diff --git a/content/zettels/charge_amplifiers.md b/content/zettels/charge_amplifiers.md new file mode 100644 index 0000000..190f9eb --- /dev/null +++ b/content/zettels/charge_amplifiers.md @@ -0,0 +1,31 @@ ++++ +title = "Charge Amplifiers" +author = ["Thomas Dehaeze"] +draft = false ++++ + +Tags +: [Electronics]({{< relref "electronics" >}}) + + +## Description {#description} + +A charge amplifier outputs a voltage proportional to the charge generated by a sensor connected to its inputs. + +This can be typically used to interface with piezoelectric sensors. + + +## Manufacturers {#manufacturers} + +| Manufacturers | Links | Country | +|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------| +| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | USA | +| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany | +| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss | +| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany | +| DJB | [link](https://www.djbinstruments.com/products/instrumentation/view/9-Channel-Charge-Voltage-Amplifier-IEPE-Signal-Conditioning-Rack-Mounted) | UK | +| MTI Instruments | [link](https://www.mtiinstruments.com/products/turbine-balancing-vibration-analysis/charge-amplifiers/ca1800/) | USA | +| Sinocera | [link](http://www.china-yec.net/instruments/signal-conditioner/multi-channels-charge-amplifier.html) | China | +| L-Card | [link](https://en.lcard.ru/products/accesories/le-41) | Rusia | + +<./biblio/references.bib> diff --git a/content/zettels/non_linear_control.md b/content/zettels/non_linear_control.md new file mode 100644 index 0000000..86246b7 --- /dev/null +++ b/content/zettels/non_linear_control.md @@ -0,0 +1,15 @@ ++++ +title = "Non Linear Control" +author = ["Thomas Dehaeze"] +draft = false ++++ + +Tags +: + + +## Resources {#resources} + +- [Slotine Lectures on Nonlinear Systems](http://web.mit.edu/nsl/www/videos/lectures.html) + +<./biblio/references.bib> diff --git a/content/zettels/piezoelectric_actuators.md b/content/zettels/piezoelectric_actuators.md index a78f767..507b074 100644 --- a/content/zettels/piezoelectric_actuators.md +++ b/content/zettels/piezoelectric_actuators.md @@ -36,7 +36,7 @@ Tags ### Model {#model} -A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#org340217c)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). +A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgcec2c91)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel. @@ -60,14 +60,14 @@ Some manufacturers propose "raw" plate actuators that can be used as actuator / ## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators} -The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#orge216fed)): +The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org5001506)): > The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height. > The flatter is the actuator, the higher is the amplification. -A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org58c76c8)). +A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org3149aa9)). - + {{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms ling16_enhan_mathem_model_displ_amplif" >}} @@ -159,51 +159,56 @@ For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolut ### Electrical Capacitance {#electrical-capacitance} -The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org3fa87dc)). +The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#orgd7dbc72)). This is due to the fact that voltage amplifier has a limitation on the deliverable current. [Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used. - + {{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}} ## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load} -When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org8acd580)). +When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org8d01bc7)). - + {{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}} ## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load} -Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#org2781d4a)): +Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgef5702a)): \begin{equation} \Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e} \end{equation} - + {{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}} -For piezo actuators, force and displacement are inversely related (Figure [5](#org79cc909)). +For piezo actuators, force and displacement are inversely related (Figure [5](#orgb3c806e)). Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement. Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated. When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced. - + {{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}} +## Driving Electronics {#driving-electronics} + +Piezoelectric actuators can be driven either using a voltage to charge converter or a [Voltage Amplifier]({{< relref "voltage_amplifier" >}}). + + ## Bibliography {#bibliography} -Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. . +Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):3–14. . -Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. . +Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):433–47. . -Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.” +Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.” diff --git a/content/zettels/signal_conditioner.md b/content/zettels/signal_conditioner.md index 5816329..2813b0a 100644 --- a/content/zettels/signal_conditioner.md +++ b/content/zettels/signal_conditioner.md @@ -6,18 +6,19 @@ draft = false Backlinks: -- [Force Sensors]({{< relref "force_sensors" >}}) - [Position Sensors]({{< relref "position_sensors" >}}) +- [Force Sensors]({{< relref "force_sensors" >}}) Tags -: [Force Sensors]({{< relref "force_sensors" >}}), [Sensors]({{< relref "sensors" >}}), [Electronics]({{< relref "electronics" >}}) +: [Sensors]({{< relref "sensors" >}}), [Electronics]({{< relref "electronics" >}}) Most sensors needs some signal conditioner electronics before digitize the signal. Few examples are: - Piezoelectric force sensors - Geophone -- Thermocouple, ... +- Photodiode +- Thermocouple The signal conditioning electronics can have different functions: @@ -27,43 +28,10 @@ The signal conditioning electronics can have different functions: - Excitation - Linearization +Depending on the electrical quantity that is meaningful for the measurement, different types of amplifiers are used: -## Charge Amplifier {#charge-amplifier} - -This can be used to interface with: - -- piezoelectric sensors - -| Manufacturers | Links | Country | -|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------| -| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | USA | -| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany | -| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss | -| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany | -| DJB | [link](https://www.djbinstruments.com/products/instrumentation/view/9-Channel-Charge-Voltage-Amplifier-IEPE-Signal-Conditioning-Rack-Mounted) | UK | -| MTI Instruments | [link](https://www.mtiinstruments.com/products/turbine-balancing-vibration-analysis/charge-amplifiers/ca1800/) | USA | -| Sinocera | [link](http://www.china-yec.net/instruments/signal-conditioner/multi-channels-charge-amplifier.html) | China | -| L-Card | [link](https://en.lcard.ru/products/accesories/le-41) | Rusia | - - -## Voltage Amplifier {#voltage-amplifier} - -| Manufacturers | Links | Country | -|---------------|-----------------------------------------------------------------------------------|---------| -| Femto | [link](https://www.femto.de/en/products/voltage-amplifiers.html) | Germany | -| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss | -| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany | - - -## Current Amplifier {#current-amplifier} - -This can be used to interface with: - -- photodiodes - -| Manufacturers | Links | Country | -|---------------|------------------------------------------------------------------------------------------------------|---------| -| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) | Germany | -| FMB Oxford | [link](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK | +- Current to Voltage ([Transimpedance Amplifiers]({{< relref "transimpedance_amplifiers" >}})) +- Charge to Voltage ([Charge Amplifiers]({{< relref "charge_amplifiers" >}})) +- Voltage to Voltage ([Voltage Amplifier]({{< relref "voltage_amplifier" >}})) <./biblio/references.bib> diff --git a/content/zettels/test.md b/content/zettels/test.md deleted file mode 100644 index 93e6581..0000000 --- a/content/zettels/test.md +++ /dev/null @@ -1,103 +0,0 @@ -+++ -title = "Test File" -author = ["Thomas Dehaeze"] -draft = false -+++ - -> This is a quote! - -```matlab -a = 2; -figure; -``` - -
-
- -This is an important part of the text. - -
- -See Eq. [eq:test1](#eq:test1) and [eq:test2](#eq:test2). - -\begin{equation} - a = 1 -\end{equation} - -\begin{equation} - a = 2 \label{eq:test2} -\end{equation} - -Also look at [1](#org7280632) \eqref{eq:test2}. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. - -Some text. diff --git a/content/zettels/current_amplifier.md b/content/zettels/transconductance_amplifiers.md similarity index 52% rename from content/zettels/current_amplifier.md rename to content/zettels/transconductance_amplifiers.md index cd8ade4..a04dffe 100644 --- a/content/zettels/current_amplifier.md +++ b/content/zettels/transconductance_amplifiers.md @@ -1,5 +1,5 @@ +++ -title = "Current Amplifier" +title = "Transconductance Amplifiers" author = ["Thomas Dehaeze"] draft = false +++ @@ -12,10 +12,14 @@ Tags : [Electronics]({{< relref "electronics" >}}), [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}}) -## Current Amplifier to drive Inductive Loads {#current-amplifier-to-drive-inductive-loads} +## Description {#description} + +A Transconductance Amplifier converts the control voltage into current with a current source characteristic. + +Such a converter is called a voltage-to-current converter, also named a voltage-controlled current source or _transconductance_ amplifier. -### Manufacturers {#manufacturers} +## Manufacturers {#manufacturers} | Manufacturers | Links | Country | |---------------|-------|---------| diff --git a/content/zettels/transimpedance_amplifiers.md b/content/zettels/transimpedance_amplifiers.md new file mode 100644 index 0000000..39b0395 --- /dev/null +++ b/content/zettels/transimpedance_amplifiers.md @@ -0,0 +1,27 @@ ++++ +title = "Transimpedance Amplifiers" +author = ["Thomas Dehaeze"] +draft = false ++++ + +Tags +: [Electronics]({{< relref "electronics" >}}) + + +## Description {#description} + +A transimpedance amplifier is a "current to voltage converter" and is also named a current controlled voltage source. + +It is generally used to interface a sensor which outputs a current proportional to the measurement parameter (photodiode for instance). + + +## Manufacturers {#manufacturers} + +| Manufacturers | Links | Country | +|---------------|------------------------------------------------------------------------------------------------------|---------| +| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss | +| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany | +| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) | Germany | +| FMB Oxford | [link](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK | + +<./biblio/references.bib> diff --git a/content/zettels/voice_coil_actuators.md b/content/zettels/voice_coil_actuators.md index 3e624d9..b040d01 100644 --- a/content/zettels/voice_coil_actuators.md +++ b/content/zettels/voice_coil_actuators.md @@ -11,7 +11,7 @@ Backlinks: - [Current Amplifier]({{< relref "current_amplifier" >}}) Tags -: [Actuators]({{< relref "actuators" >}}), [Current Amplifier]({{< relref "current_amplifier" >}}) +: [Actuators]({{< relref "actuators" >}}) ## Working Principle {#working-principle} @@ -22,9 +22,13 @@ Tags ## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator} +([Schmidt, Schitter, and Rankers 2014](#org107036b)) + ## Driving Electronics {#driving-electronics} +As the force is proportional to the current, a [Transconductance Amplifiers]({{< relref "transconductance_amplifiers" >}}) (voltage-controller current source) is generally used as the driving electronics. + ## Manufacturers {#manufacturers} @@ -41,4 +45,7 @@ Tags | Magnetic Innovations | [link](https://www.magneticinnovations.com/) | Netherlands | | Monticont | [link](http://www.moticont.com/) | USA | -<./biblio/references.bib> + +## Bibliography {#bibliography} + +Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.