Sensors]({{< relref "force_sensors" >}}), [Position Sensors]({{< relref "position_sensors" >}}), [Inertial Sensors]({{< relref "inertial_sensors" >}})
|
||||
|
||||
|
||||
## Collocated/Dual actuator and sensor {#collocated-dual-actuator-and-sensor}
|
||||
|
||||
According to <sup id="454500a3af67ef66a7a754d1f2e1bd4a"><a class="reference-link" href="#preumont18_vibrat_contr_activ_struc_fourt_edition" title="Andre Preumont, Vibration Control of Active Structures - Fourth Edition, Springer International Publishing (2018).">(Andre Preumont, 2018)</a></sup>:
|
||||
|
||||
> A **collocated** control system is a control system where the actuator and the sensor are attached to the same degree of freedom.
|
||||
>
|
||||
> It is not sufficient to be attached to the same location, but they must also be **dual**, that is a force actuator must be associated with a translation sensor (measuring displacement, velocity, or acceleration), in such a way that the product of the actuator signal and the sensor signal represents the energy (power) exchange between the structure and the control system.
|
||||
|
||||
|
||||
## Nearly Collocated Actuator Sensor Pair {#nearly-collocated-actuator-sensor-pair}
|
||||
|
||||
From Figure [1](#org00adcca), it is clear that at some frequency / for some mode, the actuator and the sensor will not be collocated anymore (here starting with mode 3).
|
||||
|
||||
<a id="org00adcca"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/preumont18_nearly_collocated_schematic.png" caption="Figure 1: Mode shapes for a uniform beam. \\(u\\) and \\(y\\) are not collocated actuator and sensor" >}}
|
||||
|
||||
|
||||
## Piezoelectric Stack as a sensor/actuator pair {#piezoelectric-stack-as-a-sensor-actuator-pair}
|
||||
|
||||
One can use on part of a piezoelectric stack as an actuator and the other part as a sensor.
|
||||
|
||||
At some frequency, the sensor/actuator pair will not be collocated anymore.
|
||||
|
||||
If we want to be collocated up to the highest possible frequency, the sensor part should be made small.
|
||||
Of course, this will reduce the sensibility.
|
||||
|
||||
- [ ] What happens is small pieces of actuators are mixed with small pieces of sensors?
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="preumont18_vibrat_contr_activ_struc_fourt_edition">Preumont, A., *Vibration control of active structures - fourth edition* (2018), : Springer International Publishing.</a> [↩](#454500a3af67ef66a7a754d1f2e1bd4a)
|
@ -8,22 +8,23 @@ Tags
|
||||
:
|
||||
|
||||
|
||||
## Suppliers {#suppliers}
|
||||
|
||||
| | |
|
||||
|-----|---------------------------------------------------------------|
|
||||
| PCB | [link](https://www.pcb.com/products/productfinder.aspx?tx=17) |
|
||||
|
||||
|
||||
## Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor}
|
||||
|
||||
An analysis the dynamics and noise of a piezoelectric force sensor is done in <sup id="c823f68dd2a72b9667a61b3c046b4731"><a href="#fleming10_nanop_system_with_force_feedb" title="Fleming, Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control, {IEEE/ASME Transactions on Mechatronics}, v(3), 433-447 (2010).">(Fleming, 2010)</a></sup> ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
An analysis the dynamics and noise of a piezoelectric force sensor is done in <sup id="c823f68dd2a72b9667a61b3c046b4731"><a class="reference-link" href="#fleming10_nanop_system_with_force_feedb" title="Fleming, Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control, {IEEE/ASME Transactions on Mechatronics}, v(3), 433-447 (2010).">(Fleming, 2010)</a></sup> ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Links |
|
||||
|---------------|---------------------------------------------------------------|
|
||||
| PCB | [link](https://www.pcb.com/products/productfinder.aspx?tx=17) |
|
||||
|
||||
# Bibliography
|
||||
<a id="fleming10_nanop_system_with_force_feedb"></a>Fleming, A., *Nanopositioning system with force feedback for high-performance tracking and vibration control*, IEEE/ASME Transactions on Mechatronics, *15(3)*, 433–447 (2010). http://dx.doi.org/10.1109/tmech.2009.2028422 [↩](#c823f68dd2a72b9667a61b3c046b4731)
|
||||
<a class="bibtex-entry" id="fleming10_nanop_system_with_force_feedb">Fleming, A., *Nanopositioning system with force feedback for high-performance tracking and vibration control*, IEEE/ASME Transactions on Mechatronics, *15(3)*, 433–447 (2010). http://dx.doi.org/10.1109/tmech.2009.2028422</a> [↩](#c823f68dd2a72b9667a61b3c046b4731)
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}})
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
@ -8,14 +8,20 @@ Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
|
||||
## Reviews {#reviews}
|
||||
## Review of Absolute (inertial) Position Sensors {#review-of-absolute--inertial--position-sensors}
|
||||
|
||||
- <sup id="dd5109075933cf543c7eba0979c0ba50"><a href="#collette12_review" title="Collette, Janssens, Fernandez-Carmona, , Artoos, Guinchard, Hauviller \& Preumont, Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement, {Bulletin of the Seismological Society of America}, v(4), 1289-1300 (2012).">(Collette {\it et al.}, 2012)</a></sup>
|
||||
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement <sup id="dd5109075933cf543c7eba0979c0ba50"><a class="reference-link" href="#collette12_review" title="Collette, Janssens, Fernandez-Carmona, , Artoos, Guinchard, Hauviller \& Preumont, Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement, {Bulletin of the Seismological Society of America}, v(4), 1289-1300 (2012).">(Collette {\it et al.}, 2012)</a></sup>
|
||||
- Collette, C. et al., Comparison of new absolute displacement sensors <sup id="0b0b67de6dddc4d28031ab2d3b28cd3d"><a class="reference-link" href="#collette12_compar" title="Collette, Janssens, Mokrani, Fueyo-Roza, L, Artoos, Esposito, Fernandez-Carmona, , Guinchard \& Leuxe, Comparison of new absolute displacement sensors, in in: {International Conference on Noise and Vibration Engineering
|
||||
(ISMA)}, edited by (2012)">(Collette {\it et al.}, 2012)</a></sup>
|
||||
|
||||
<a id="org472a92d"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/collette12_absolute_disp_sensors.png" caption="Figure 1: Dynamic range of several types of inertial sensors; Price versus resolution for several types of inertial sensors" >}}
|
||||
|
||||
|
||||
## Accelerometers {#accelerometers}
|
||||
|
||||
| | |
|
||||
| Manufacturers | Links |
|
||||
|--------------------|---------------------------------------------------------------|
|
||||
| Micromega Dynamics | [link](https://micromega-dynamics.com/products/) |
|
||||
| MMF | [link](https://www.mmf.de/seismic%5Faccelerometers.htm) |
|
||||
@ -25,28 +31,31 @@ Wireless Accelerometers
|
||||
|
||||
- <https://micromega-dynamics.com/products/recovib/miniature-vibration-recorder/>
|
||||
|
||||
<a id="org868d283"></a>
|
||||
<a id="org005935d"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="Figure 1: Characteristics of commercially available accelerometers <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \& Hauviller, Review of sensors for low frequency seismic vibration measurement, cern, (2011).\">(Collette {\it et al.}, 2011)</a></sup>" >}}
|
||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="Figure 2: Characteristics of commercially available accelerometers <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a class=\"reference-link\" href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \& Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">(Collette {\it et al.}, 2011)</a></sup>" >}}
|
||||
|
||||
|
||||
## Geophones {#geophones}
|
||||
|
||||
| | |
|
||||
|----------|----------------------------------------------------------------|
|
||||
| Manufacturers | Links |
|
||||
|---------------|----------------------------------------------------------------|
|
||||
| Sercel | [link](http://www.sercel.com/products/Pages/seismometers.aspx) |
|
||||
| Wilcoxon | [link](https://wilcoxon.com/) |
|
||||
|
||||
<a id="orgbf3a5fe"></a>
|
||||
<a id="orgd64c709"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="Figure 2: Characteristics of commercially available geophones <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \& Hauviller, Review of sensors for low frequency seismic vibration measurement, cern, (2011).\">(Collette {\it et al.}, 2011)</a></sup>" >}}
|
||||
{{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="Figure 3: Characteristics of commercially available geophones <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a class=\"reference-link\" href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \& Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">(Collette {\it et al.}, 2011)</a></sup>" >}}
|
||||
|
||||
# Bibliography
|
||||
<a id="collette12_review"></a>Collette, C., Janssens, S., Fernandez-Carmona, P., Artoos, K., Guinchard, M., Hauviller, C., & Preumont, A., *Review: inertial sensors for low-frequency seismic vibration measurement*, Bulletin of the Seismological Society of America, *102(4)*, 1289–1300 (2012). http://dx.doi.org/10.1785/0120110223 [↩](#dd5109075933cf543c7eba0979c0ba50)
|
||||
<a class="bibtex-entry" id="collette12_review">Collette, C., Janssens, S., Fernandez-Carmona, P., Artoos, K., Guinchard, M., Hauviller, C., & Preumont, A., *Review: inertial sensors for low-frequency seismic vibration measurement*, Bulletin of the Seismological Society of America, *102(4)*, 1289–1300 (2012). http://dx.doi.org/10.1785/0120110223</a> [↩](#dd5109075933cf543c7eba0979c0ba50)
|
||||
|
||||
<a id="collette11_review"></a>Collette, C., Artoos, K., Guinchard, M., Janssens, S., Carmona Fernandez, P., & Hauviller, C., *Review of sensors for low frequency seismic vibration measurement* (2011). [↩](#642a18d86de4e062c6afb0f5f20501c4)
|
||||
<a class="bibtex-entry" id="collette12_compar">Collette, C., Janssens, S., Mokrani, B., Fueyo-Roza, L., Artoos, K., Esposito, M., Fernandez-Carmona, P., …, *Comparison of new absolute displacement sensors*, In , International Conference on Noise and Vibration Engineering (ISMA) (pp. ) (2012). : .</a> [↩](#0b0b67de6dddc4d28031ab2d3b28cd3d)
|
||||
|
||||
<a class="bibtex-entry" id="collette11_review">Collette, C., Artoos, K., Guinchard, M., Janssens, S., Carmona Fernandez, P., & Hauviller, C., *Review of sensors for low frequency seismic vibration measurement* (2011).</a> [↩](#642a18d86de4e062c6afb0f5f20501c4)
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
120
content/zettels/piezoelectric_actuators.md
Normal file
120
content/zettels/piezoelectric_actuators.md
Normal file
@ -0,0 +1,120 @@
|
||||
+++
|
||||
title = "Piezoelectric Actuators"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Actuators]({{< relref "actuators" >}})
|
||||
|
||||
|
||||
## Piezoelectric Stack Actuators {#piezoelectric-stack-actuators}
|
||||
|
||||
|
||||
### Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Links |
|
||||
|---------------------|------------------------------------------------------------------------------------|
|
||||
| Cedrat | [link](http://www.cedrat-technologies.com/) |
|
||||
| PI | [link](https://www.physikinstrumente.com/en/) |
|
||||
| Piezo System | [link](https://www.piezosystem.com/products/piezo%5Factuators/stacktypeactuators/) |
|
||||
| Noliac | [link](http://www.noliac.com/) |
|
||||
| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) |
|
||||
| PiezoDrive | [link](https://www.piezodrive.com/actuators/) |
|
||||
| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/10.html) |
|
||||
| CoreMorrow | [link](http://www.coremorrow.com/en/pro-9-1.html) |
|
||||
|
||||
|
||||
### Model {#model}
|
||||
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in <sup id="c823f68dd2a72b9667a61b3c046b4731"><a class="reference-link" href="#fleming10_nanop_system_with_force_feedb" title="Fleming, Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control, {IEEE/ASME Transactions on Mechatronics}, v(3), 433-447 (2010).">(Fleming, 2010)</a></sup> ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
|
||||
|
||||
### Specifications {#specifications}
|
||||
|
||||
Typical specifications of piezoelectric stack actuators are usually in terms of:
|
||||
|
||||
- Displacement/ Travel range \\([\mu m]\\)
|
||||
- Blocked force \\([N]\\)
|
||||
- Stiffness \\([N/\mu m]\\)
|
||||
- Resolution \\([nm]\\)
|
||||
- Length \\([mm]\\)
|
||||
|
||||
|
||||
#### Displacement and Length {#displacement-and-length}
|
||||
|
||||
The maximum displacement specified is the displacement of the actuator when the maximum voltage is applied and when no load is added.
|
||||
|
||||
Typical strain of Piezoelectric Stack Actuators is \\(0.1\%\\), the free displacement \\(d\\) is then related to the length of piezoelectric stack:
|
||||
\\[ d \approx \frac{L}{1000} \\]
|
||||
|
||||
|
||||
#### Blocked Force {#blocked-force}
|
||||
|
||||
The blocked force is measured by first applying the maximum voltage to the piezoelectric stack without any load.
|
||||
Thus, the piezoelectric stack experiences its maximum displacement.
|
||||
|
||||
A force is then applied to return the actuator to its original length.
|
||||
This force is measured and recorded as the blocking force.
|
||||
|
||||
The blocking force is also the maximum force that can produce the piezoelectric stack in contact with an infinitely stiff environment.
|
||||
|
||||
|
||||
#### Stiffness {#stiffness}
|
||||
|
||||
|
||||
#### Resolution {#resolution}
|
||||
|
||||
The resolution is limited by the noise in the voltage amplified.
|
||||
|
||||
Typical [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}) of voltage amplified is \\(100dB = 10^{5}\\).
|
||||
Thus, for a piezoelectric stack with a displacement \\(L\\), the resolution will be
|
||||
|
||||
\begin{equation}
|
||||
r = \frac{L}{10^5}
|
||||
\end{equation}
|
||||
|
||||
For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolution will be \\(\approx 1\,[nm]\\).
|
||||
|
||||
|
||||
### Piezoelectric Stack experiencing a mass load {#piezoelectric-stack-experiencing-a-mass-load}
|
||||
|
||||
|
||||
### Piezoelectric Stack in contact with a spring load {#piezoelectric-stack-in-contact-with-a-spring-load}
|
||||
|
||||
|
||||
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
|
||||
|
||||
The Amplified Piezo Actuators principle is presented in <sup id="5decd2b31c4a9842b80c58b56f96590a"><a class="reference-link" href="#claeyssen07_amplif_piezoel_actuat" title="Frank Claeyssen, Le Letty, Barillot, \& Sosnicki, Amplified Piezoelectric Actuators: Static \& Dynamic Applications, {Ferroelectrics}, v(1), 3-14 (2007).">(Frank Claeyssen {\it et al.}, 2007)</a></sup>:
|
||||
|
||||
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
|
||||
> The flatter is the actuator, the higher is the amplification.
|
||||
|
||||
A model of an amplified piezoelectric actuator is described in <sup id="849750850d9986ed326e74bd3c448d03"><a class="reference-link" href="#lucinskis16_dynam_charac" title="@misc{lucinskis16_dynam_charac,
|
||||
author = {R. Lucinskis and C. Mangeot},
|
||||
title = {Dynamic Characterization of an amplified piezoelectric
|
||||
actuator},
|
||||
year = 2016,
|
||||
}">(Lucinskis \& Mangeot, 2016)</a></sup>.
|
||||
|
||||
| Manufacturers | Links |
|
||||
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| Cedrat | [link](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) |
|
||||
| PiezoDrive | [link](https://www.piezodrive.com/actuators/ap-series-amplified-piezoelectric-actuators/) |
|
||||
| Dynamic-Structures | [link](https://www.dynamic-structures.com/category/piezo-actuators-stages) |
|
||||
| Thorlabs | [link](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup%5Fid=8700) |
|
||||
| Noliac | [link](http://www.noliac.com/products/actuators/amplified-actuators/) |
|
||||
| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F5.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F3.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5Fmtkk.html) |
|
||||
| CoreMorrow | [link](http://www.coremorrow.com/en/pro-13-1.html) |
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="fleming10_nanop_system_with_force_feedb">Fleming, A., *Nanopositioning system with force feedback for high-performance tracking and vibration control*, IEEE/ASME Transactions on Mechatronics, *15(3)*, 433–447 (2010). http://dx.doi.org/10.1109/tmech.2009.2028422</a> [↩](#c823f68dd2a72b9667a61b3c046b4731)
|
||||
|
||||
<a class="bibtex-entry" id="claeyssen07_amplif_piezoel_actuat">Claeyssen, F., Letty, R. L., Barillot, F., & Sosnicki, O., *Amplified piezoelectric actuators: static \& dynamic applications*, Ferroelectrics, *351(1)*, 3–14 (2007). http://dx.doi.org/10.1080/00150190701351865</a> [↩](#5decd2b31c4a9842b80c58b56f96590a)
|
||||
|
||||
<a class="bibtex-entry" id="lucinskis16_dynam_charac">Lucinskis, R., & Mangeot, C. (2016). *Dynamic characterization of an amplified piezoelectric actuator*. Retrieved from [](). .</a> [↩](#849750850d9986ed326e74bd3c448d03)
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Actuators]({{< relref "actuators" >}})
|
@ -8,20 +8,9 @@ Tags
|
||||
: [Inertial Sensors]({{< relref "inertial_sensors" >}}), [Force Sensors]({{< relref "force_sensors" >}}), [Sensor Fusion]({{< relref "sensor_fusion" >}})
|
||||
|
||||
|
||||
## Absolute Position Sensors {#absolute-position-sensors}
|
||||
## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors}
|
||||
|
||||
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement <sup id="dd5109075933cf543c7eba0979c0ba50"><a href="#collette12_review" title="Collette, Janssens, Fernandez-Carmona, , Artoos, Guinchard, Hauviller \& Preumont, Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement, {Bulletin of the Seismological Society of America}, v(4), 1289-1300 (2012).">(Collette {\it et al.}, 2012)</a></sup>
|
||||
- Collette, C. et al., Comparison of new absolute displacement sensors <sup id="0b0b67de6dddc4d28031ab2d3b28cd3d"><a href="#collette12_compar" title="Collette, Janssens, Mokrani, Fueyo-Roza, L, Artoos, Esposito, Fernandez-Carmona, , Guinchard \& Leuxe, Comparison of new absolute displacement sensors, in in: {International Conference on Noise and Vibration Engineering
|
||||
(ISMA)}, edited by (2012)">(Collette {\it et al.}, 2012)</a></sup>
|
||||
|
||||
<a id="org436fa72"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/collette12_absolute_disp_sensors.png" caption="Figure 1: Dynamic range of several types of inertial sensors; Price versus resolution for several types of inertial sensors" >}}
|
||||
|
||||
|
||||
## Relative Position Sensors {#relative-position-sensors}
|
||||
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance <sup id="3fb5b61524290e36d639a4fac65703d0"><a href="#fleming13_review_nanom_resol_posit_sensor" title="Andrew Fleming, A Review of Nanometer Resolution Position Sensors: Operation and Performance, {Sensors and Actuators A: Physical}, v(nil), 106-126 (2013).">(Andrew Fleming, 2013)</a></sup> ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance <sup id="3fb5b61524290e36d639a4fac65703d0"><a class="reference-link" href="#fleming13_review_nanom_resol_posit_sensor" title="Andrew Fleming, A Review of Nanometer Resolution Position Sensors: Operation and Performance, {Sensors and Actuators A: Physical}, v(nil), 106-126 (2013).">(Andrew Fleming, 2013)</a></sup> ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
|
||||
|
||||
<a id="table--tab:characteristics-relative-sensor"></a>
|
||||
<div class="table-caption">
|
||||
@ -56,17 +45,17 @@ Tags
|
||||
| Encoder | Meters | | 6 nm | >100kHz | 5 ppm FSR |
|
||||
|
||||
|
||||
### Strain Gauge {#strain-gauge}
|
||||
## Strain Gauge {#strain-gauge}
|
||||
|
||||
|
||||
### Capacitive Sensor {#capacitive-sensor}
|
||||
## Capacitive Sensor {#capacitive-sensor}
|
||||
|
||||
Description:
|
||||
|
||||
- <http://www.lionprecision.com/tech-library/technotes/cap-0020-sensor-theory.html>
|
||||
- <https://www.lionprecision.com/comparing-capacitive-and-eddy-current-sensors>
|
||||
|
||||
| | |
|
||||
| Manufacturers | Links |
|
||||
|----------------|-------------------------------------------------------------------------------------------------|
|
||||
| Micro Sense | [link](http://www.microsense.net/products-position-sensors.htm) |
|
||||
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/capacitive-sensor/) |
|
||||
@ -75,26 +64,26 @@ Description:
|
||||
| Lion-Precision | [link](https://www.lionprecision.com/products/capacitive-sensors) |
|
||||
|
||||
|
||||
### Inductive Sensor (Eddy Current) {#inductive-sensor--eddy-current}
|
||||
## Inductive Sensor (Eddy Current) {#inductive-sensor--eddy-current}
|
||||
|
||||
| | |
|
||||
| Manufacturers | Links |
|
||||
|----------------|------------------------------------------------------------------------------------------|
|
||||
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/eddy-current-sensor/) |
|
||||
| Lion Precision | [link](https://www.lionprecision.com/products/eddy-current-sensors) |
|
||||
|
||||
|
||||
### Inductive Sensor (LVDT) {#inductive-sensor--lvdt}
|
||||
## Inductive Sensor (LVDT) {#inductive-sensor--lvdt}
|
||||
|
||||
| | |
|
||||
| Manufacturers | Links |
|
||||
|---------------|--------------------------------------------------------------------------------------------|
|
||||
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/inductive-sensor-lvdt/) |
|
||||
| Keyence | [link](https://www.keyence.eu/products/measure/contact-distance-lvdt/gt2/index.jsp) |
|
||||
|
||||
|
||||
### Interferometers {#interferometers}
|
||||
## Interferometers {#interferometers}
|
||||
|
||||
| | |
|
||||
|----------|----------------------------------------------------------------------------------------------------------|
|
||||
| Manufacturers | Links |
|
||||
|---------------|----------------------------------------------------------------------------------------------------------|
|
||||
| Attocube | [link](http://www.attocube.com/) |
|
||||
| Zygo | [link](https://www.zygo.com/?/met/markets/stageposition/zmi/) |
|
||||
| Smaract | [link](https://www.smaract.com/interferometry) |
|
||||
@ -114,34 +103,31 @@ Description:
|
||||
| Renishaw | 0.2 | 1 | 6 | 1 |
|
||||
| Picoscale | 0.2 | 2 | 2 | 1 |
|
||||
|
||||
<sup id="7658b1219a4458a62ae8c6f51b767542"><a href="#jang17_compen_refrac_index_air_laser" title="Yoon-Soo Jang \& Seung-Woo Kim, Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: a Review, {International Journal of Precision Engineering and
|
||||
<sup id="7658b1219a4458a62ae8c6f51b767542"><a class="reference-link" href="#jang17_compen_refrac_index_air_laser" title="Yoon-Soo Jang \& Seung-Woo Kim, Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: a Review, {International Journal of Precision Engineering and
|
||||
Manufacturing}, v(12), 1881-1890 (2017).">(Yoon-Soo Jang \& Seung-Woo Kim, 2017)</a></sup>
|
||||
|
||||
<a id="orgb68b41e"></a>
|
||||
<a id="org0399c13"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 2: Expected precision of interferometer as a function of measured distance" >}}
|
||||
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
|
||||
|
||||
|
||||
### Fiber Optic Displacement Sensor {#fiber-optic-displacement-sensor}
|
||||
## Fiber Optic Displacement Sensor {#fiber-optic-displacement-sensor}
|
||||
|
||||
| | |
|
||||
|----------|----------------------------------------------------|
|
||||
| Manufacturers | Links |
|
||||
|---------------|----------------------------------------------------|
|
||||
| Unipulse | [link](https://www.unipulse.com/product/atw200-2/) |
|
||||
|
||||
# Bibliography
|
||||
<a id="collette12_review"></a>Collette, C., Janssens, S., Fernandez-Carmona, P., Artoos, K., Guinchard, M., Hauviller, C., & Preumont, A., *Review: inertial sensors for low-frequency seismic vibration measurement*, Bulletin of the Seismological Society of America, *102(4)*, 1289–1300 (2012). http://dx.doi.org/10.1785/0120110223 [↩](#dd5109075933cf543c7eba0979c0ba50)
|
||||
<a class="bibtex-entry" id="fleming13_review_nanom_resol_posit_sensor">Fleming, A. J., *A review of nanometer resolution position sensors: operation and performance*, Sensors and Actuators A: Physical, *190(nil)*, 106–126 (2013). http://dx.doi.org/10.1016/j.sna.2012.10.016</a> [↩](#3fb5b61524290e36d639a4fac65703d0)
|
||||
|
||||
<a id="collette12_compar"></a>Collette, C., Janssens, S., Mokrani, B., Fueyo-Roza, L., Artoos, K., Esposito, M., Fernandez-Carmona, P., …, *Comparison of new absolute displacement sensors*, In , International Conference on Noise and Vibration Engineering (ISMA) (pp. ) (2012). : . [↩](#0b0b67de6dddc4d28031ab2d3b28cd3d)
|
||||
<a class="bibtex-entry" id="collette11_review">Collette, C., Artoos, K., Guinchard, M., Janssens, S., Carmona Fernandez, P., & Hauviller, C., *Review of sensors for low frequency seismic vibration measurement* (2011).</a> [↩](#642a18d86de4e062c6afb0f5f20501c4)
|
||||
|
||||
<a id="fleming13_review_nanom_resol_posit_sensor"></a>Fleming, A. J., *A review of nanometer resolution position sensors: operation and performance*, Sensors and Actuators A: Physical, *190(nil)*, 106–126 (2013). http://dx.doi.org/10.1016/j.sna.2012.10.016 [↩](#3fb5b61524290e36d639a4fac65703d0)
|
||||
|
||||
<a id="collette11_review"></a>Collette, C., Artoos, K., Guinchard, M., Janssens, S., Carmona Fernandez, P., & Hauviller, C., *Review of sensors for low frequency seismic vibration measurement* (2011). [↩](#642a18d86de4e062c6afb0f5f20501c4)
|
||||
|
||||
<a id="jang17_compen_refrac_index_air_laser"></a>Jang, Y., & Kim, S., *Compensation of the refractive index of air in laser interferometer for distance measurement: a review*, International Journal of Precision Engineering and Manufacturing, *18(12)*, 1881–1890 (2017). http://dx.doi.org/10.1007/s12541-017-0217-y [↩](#7658b1219a4458a62ae8c6f51b767542)
|
||||
<a class="bibtex-entry" id="jang17_compen_refrac_index_air_laser">Jang, Y., & Kim, S., *Compensation of the refractive index of air in laser interferometer for distance measurement: a review*, International Journal of Precision Engineering and Manufacturing, *18(12)*, 1881–1890 (2017). http://dx.doi.org/10.1007/s12541-017-0217-y</a> [↩](#7658b1219a4458a62ae8c6f51b767542)
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [A review of nanometer resolution position sensors: operation and performance]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}})
|
||||
- [Measurement technologies for precision positioning]({{< relref "gao15_measur_techn_precis_posit" >}})
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
- [Inertial Sensors]({{< relref "inertial_sensors" >}})
|
||||
|
16
content/zettels/sensors.md
Normal file
16
content/zettels/sensors.md
Normal file
@ -0,0 +1,16 @@
|
||||
+++
|
||||
title = "Sensors"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
Notes about sensors:
|
||||
|
||||
- [Force Sensors]({{< relref "force_sensors" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
- [Inertial Sensors]({{< relref "inertial_sensors" >}})
|
||||
|
||||
<./biblio/references.bib>
|
33
content/zettels/voice_coil_actuators.md
Normal file
33
content/zettels/voice_coil_actuators.md
Normal file
@ -0,0 +1,33 @@
|
||||
+++
|
||||
title = "Voice Coil Actuators"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Actuators]({{< relref "actuators" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Links |
|
||||
|----------------------|----------------------------------------------|
|
||||
| Geeplus | [link](https://www.geeplus.com/) |
|
||||
| Maccon | [link](https://www.maccon.de/en.html) |
|
||||
| TDS PP | [link](https://www.tds-pp.com/en/) |
|
||||
| H2tech | [link](https://www.h2wtech.com/) |
|
||||
| PBA Systems | [link](http://www.pbasystems.com.sg/) |
|
||||
| Celera Motion | [link](https://www.celeramotion.com/) |
|
||||
| Beikimco | [link](http://www.beikimco.com/) |
|
||||
| Electromate | [link](https://www.electromate.com/) |
|
||||
| Magnetic Innovations | [link](https://www.magneticinnovations.com/) |
|
||||
|
||||
|
||||
## Typical Specifications {#typical-specifications}
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
- [Actuators]({{< relref "actuators" >}})
|
BIN
static/ox-hugo/preumont18_nearly_collocated_schematic.png
Normal file
BIN
static/ox-hugo/preumont18_nearly_collocated_schematic.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 42 KiB |
Loading…
Reference in New Issue
Block a user