Update Content - 2020-10-19
This commit is contained in:
parent
c1dfe9fdbb
commit
ca3fcb0b9d
31
content/zettels/charge_amplifiers.md
Normal file
31
content/zettels/charge_amplifiers.md
Normal file
@ -0,0 +1,31 @@
|
||||
+++
|
||||
title = "Charge Amplifiers"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Electronics]({{< relref "electronics" >}})
|
||||
|
||||
|
||||
## Description {#description}
|
||||
|
||||
A charge amplifier outputs a voltage proportional to the charge generated by a sensor connected to its inputs.
|
||||
|
||||
This can be typically used to interface with piezoelectric sensors.
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|
|
||||
| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | USA |
|
||||
| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany |
|
||||
| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
|
||||
| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
|
||||
| DJB | [link](https://www.djbinstruments.com/products/instrumentation/view/9-Channel-Charge-Voltage-Amplifier-IEPE-Signal-Conditioning-Rack-Mounted) | UK |
|
||||
| MTI Instruments | [link](https://www.mtiinstruments.com/products/turbine-balancing-vibration-analysis/charge-amplifiers/ca1800/) | USA |
|
||||
| Sinocera | [link](http://www.china-yec.net/instruments/signal-conditioner/multi-channels-charge-amplifier.html) | China |
|
||||
| L-Card | [link](https://en.lcard.ru/products/accesories/le-41) | Rusia |
|
||||
|
||||
<./biblio/references.bib>
|
15
content/zettels/non_linear_control.md
Normal file
15
content/zettels/non_linear_control.md
Normal file
@ -0,0 +1,15 @@
|
||||
+++
|
||||
title = "Non Linear Control"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Resources {#resources}
|
||||
|
||||
- [Slotine Lectures on Nonlinear Systems](http://web.mit.edu/nsl/www/videos/lectures.html)
|
||||
|
||||
<./biblio/references.bib>
|
@ -36,7 +36,7 @@ Tags
|
||||
|
||||
### Model {#model}
|
||||
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#org340217c)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgcec2c91)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
|
||||
Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel.
|
||||
|
||||
@ -60,14 +60,14 @@ Some manufacturers propose "raw" plate actuators that can be used as actuator /
|
||||
|
||||
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
|
||||
|
||||
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#orge216fed)):
|
||||
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org5001506)):
|
||||
|
||||
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
|
||||
> The flatter is the actuator, the higher is the amplification.
|
||||
|
||||
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org58c76c8)).
|
||||
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org3149aa9)).
|
||||
|
||||
<a id="org149ff7f"></a>
|
||||
<a id="org9697be4"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms <sup id=\"d9e8b33774f1e65d16bd79114db8ac64\"><a href=\"#ling16_enhan_mathem_model_displ_amplif\" title=\"Mingxiang Ling, Junyi Cao, Minghua Zeng, Jing Lin, \& Daniel J Inman, Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms, {Smart Materials and Structures}, v(7), 075022 (2016).\">ling16_enhan_mathem_model_displ_amplif</a></sup>" >}}
|
||||
|
||||
@ -159,51 +159,56 @@ For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolut
|
||||
|
||||
### Electrical Capacitance {#electrical-capacitance}
|
||||
|
||||
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org3fa87dc)).
|
||||
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#orgd7dbc72)).
|
||||
This is due to the fact that voltage amplifier has a limitation on the deliverable current.
|
||||
|
||||
[Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
|
||||
|
||||
<a id="org3fa87dc"></a>
|
||||
<a id="orgd7dbc72"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
|
||||
|
||||
|
||||
## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
|
||||
|
||||
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org8acd580)).
|
||||
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org8d01bc7)).
|
||||
|
||||
<a id="org8acd580"></a>
|
||||
<a id="org8d01bc7"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}}
|
||||
|
||||
|
||||
## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
|
||||
|
||||
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#org2781d4a)):
|
||||
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgef5702a)):
|
||||
|
||||
\begin{equation}
|
||||
\Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
|
||||
\end{equation}
|
||||
|
||||
<a id="org2781d4a"></a>
|
||||
<a id="orgef5702a"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
|
||||
|
||||
For piezo actuators, force and displacement are inversely related (Figure [5](#org79cc909)).
|
||||
For piezo actuators, force and displacement are inversely related (Figure [5](#orgb3c806e)).
|
||||
Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
|
||||
Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
|
||||
When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
|
||||
|
||||
<a id="org79cc909"></a>
|
||||
<a id="orgb3c806e"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}}
|
||||
|
||||
|
||||
## Driving Electronics {#driving-electronics}
|
||||
|
||||
Piezoelectric actuators can be driven either using a voltage to charge converter or a [Voltage Amplifier]({{< relref "voltage_amplifier" >}}).
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="orge216fed"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. <https://doi.org/10.1080/00150190701351865>.
|
||||
<a id="org5001506"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. <https://doi.org/10.1080/00150190701351865>.
|
||||
|
||||
<a id="org340217c"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
<a id="orgcec2c91"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. <https://doi.org/10.1109/tmech.2009.2028422>.
|
||||
|
||||
<a id="org58c76c8"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
|
||||
<a id="org3149aa9"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”
|
||||
|
@ -6,18 +6,19 @@ draft = false
|
||||
|
||||
Backlinks:
|
||||
|
||||
- [Force Sensors]({{< relref "force_sensors" >}})
|
||||
- [Position Sensors]({{< relref "position_sensors" >}})
|
||||
- [Force Sensors]({{< relref "force_sensors" >}})
|
||||
|
||||
Tags
|
||||
: [Force Sensors]({{< relref "force_sensors" >}}), [Sensors]({{< relref "sensors" >}}), [Electronics]({{< relref "electronics" >}})
|
||||
: [Sensors]({{< relref "sensors" >}}), [Electronics]({{< relref "electronics" >}})
|
||||
|
||||
Most sensors needs some signal conditioner electronics before digitize the signal.
|
||||
Few examples are:
|
||||
|
||||
- Piezoelectric force sensors
|
||||
- Geophone
|
||||
- Thermocouple, ...
|
||||
- Photodiode
|
||||
- Thermocouple
|
||||
|
||||
The signal conditioning electronics can have different functions:
|
||||
|
||||
@ -27,43 +28,10 @@ The signal conditioning electronics can have different functions:
|
||||
- Excitation
|
||||
- Linearization
|
||||
|
||||
Depending on the electrical quantity that is meaningful for the measurement, different types of amplifiers are used:
|
||||
|
||||
## Charge Amplifier {#charge-amplifier}
|
||||
|
||||
This can be used to interface with:
|
||||
|
||||
- piezoelectric sensors
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|
|
||||
| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | USA |
|
||||
| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany |
|
||||
| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
|
||||
| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
|
||||
| DJB | [link](https://www.djbinstruments.com/products/instrumentation/view/9-Channel-Charge-Voltage-Amplifier-IEPE-Signal-Conditioning-Rack-Mounted) | UK |
|
||||
| MTI Instruments | [link](https://www.mtiinstruments.com/products/turbine-balancing-vibration-analysis/charge-amplifiers/ca1800/) | USA |
|
||||
| Sinocera | [link](http://www.china-yec.net/instruments/signal-conditioner/multi-channels-charge-amplifier.html) | China |
|
||||
| L-Card | [link](https://en.lcard.ru/products/accesories/le-41) | Rusia |
|
||||
|
||||
|
||||
## Voltage Amplifier {#voltage-amplifier}
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|---------------|-----------------------------------------------------------------------------------|---------|
|
||||
| Femto | [link](https://www.femto.de/en/products/voltage-amplifiers.html) | Germany |
|
||||
| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
|
||||
| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
|
||||
|
||||
|
||||
## Current Amplifier {#current-amplifier}
|
||||
|
||||
This can be used to interface with:
|
||||
|
||||
- photodiodes
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|---------------|------------------------------------------------------------------------------------------------------|---------|
|
||||
| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) | Germany |
|
||||
| FMB Oxford | [link](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK |
|
||||
- Current to Voltage ([Transimpedance Amplifiers]({{< relref "transimpedance_amplifiers" >}}))
|
||||
- Charge to Voltage ([Charge Amplifiers]({{< relref "charge_amplifiers" >}}))
|
||||
- Voltage to Voltage ([Voltage Amplifier]({{< relref "voltage_amplifier" >}}))
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
@ -1,103 +0,0 @@
|
||||
+++
|
||||
title = "Test File"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
> This is a quote!
|
||||
|
||||
```matlab
|
||||
a = 2;
|
||||
figure;
|
||||
```
|
||||
|
||||
<div class="important">
|
||||
<div></div>
|
||||
|
||||
This is an important part of the text.
|
||||
|
||||
</div>
|
||||
|
||||
See Eq. [eq:test1](#eq:test1) and [eq:test2](#eq:test2).
|
||||
|
||||
\begin{equation}
|
||||
a = 1
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
a = 2 \label{eq:test2}
|
||||
\end{equation}
|
||||
|
||||
Also look at [1](#org7280632) \eqref{eq:test2}.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
||||
|
||||
Some text.
|
@ -1,5 +1,5 @@
|
||||
+++
|
||||
title = "Current Amplifier"
|
||||
title = "Transconductance Amplifiers"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
@ -12,10 +12,14 @@ Tags
|
||||
: [Electronics]({{< relref "electronics" >}}), [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
|
||||
|
||||
|
||||
## Current Amplifier to drive Inductive Loads {#current-amplifier-to-drive-inductive-loads}
|
||||
## Description {#description}
|
||||
|
||||
A Transconductance Amplifier converts the control voltage into current with a current source characteristic.
|
||||
|
||||
Such a converter is called a voltage-to-current converter, also named a voltage-controlled current source or _transconductance_ amplifier.
|
||||
|
||||
|
||||
### Manufacturers {#manufacturers}
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|---------------|-------|---------|
|
27
content/zettels/transimpedance_amplifiers.md
Normal file
27
content/zettels/transimpedance_amplifiers.md
Normal file
@ -0,0 +1,27 @@
|
||||
+++
|
||||
title = "Transimpedance Amplifiers"
|
||||
author = ["Thomas Dehaeze"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
: [Electronics]({{< relref "electronics" >}})
|
||||
|
||||
|
||||
## Description {#description}
|
||||
|
||||
A transimpedance amplifier is a "current to voltage converter" and is also named a current controlled voltage source.
|
||||
|
||||
It is generally used to interface a sensor which outputs a current proportional to the measurement parameter (photodiode for instance).
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
| Manufacturers | Links | Country |
|
||||
|---------------|------------------------------------------------------------------------------------------------------|---------|
|
||||
| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
|
||||
| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
|
||||
| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) | Germany |
|
||||
| FMB Oxford | [link](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK |
|
||||
|
||||
<./biblio/references.bib>
|
@ -11,7 +11,7 @@ Backlinks:
|
||||
- [Current Amplifier]({{< relref "current_amplifier" >}})
|
||||
|
||||
Tags
|
||||
: [Actuators]({{< relref "actuators" >}}), [Current Amplifier]({{< relref "current_amplifier" >}})
|
||||
: [Actuators]({{< relref "actuators" >}})
|
||||
|
||||
|
||||
## Working Principle {#working-principle}
|
||||
@ -22,9 +22,13 @@ Tags
|
||||
|
||||
## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator}
|
||||
|
||||
([Schmidt, Schitter, and Rankers 2014](#org107036b))
|
||||
|
||||
|
||||
## Driving Electronics {#driving-electronics}
|
||||
|
||||
As the force is proportional to the current, a [Transconductance Amplifiers]({{< relref "transconductance_amplifiers" >}}) (voltage-controller current source) is generally used as the driving electronics.
|
||||
|
||||
|
||||
## Manufacturers {#manufacturers}
|
||||
|
||||
@ -41,4 +45,7 @@ Tags
|
||||
| Magnetic Innovations | [link](https://www.magneticinnovations.com/) | Netherlands |
|
||||
| Monticont | [link](http://www.moticont.com/) | USA |
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org107036b"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
|
||||
|
Loading…
Reference in New Issue
Block a user