2020-06-16 18:33:50 +02:00
+++
title = "Voice Coil Actuators"
draft = false
2021-09-29 22:30:09 +02:00
category = "equipment"
2020-06-16 18:33:50 +02:00
+++
Tags
2022-03-15 16:40:48 +01:00
: [Actuators ]({{< relref "actuators.md" >}} )
2020-10-15 21:31:08 +02:00
## Working Principle {#working-principle}
## Typical Specifications {#typical-specifications}
## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator}
2022-03-15 16:40:48 +01:00
(< a href = "#citeproc_bib_item_1" > Schmidt, Schitter, and Rankers 2014< / a > )
2020-10-19 10:13:36 +02:00
2020-10-15 21:31:08 +02:00
## Driving Electronics {#driving-electronics}
2020-06-16 18:33:50 +02:00
2022-03-15 16:40:48 +01:00
As the force is proportional to the current, a [Transconductance Amplifiers ]({{< relref "transconductance_amplifiers.md" >}} ) (voltage-controller current source) is generally used as the driving electronics.
2020-10-19 10:13:36 +02:00
2020-06-16 18:33:50 +02:00
## Manufacturers {#manufacturers}
2023-01-10 15:23:00 +01:00
| Manufacturers | Country |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Akribis ](https://akribis-sys.com/products/voice-coil-motors/avm-series ) | Singapore (european distributors: [Maccon ](https://www.maccon.de/en.html ), [TDS PP ](https://www.tds-pp.com/en/product/linear-voice-coil-actuators-avm/ )) |
| [Thorlabs ](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=14116 ) | |
| [Geeplus ](https://www.geeplus.com/ ) | UK |
| [PBA Systems ](https://www.pbasystems.com.sg/product/circular-voice-coil-motor-cvc/ ) | Singapore |
| [Magnetic Innovations ](https://www.magneticinnovations.com/ ) | Netherlands |
| [H2tech ](https://www.h2wtech.com/ ) | USA |
| [Beikimco ](http://www.beikimco.com/ ) | USA |
| [Monticont ](http://www.moticont.com/ ) | USA |
| [Celera ](https://www.celeramotion.com/applimotion/products/direct-drive-frameless-linear-motors/voice-coil/juke-series-round-body/ ) | |
2022-10-27 17:57:43 +02:00
## Voice Coil Stages {#voice-coil-stages}
2022-11-02 10:01:09 +01:00
| Manufacturers | Country |
|-----------------------------------------------------------------------------------------------------|-------------|
| [TDS PP ](https://www.tds-pp.com/en/product/voice-coil-actuator-stages/ ) | Switzerland |
| [Thorlabs ](https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_ID=14930 ) | USA |
| [H2tech ](https://www.h2wtech.com/category/voice-coil-stages#productInfo1 ) | USA |
| [PBA ](https://www.pbasystems.com.sg/product/circular-voice-coil-motor-cvca/ ) | |
| [Monticont ](http://www.pwr-con.com/ecommerce/default.asp?cat=Linear+Motor+Driven+Positioning+Stage ) | |
2022-10-27 17:57:43 +02:00
2022-11-02 10:01:09 +01:00
## Voice Coil for Vertical payload {#voice-coil-for-vertical-payload}
2022-10-27 17:57:43 +02:00
2022-11-02 11:33:02 +01:00
Let's consider a spring-mass system with a force actuator (Figure [1 ](#figure--fig:voice-coil-vertical-mass-spring )).
2022-11-02 10:01:09 +01:00
Parameters are:
2022-10-27 17:57:43 +02:00
2022-11-02 10:01:09 +01:00
- `m` : the mass payload in [kg]
- `k` : the spring constant in [N/m]
- `Fmax` : the maximum force applied by the voice coil in [N]
2022-10-27 17:57:43 +02:00
2022-11-02 11:33:02 +01:00
< a id = "figure--fig:voice-coil-vertical-mass-spring" > < / a >
{{< figure src = "/ox-hugo/voice_coil_vertical_mass_spring.png" caption = "<span class= \"figure-number \">Figure 1: </span>Mass Spring System" > }}
2022-11-02 10:01:09 +01:00
`Dg` : deflection due to gravity in [m]
`Df` : maximum stroke using the voice coil in [m]
`f0` : the resonance frequency of spring-mass system in [Hz]
\begin{equation}
2 \pi f\_0 = \sqrt{\frac{k}{m}}
\end{equation}
\begin{equation}
D\_g = \frac{m g}{k}
\end{equation}
\begin{equation}
D\_f = \frac{F\_\max}{k}
\end{equation}
2022-11-02 11:31:00 +01:00
### Determine the required voice coil force as a function of the payload's resonance {#determine-the-required-voice-coil-force-as-a-function-of-the-payload-s-resonance}
2022-11-02 10:01:09 +01:00
Let's fix `m` (payload mass) and `Df` (wanted motion induced by the voice coil).
Then, let's vary `f0` and compute the corresponding `Dg` , `Fmax` and `k` .
```matlab
2022-11-02 11:34:25 +01:00
%% Fixed Parameters
g = 9.8; % [m/s^2]
2022-11-02 10:01:09 +01:00
m = 5; % [kg]
Df = 5e-3; % [m]
2022-11-02 11:34:25 +01:00
%% Suspension resonance is varied
2022-11-02 10:01:09 +01:00
f0 = 0.1:0.1:20; % [Hz]
```
```matlab
2022-11-02 11:34:25 +01:00
%% Other parameters are computed
2022-11-02 10:01:09 +01:00
k = m * (2*pi*f0).^2; % [N/m]
Dg = m * g ./ k; % [m]
Fmax = k * Df; % [N]
```
< a id = "figure--fig:voice-coil-force-fct-f0" > < / a >
2022-11-02 11:33:02 +01:00
{{< figure src = "/ox-hugo/voice_coil_force_fct_f0.png" caption = "<span class= \"figure-number \">Figure 2: </span>Required Voice Coil Force as a function of the paylaod resonance and corresponding deflection due to gravity (mass is 5kg, stroke is 5mm)" > }}
2022-11-02 10:01:09 +01:00
2022-11-02 11:31:00 +01:00
### Determine the payload resonance as a function of the wanted stroke {#determine-the-payload-resonance-as-a-function-of-the-wanted-stroke}
2022-11-02 10:01:09 +01:00
Let's fix `m` (payload mass) and `Fmax` (maximum force applied by the Voice coil).
Then, let's vary `Df` and compute the corresponding `Dg` , `f0` and `k` .
```matlab
2022-11-02 11:34:25 +01:00
%% Fixed Parameters
g = 9.8; % [m/s^2]
2022-11-02 10:01:09 +01:00
m = 5; % [kg]
Fmax = 50; % [N]
2022-11-02 11:34:25 +01:00
%% Wanted stroke is varied
2022-11-02 10:01:09 +01:00
Df = 1e-3:1e-4:10e-3; % [m]
```
```matlab
2022-11-02 11:34:25 +01:00
%% Other parameters are computed
2022-11-02 10:01:09 +01:00
k = Fmax./Df; % [N/m]
f0 = sqrt(k/m)/2/pi; % [Hz]
Dg = m * g ./ k; % [m]
```
< a id = "figure--fig:voice-coil-resonance-fct-stroke" > < / a >
2023-01-10 15:23:00 +01:00
{{< figure src = "/ox-hugo/voice_coil_resonance_fct_stroke.png" caption = "<span class= \"figure-number \">Figure 1: </span>Resonance frequency and deflection due to gravity as a function of the wanted stroke (Max voice coil force is 50N and payload mass is 5kg)" > }}
2020-06-16 18:33:50 +02:00
2022-11-02 11:31:00 +01:00
< a id = "figure--fig:voice-coil-stiffness-fct-stroke" > < / a >
2023-01-10 15:23:00 +01:00
{{< figure src = "/ox-hugo/voice_coil_stiffness_fct_stroke.png" caption = "<span class= \"figure-number \">Figure 1: </span>Resonance frequency and deflection due to gravity as a function of the wanted stroke (Max voice coil force is 50N and payload mass is 5kg)" > }}
2022-11-02 11:31:00 +01:00
2020-10-19 10:13:36 +02:00
## Bibliography {#bibliography}
2022-03-15 16:40:48 +01:00
< style > . csl-entry { text-indent : -1.5 em ; margin-left : 1.5 em ; } < / style > < div class = "csl-bib-body" >
< div class = "csl-entry" > < a id = "citeproc_bib_item_1" > < / a > Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. < i > The Design of High Performance Mechatronics - 2nd Revised Edition< / i > . Ios Press.< / div >
< / div >