Update Content - 2020-10-15
This commit is contained in:
parent
2376d7255d
commit
f1cad23157
29
content/zettels/capacitive_sensors.md
Normal file
29
content/zettels/capacitive_sensors.md
Normal file
@ -0,0 +1,29 @@
|
||||
+++
|
||||
title = "Capacitive Sensors"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
Description:
|
||||
|
||||
- <http://www.lionprecision.com/tech-library/technotes/cap-0020-sensor-theory.html>
|
||||
- <https://www.lionprecision.com/comparing-capacitive-and-eddy-current-sensors>
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|----------------|--------------------------------------------------------------------------------------------------|---------|
|
||||
| Micro Sense | [link](http://www.microsense.net/products-position-sensors.htm) | USA |
|
||||
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/capacitive-sensor/) | Germany |
|
||||
| PI | [link](https://www.physikinstrumente.com/en/technology/sensor-technologies/capacitive-sensors/) | Germany |
|
||||
| Unipulse | [link](https://www.unipulse.com/product/ps-ia/) | Japan |
|
||||
| Lion-Precision | [link](https://www.lionprecision.com/products/capacitive-sensors) | USA |
|
||||
| Fogale | [link](http://www.fogale.fr/brochures.html) | USA |
|
||||
| Queensgate | [link](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-sensors) | UK |
|
||||
| Capacitec | [link](https://www.capacitec.com/Displacement-Sensing-Systems) | USA |
|
||||
|
||||
<./biblio/references.bib>
|
21
content/zettels/eddy_current_sensors.md
Normal file
21
content/zettels/eddy_current_sensors.md
Normal file
@ -0,0 +1,21 @@
|
||||
+++
|
||||
title = "Eddy Current Sensors"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|----------------|-------------------------------------------------------------------------------------------|---------|
|
||||
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/eddy-current-sensor/) | Germany |
|
||||
| Lion Precision | [link](https://www.lionprecision.com/products/eddy-current-sensors) | USA |
|
||||
| Cedrat | [link](https://www.cedrat-technologies.com/en/products/sensors/eddy-current-sensors.html) | France |
|
||||
| Kaman | [link](https://www.kamansensors.com/product/smt-9700/) | USA |
|
||||
| Keyence | [link](https://www.keyence.com/ss/products/measure/measurement%5Flibrary/type/inductive/) | USA |
|
||||
|
||||
<./biblio/references.bib>
|
22
content/zettels/encoders.md
Normal file
22
content/zettels/encoders.md
Normal file
@ -0,0 +1,22 @@
|
||||
+++
|
||||
title = "Encoders"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
There are two main types of encoders: optical encoders, and magnetic encoders.
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|----------------|-----------------------------------------------------------------------|---------|
|
||||
| Heidenhain | [link](https://www.heidenhain.com/en%5FUS/products/linear-encoders/) | Germany |
|
||||
| MicroE Systems | [link](https://www.celeramotion.com/microe/products/linear-encoders/) | USA |
|
||||
| Renishaw | [link](https://www.renishaw.com/en/browse-encoder-range--6440) | UK |
|
||||
| Celera Motion | [link](https://www.celeramotion.com/microe/) | USA |
|
||||
|
||||
<./biblio/references.bib>
|
@ -6,14 +6,14 @@ draft = false
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Signal Conditioner]({{< relref "signal_conditioner" >}})
|
||||
- [Sensors]({{< relref "sensors" >}})
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
- [Nanopositioning system with force feedback for high-performance tracking and vibration control]({{< relref "fleming10_nanop_system_with_force_feedb" >}})
|
||||
- [Signal Conditioner]({{< relref "signal_conditioner" >}})
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
: [Signal Conditioner]({{< relref "signal_conditioner" >}}), [Modal Analysis]({{< relref "modal_analysis" >}})
|
||||
|
||||
|
||||
## Piezoelectric Force Sensors {#piezoelectric-force-sensors}
|
||||
@ -21,7 +21,7 @@ Tags
|
||||
|
||||
### Dynamics and Noise of a piezoelectric force sensor {#dynamics-and-noise-of-a-piezoelectric-force-sensor}
|
||||
|
||||
An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#org69854d3)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
An analysis the dynamics and noise of a piezoelectric force sensor is done in ([Fleming 2010](#orga926d58)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
|
||||
|
||||
### Manufacturers {#manufacturers}
|
||||
@ -54,4 +54,4 @@ However, if a charge conditioner is used, the signal will be doubled.
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org69854d3"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<a id="orga926d58"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
@ -5,7 +5,9 @@ draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Modal Analysis]({{< relref "modal_analysis" >}})
|
||||
: [Modal Analysis]({{< relref "modal_analysis" >}}), [Force Sensors]({{< relref "force_sensors" >}})
|
||||
|
||||
And instrumented hammer consist of a regular hammer with a force sensor fixed at its tip.
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
72
content/zettels/interferometers.md
Normal file
72
content/zettels/interferometers.md
Normal file
@ -0,0 +1,72 @@
|
||||
+++
|
||||
title = "Interferometers"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|---------------|----------------------------------------------------------------------------------------------------------|-------------|
|
||||
| Attocube | [link](http://www.attocube.com/) | Germany |
|
||||
| Zygo | [link](https://www.zygo.com/?/met/markets/stageposition/zmi/) | USA |
|
||||
| Smaract | [link](https://www.smaract.com/interferometry) | Germany |
|
||||
| Qutools | [link](https://www.qutools.com/qudis/) | Germany |
|
||||
| Renishaw | [link](https://www.renishaw.com/en/fibre-optic-laser-encoder-products--6594) | UK |
|
||||
| Sios | [link](https://sios-de.com/products/length-measurement/laser-interferometer/) | Germany |
|
||||
| Keysight | [link](https://www.keysight.com/en/pc-1000000393%3Aepsg%3Apgr/laser-heads?nid=-536900395.0&cc=FR&lc=fre) | USA |
|
||||
| Optics11 | [link](https://optics11.com/) | Netherlands |
|
||||
|
||||
|
||||
## Environmental Units {#environmental-units}
|
||||
|
||||
<div class="table-caption">
|
||||
<span class="table-number">Table 1</span>:
|
||||
Characteristics of Environmental Units
|
||||
</div>
|
||||
|
||||
| | Temperature (\\(\pm\ ^oC\\)) | Pressure (\\(\pm\ hPa\\)) | Humidity \\(\pm\\% RH\\) | Wavelength Accuracy (\\(\pm\ \text{ppm}\\)) |
|
||||
|-----------|------------------------------|---------------------------|--------------------------|---------------------------------------------|
|
||||
| Attocube | 0.1 | 1 | 2 | 0.5 |
|
||||
| Renishaw | 0.2 | 1 | 6 | 1 |
|
||||
| Picoscale | 0.2 | 2 | 2 | 1 |
|
||||
|
||||
|
||||
## Interferometer Precision {#interferometer-precision}
|
||||
|
||||
([Jang and Kim 2017](#org95c0093))
|
||||
|
||||
<a id="org69d5980"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
|
||||
|
||||
|
||||
## Sources of uncertainty {#sources-of-uncertainty}
|
||||
|
||||
Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#orgd56bef1)).
|
||||
|
||||
It includes:
|
||||
|
||||
- Laser Source Stability
|
||||
- Variation of refractive index of air, which is dependent of:
|
||||
- Temperature: \\(K\_T \approx 1 ppmK^{-1}\\)
|
||||
- Pressure: \\(K\_P \approx 0.27 ppm hPa^{-1}\\)
|
||||
- Humidity: \\(K\_{HR} \approx 0.01 ppm \% RH^{-1}\\)
|
||||
- These errors can partially be compensated using an environmental unit.
|
||||
- Air turbulence (Figure [2](#org0f5db6f))
|
||||
- Non linearity
|
||||
|
||||
<a id="org0f5db6f"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/interferometers_air_turbulence.png" caption="Figure 2: Effect of air turbulences on measurement stability" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgd56bef1"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>.
|
||||
|
||||
<a id="org95c0093"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
18
content/zettels/linear_variable_differential_transformers.md
Normal file
18
content/zettels/linear_variable_differential_transformers.md
Normal file
@ -0,0 +1,18 @@
|
||||
+++
|
||||
title = "Linear variable differential transformers"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Position Sensors]({{< relref "position_sensors" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|---------------|--------------------------------------------------------------------------------------------|---------|
|
||||
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/inductive-sensor-lvdt/) | Germany |
|
||||
| Keyence | [link](https://www.keyence.eu/products/measure/contact-distance-lvdt/gt2/index.jsp) | USA |
|
||||
|
||||
<./biblio/references.bib>
|
@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Implementation challenges for multivariable control: what you did not learn in school!]({{< relref "garg07_implem_chall_multiv_contr" >}})
|
||||
- [Multivariable control systems: an engineering approach]({{< relref "albertos04_multiv_contr_system" >}})
|
||||
@ -15,4 +15,9 @@ draft = false
|
||||
Tags
|
||||
: [Norms]({{< relref "norms" >}})
|
||||
|
||||
<./biblio/references.bib>
|
||||
A very nice book about Multivariable Control is ([Skogestad and Postlethwaite 2007](#org12cc089))
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org12cc089"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
|
@ -10,7 +10,7 @@ Backlinks:
|
||||
- [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
|
||||
|
||||
Tags
|
||||
: [Actuators]({{< relref "actuators" >}})
|
||||
: [Actuators]({{< relref "actuators" >}}), [Voltage Amplifier]({{< relref "voltage_amplifier" >}})
|
||||
|
||||
|
||||
## Piezoelectric Stack Actuators {#piezoelectric-stack-actuators}
|
||||
@ -36,7 +36,7 @@ Tags
|
||||
|
||||
### Model {#model}
|
||||
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgb44e3bc)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#org43d4aea)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
|
||||
Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel.
|
||||
|
||||
@ -60,14 +60,14 @@ Some manufacturers propose "raw" plate actuators that can be used as actuator /
|
||||
|
||||
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
|
||||
|
||||
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#orgf81e0e2)):
|
||||
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org9dfeb24)):
|
||||
|
||||
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
|
||||
> The flatter is the actuator, the higher is the amplification.
|
||||
|
||||
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#orgda19a07)).
|
||||
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org6e94433)).
|
||||
|
||||
<a id="orgbce0bed"></a>
|
||||
<a id="org7dbc771"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms <sup id=\"d9e8b33774f1e65d16bd79114db8ac64\"><a href=\"#ling16_enhan_mathem_model_displ_amplif\" title=\"Mingxiang Ling, Junyi Cao, Minghua Zeng, Jing Lin, \& Daniel J Inman, Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms, {Smart Materials and Structures}, v(7), 075022 (2016).\">ling16_enhan_mathem_model_displ_amplif</a></sup>" >}}
|
||||
|
||||
@ -159,51 +159,51 @@ For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolut
|
||||
|
||||
### Electrical Capacitance {#electrical-capacitance}
|
||||
|
||||
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#orgda04c00)).
|
||||
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#orgb5bc7ee)).
|
||||
This is due to the fact that voltage amplifier has a limitation on the deliverable current.
|
||||
|
||||
[Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
|
||||
|
||||
<a id="orgda04c00"></a>
|
||||
<a id="orgb5bc7ee"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
|
||||
|
||||
|
||||
## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
|
||||
|
||||
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org6b0f065)).
|
||||
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#orgc323a64)).
|
||||
|
||||
<a id="org6b0f065"></a>
|
||||
<a id="orgc323a64"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}}
|
||||
|
||||
|
||||
## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
|
||||
|
||||
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#org440990f)):
|
||||
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#org1b3fdc7)):
|
||||
|
||||
\begin{equation}
|
||||
\Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
|
||||
\end{equation}
|
||||
|
||||
<a id="org440990f"></a>
|
||||
<a id="org1b3fdc7"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
|
||||
|
||||
For piezo actuators, force and displacement are inversely related (Figure [5](#orgf610cbd)).
|
||||
For piezo actuators, force and displacement are inversely related (Figure [5](#org9677b03)).
|
||||
Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
|
||||
Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
|
||||
When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
|
||||
|
||||
<a id="orgf610cbd"></a>
|
||||
<a id="org9677b03"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}}
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orgf81e0e2"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. <https://doi.org/10.1080/00150190701351865>.
|
||||
<a id="org9dfeb24"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. <https://doi.org/10.1080/00150190701351865>.
|
||||
|
||||
<a id="orgb44e3bc"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<a id="org43d4aea"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
||||
<a id="orgda19a07"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
|
||||
<a id="org6e94433"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
|
||||
|
@ -8,17 +8,32 @@ Backlinks:
|
||||
|
||||
- [A review of nanometer resolution position sensors: operation and performance]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}})
|
||||
- [Measurement technologies for precision positioning]({{< relref "gao15_measur_techn_precis_posit" >}})
|
||||
- [Inertial Sensors]({{< relref "inertial_sensors" >}})
|
||||
- [Sensors]({{< relref "sensors" >}})
|
||||
- [Collocated Control]({{< relref "collocated_control" >}})
|
||||
- [Inertial Sensors]({{< relref "inertial_sensors" >}})
|
||||
- [Capacitive Sensors]({{< relref "capacitive_sensors" >}})
|
||||
- [Encoders]({{< relref "encoders" >}})
|
||||
- [Eddy Current Sensors]({{< relref "eddy_current_sensors" >}})
|
||||
- [Linear variable differential transformers]({{< relref "linear_variable_differential_transformers" >}})
|
||||
- [Interferometers]({{< relref "interferometers" >}})
|
||||
|
||||
Tags
|
||||
: [Inertial Sensors]({{< relref "inertial_sensors" >}}), [Force Sensors]({{< relref "force_sensors" >}}), [Sensor Fusion]({{< relref "sensor_fusion" >}}), [Signal Conditioner]({{< relref "signal_conditioner" >}}), [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
|
||||
|
||||
|
||||
## Types of Positioning sensors {#types-of-positioning-sensors}
|
||||
|
||||
High precision positioning sensors include:
|
||||
|
||||
- [Interferometers]({{< relref "interferometers" >}})
|
||||
- [Capacitive Sensors]({{< relref "capacitive_sensors" >}})
|
||||
- [LVDT]({{< relref "linear_variable_differential_transformers" >}})
|
||||
- [Eddy Current Sensors]({{< relref "eddy_current_sensors" >}})
|
||||
|
||||
|
||||
## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors}
|
||||
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#org81e91f9)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
|
||||
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#orga8fba50)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
|
||||
|
||||
<a id="table--tab:characteristics-relative-sensor"></a>
|
||||
<div class="table-caption">
|
||||
@ -55,87 +70,6 @@ Tags
|
||||
Capacitive Sensors and Eddy-Current sensors are compare [here](https://www.lionprecision.com/comparing-capacitive-and-eddy-current-sensors/).
|
||||
|
||||
|
||||
## Capacitive Sensor {#capacitive-sensor}
|
||||
|
||||
Description:
|
||||
|
||||
- <http://www.lionprecision.com/tech-library/technotes/cap-0020-sensor-theory.html>
|
||||
- <https://www.lionprecision.com/comparing-capacitive-and-eddy-current-sensors>
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|----------------|--------------------------------------------------------------------------------------------------|---------|
|
||||
| Micro Sense | [link](http://www.microsense.net/products-position-sensors.htm) | USA |
|
||||
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/capacitive-sensor/) | Germany |
|
||||
| PI | [link](https://www.physikinstrumente.com/en/technology/sensor-technologies/capacitive-sensors/) | Germany |
|
||||
| Unipulse | [link](https://www.unipulse.com/product/ps-ia/) | Japan |
|
||||
| Lion-Precision | [link](https://www.lionprecision.com/products/capacitive-sensors) | USA |
|
||||
| Fogale | [link](http://www.fogale.fr/brochures.html) | USA |
|
||||
| Queensgate | [link](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-sensors) | UK |
|
||||
| Capacitec | [link](https://www.capacitec.com/Displacement-Sensing-Systems) | USA |
|
||||
|
||||
|
||||
## Inductive Sensor (Eddy Current) {#inductive-sensor--eddy-current}
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|----------------|-------------------------------------------------------------------------------------------|---------|
|
||||
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/eddy-current-sensor/) | Germany |
|
||||
| Lion Precision | [link](https://www.lionprecision.com/products/eddy-current-sensors) | USA |
|
||||
| Cedrat | [link](https://www.cedrat-technologies.com/en/products/sensors/eddy-current-sensors.html) | France |
|
||||
| Kaman | [link](https://www.kamansensors.com/product/smt-9700/) | USA |
|
||||
| Keyence | [link](https://www.keyence.com/ss/products/measure/measurement%5Flibrary/type/inductive/) | USA |
|
||||
|
||||
|
||||
## Inductive Sensor (LVDT) {#inductive-sensor--lvdt}
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|---------------|--------------------------------------------------------------------------------------------|---------|
|
||||
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/inductive-sensor-lvdt/) | Germany |
|
||||
| Keyence | [link](https://www.keyence.eu/products/measure/contact-distance-lvdt/gt2/index.jsp) | USA |
|
||||
|
||||
|
||||
## Interferometers {#interferometers}
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|---------------|----------------------------------------------------------------------------------------------------------|-------------|
|
||||
| Attocube | [link](http://www.attocube.com/) | Germany |
|
||||
| Zygo | [link](https://www.zygo.com/?/met/markets/stageposition/zmi/) | USA |
|
||||
| Smaract | [link](https://www.smaract.com/interferometry) | Germany |
|
||||
| Qutools | [link](https://www.qutools.com/qudis/) | Germany |
|
||||
| Renishaw | [link](https://www.renishaw.com/en/fibre-optic-laser-encoder-products--6594) | UK |
|
||||
| Sios | [link](https://sios-de.com/products/length-measurement/laser-interferometer/) | Germany |
|
||||
| Keysight | [link](https://www.keysight.com/en/pc-1000000393%3Aepsg%3Apgr/laser-heads?nid=-536900395.0&cc=FR&lc=fre) | USA |
|
||||
| Optics11 | [link](https://optics11.com/) | Netherlands |
|
||||
|
||||
<div class="table-caption">
|
||||
<span class="table-number">Table 3</span>:
|
||||
Characteristics of Environmental Units
|
||||
</div>
|
||||
|
||||
| | Temperature (\\(\pm\ ^oC\\)) | Pressure (\\(\pm\ hPa\\)) | Humidity \\(\pm\\% RH\\) | Wavelength Accuracy (\\(\pm\ \text{ppm}\\)) |
|
||||
|-----------|------------------------------|---------------------------|--------------------------|---------------------------------------------|
|
||||
| Attocube | 0.1 | 1 | 2 | 0.5 |
|
||||
| Renishaw | 0.2 | 1 | 6 | 1 |
|
||||
| Picoscale | 0.2 | 2 | 2 | 1 |
|
||||
|
||||
([Jang and Kim 2017](#org64791e2))
|
||||
|
||||
<a id="org75192f1"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
|
||||
|
||||
|
||||
## Linear Encoders {#linear-encoders}
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|----------------|-----------------------------------------------------------------------|---------|
|
||||
| Heidenhain | [link](https://www.heidenhain.com/en%5FUS/products/linear-encoders/) | Germany |
|
||||
| MicroE Systems | [link](https://www.celeramotion.com/microe/products/linear-encoders/) | USA |
|
||||
| Renishaw | [link](https://www.renishaw.com/en/browse-encoder-range--6440) | UK |
|
||||
| Celera Motion | [link](https://www.celeramotion.com/microe/) | USA |
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org81e91f9"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. <https://doi.org/10.1016/j.sna.2012.10.016>.
|
||||
|
||||
<a id="org64791e2"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):1881–90. <https://doi.org/10.1007/s12541-017-0217-y>.
|
||||
<a id="orga8fba50"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):106–26. <https://doi.org/10.1016/j.sna.2012.10.016>.
|
||||
|
@ -4,7 +4,7 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
|
||||
- [Multivariable feedback control: analysis and design]({{< relref "skogestad07_multiv_feedb_contr" >}})
|
||||
@ -16,4 +16,39 @@ draft = false
|
||||
Tags
|
||||
:
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
## Here are my favorite books {#here-are-my-favorite-books}
|
||||
|
||||
([Steinbuch and Oomen 2016](#org9c65473))
|
||||
([Taghirad 2013](#orgcd6d01b))
|
||||
([Lurie 2012](#org6d15976))
|
||||
([Skogestad and Postlethwaite 2007](#org19459a0))
|
||||
([Schmidt, Schitter, and Rankers 2014](#org44678d0))
|
||||
([Preumont 2018](#org0fc3a2c))
|
||||
([Leach 2014](#orge863e61))
|
||||
([Ewins 2000](#org5455809))
|
||||
([Leach and Smith 2018](#org3c0b64d))
|
||||
([Horowitz 2015](#org6083f7f))
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org5455809"></a>Ewins, DJ. 2000. _Modal Testing: Theory, Practice and Application_. _Research Studies Pre, 2nd Ed., ISBN-13_. Baldock, Hertfordshire, England Philadelphia, PA: Wiley-Blackwell.
|
||||
|
||||
<a id="org6083f7f"></a>Horowitz, Paul. 2015. _The Art of Electronics - Third Edition_. New York, NY, USA: Cambridge University Press.
|
||||
|
||||
<a id="orge863e61"></a>Leach, Richard. 2014. _Fundamental Principles of Engineering Nanometrology_. Elsevier. <https://doi.org/10.1016/c2012-0-06010-3>.
|
||||
|
||||
<a id="org3c0b64d"></a>Leach, Richard, and Stuart T. Smith. 2018. _Basics of Precision Engineering - 1st Edition_. CRC Press.
|
||||
|
||||
<a id="org6d15976"></a>Lurie, B. J. 2012. _Classical Feedback Control : with MATLAB and Simulink_. Boca Raton, FL: CRC Press.
|
||||
|
||||
<a id="org0fc3a2c"></a>Preumont, Andre. 2018. _Vibration Control of Active Structures - Fourth Edition_. Solid Mechanics and Its Applications. Springer International Publishing. <https://doi.org/10.1007/978-3-319-72296-2>.
|
||||
|
||||
<a id="org44678d0"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
|
||||
<a id="org19459a0"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
|
||||
|
||||
<a id="org9c65473"></a>Steinbuch, Maarten, and Tom Oomen. 2016. “Model-Based Control for High-Tech Mechatronics Systems.” CRC Press/Taylor & Francis.
|
||||
|
||||
<a id="orgcd6d01b"></a>Taghirad, Hamid. 2013. _Parallel Robots : Mechanics and Control_. Boca Raton, FL: CRC Press.
|
||||
|
@ -4,12 +4,12 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
### Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Matlab]({{< relref "matlab" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
: [Matlab]({{< relref "matlab" >}})
|
||||
|
||||
|
||||
## Useful Key Bindings {#useful-key-bindings}
|
||||
|
@ -9,7 +9,7 @@ Backlinks:
|
||||
- [Rotation Stage]({{< relref "rotation_stage" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
: [Rotation Stage]({{< relref "rotation_stage" >}})
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
@ -4,11 +4,11 @@ author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
Backlinks:
|
||||
|
||||
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
: [Modal Analysis]({{< relref "modal_analysis" >}})
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
23
content/zettels/trainings.md
Normal file
23
content/zettels/trainings.md
Normal file
@ -0,0 +1,23 @@
|
||||
+++
|
||||
title = "Trainings"
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
Mechatronics:
|
||||
|
||||
- [ECP2](http://www.ecp2.eu/)
|
||||
- [DSPE](https://www.dspe.nl/education/list-of-certified-courses/)
|
||||
- [Mechatronics Academy](http://www.mechatronics-academy.nl/)
|
||||
- [High Tech Institute](https://www.hightechinstitute.nl/courses/?labelID=1384)
|
||||
- [Mikrocentrum](https://mikrocentrum.nl/en/courses/overview/)
|
||||
- [NPL](https://training.npl.co.uk/)
|
||||
|
||||
Matlab:
|
||||
|
||||
- [Mathworks](https://www.mathworks.com/training-schedule/)
|
||||
|
||||
<./biblio/references.bib>
|
@ -11,6 +11,7 @@ Backlinks:
|
||||
- [Investigation on active vibration isolation of a stewart platform with piezoelectric actuators]({{< relref "wang16_inves_activ_vibrat_isolat_stewar" >}})
|
||||
- [Active isolation and damping of vibrations via stewart platform]({{< relref "hanieh03_activ_stewar" >}})
|
||||
- [Modeling and control of vibration in mechanical systems]({{< relref "du10_model_contr_vibrat_mechan_system" >}})
|
||||
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
|
||||
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
|
||||
- [Sensor fusion for active vibration isolation in precision equipment]({{< relref "tjepkema12_sensor_fusion_activ_vibrat_isolat_precis_equip" >}})
|
||||
- [An intelligent control system for multiple degree-of-freedom vibration isolation]({{< relref "geng95_intel_contr_system_multip_degree" >}})
|
||||
@ -26,7 +27,6 @@ Backlinks:
|
||||
- [Sensors and control of a space-based six-axis vibration isolation system]({{< relref "hauge04_sensor_contr_space_based_six" >}})
|
||||
- [An exploration of active hard mount vibration isolation for precision equipment]({{< relref "poel10_explor_activ_hard_mount_vibrat" >}})
|
||||
- [Sensor fusion methods for high performance active vibration isolation systems]({{< relref "collette15_sensor_fusion_method_high_perfor" >}})
|
||||
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
|
||||
|
||||
Tags
|
||||
:
|
||||
|
@ -11,7 +11,19 @@ Backlinks:
|
||||
- [Current Amplifier]({{< relref "current_amplifier" >}})
|
||||
|
||||
Tags
|
||||
: [Actuators]({{< relref "actuators" >}})
|
||||
: [Actuators]({{< relref "actuators" >}}), [Current Amplifier]({{< relref "current_amplifier" >}})
|
||||
|
||||
|
||||
## Working Principle {#working-principle}
|
||||
|
||||
|
||||
## Typical Specifications {#typical-specifications}
|
||||
|
||||
|
||||
## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator}
|
||||
|
||||
|
||||
## Driving Electronics {#driving-electronics}
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
@ -29,10 +41,4 @@ Tags
|
||||
| Magnetic Innovations | [link](https://www.magneticinnovations.com/) | Netherlands |
|
||||
| Monticont | [link](http://www.moticont.com/) | USA |
|
||||
|
||||
|
||||
## Typical Specifications {#typical-specifications}
|
||||
|
||||
|
||||
## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator}
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
BIN
static/ox-hugo/interferometers_air_turbulence.png
Normal file
BIN
static/ox-hugo/interferometers_air_turbulence.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 292 KiB |
Loading…
Reference in New Issue
Block a user