207 lines
7.9 KiB
Org Mode
207 lines
7.9 KiB
Org Mode
#+TITLE: Amplifier Piezoelectric Actuator APA300ML - Test Bench
|
|
:DRAWER:
|
|
#+LANGUAGE: en
|
|
#+EMAIL: dehaeze.thomas@gmail.com
|
|
#+AUTHOR: Dehaeze Thomas
|
|
|
|
#+HTML_LINK_HOME: ../index.html
|
|
#+HTML_LINK_UP: ../index.html
|
|
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
|
|
#+HTML_HEAD: <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
|
|
|
|
#+BIND: org-latex-image-default-option "scale=1"
|
|
#+BIND: org-latex-image-default-width ""
|
|
|
|
#+LaTeX_CLASS: scrreprt
|
|
#+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full]
|
|
#+LaTeX_HEADER_EXTRA: \input{preamble.tex}
|
|
|
|
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
#+PROPERTY: header-args:matlab+ :comments org
|
|
#+PROPERTY: header-args:matlab+ :exports both
|
|
#+PROPERTY: header-args:matlab+ :results none
|
|
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
#+PROPERTY: header-args:matlab+ :noweb yes
|
|
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
|
|
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
|
|
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
|
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
|
|
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
|
|
#+PROPERTY: header-args:latex+ :results file raw replace
|
|
#+PROPERTY: header-args:latex+ :buffer no
|
|
#+PROPERTY: header-args:latex+ :tangle no
|
|
#+PROPERTY: header-args:latex+ :eval no-export
|
|
#+PROPERTY: header-args:latex+ :exports results
|
|
#+PROPERTY: header-args:latex+ :mkdirp yes
|
|
#+PROPERTY: header-args:latex+ :output-dir figs
|
|
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
|
:END:
|
|
|
|
* Introduction :ignore:
|
|
|
|
The goal of this test bench is to extract all the important parameters of the Amplified Piezoelectric Actuator APA300ML.
|
|
|
|
This include:
|
|
- Stroke
|
|
- Stiffness
|
|
- Hysteresis
|
|
- Gain from the applied voltage $V_a$ to the generated Force $F_a$
|
|
- Gain from the sensor stack strain $\delta L$ to the generated voltage $V_s$
|
|
- Dynamical behavior
|
|
|
|
* Model of an Amplified Piezoelectric Actuator and Sensor
|
|
|
|
Consider a schematic of the Amplified Piezoelectric Actuator in Figure [[fig:apa_model_schematic]].
|
|
|
|
#+name: fig:apa_model_schematic
|
|
#+caption: Amplified Piezoelectric Actuator Schematic
|
|
[[file:figs/apa_model_schematic.png]]
|
|
|
|
A voltage $V_a$ applied to the actuator stacks will induce an actuator force $F_a$:
|
|
\begin{equation}
|
|
F_a = g_a \cdot V_a
|
|
\end{equation}
|
|
|
|
A change of length $dl$ of the sensor stack will induce a voltage $V_s$:
|
|
\begin{equation}
|
|
V_s = g_s \cdot dl
|
|
\end{equation}
|
|
|
|
We wish here to experimental measure $g_a$ and $g_s$.
|
|
|
|
The block-diagram model of the piezoelectric actuator is then as shown in Figure [[fig:apa-model-simscape-schematic]].
|
|
|
|
#+begin_src latex :file apa-model-simscape-schematic.pdf
|
|
\begin{tikzpicture}
|
|
\node[block={2.0cm}{2.0cm}, align=center] (model) at (0,0){Simscape\\Model};
|
|
\node[block, left=1.0 of model] (ga){$g_a(s)$};
|
|
\node[block, right=1.0 of model] (gs){$g_s(s)$};
|
|
|
|
\draw[<-] (ga.west) -- node[midway, above]{$V_a$} node[midway, below]{$[V]$} ++(-1.0, 0);
|
|
\draw[->] (ga.east) --node[midway, above]{$F_a$} node[midway, below]{$[N]$} (model.west);
|
|
\draw[->] (model.east) --node[midway, above]{$dl$} node[midway, below]{$[m]$} (gs.west);
|
|
\draw[->] (gs.east) -- node[midway, above]{$V_s$} node[midway, below]{$[V]$} ++(1.0, 0);
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:apa-model-simscape-schematic
|
|
#+caption: Model of the APA with Simscape/Simulink
|
|
#+RESULTS:
|
|
[[file:figs/apa-model-simscape-schematic.png]]
|
|
|
|
* Test-Bench Description
|
|
|
|
#+begin_note
|
|
Here are the documentation of the equipment used for this test bench:
|
|
- Voltage Amplifier: [[file:doc/PD200-V7-R1.pdf][PD200]]
|
|
- Amplified Piezoelectric Actuator: [[file:doc/APA300ML.pdf][APA300ML]]
|
|
- DAC/ADC: Speedgoat [[file:doc/IO131-OEM-Datasheet.pdf][IO313]]
|
|
- Encoder: [[file:doc/L-9517-9678-05-A_Data_sheet_VIONiC_series_en.pdf][Renishaw Vionic]] and used [[file:doc/L-9517-9862-01-C_Data_sheet_RKLC_EN.pdf][Ruler]]
|
|
- Interferometer: [[https://www.attocube.com/en/products/laser-displacement-sensor/displacement-measuring-interferometer][Attocube IDS3010]]
|
|
#+end_note
|
|
|
|
#+name: fig:test_bench_apa_alone
|
|
#+caption: Schematic of the Test Bench
|
|
[[file:figs/test_bench_apa_alone.png]]
|
|
|
|
* Measurement Procedure
|
|
** Introduction :ignore:
|
|
|
|
** Stroke Measurement
|
|
|
|
Using the PD200 amplifier, output a voltage:
|
|
\[ V_a = 65 + 85 \sin(2\pi \cdot t) \]
|
|
To have a quasi-static excitation between -80 and 150V.
|
|
|
|
As the gain of the PD200 amplifier is 20, the DAC output voltage should be:
|
|
\[ V_{dac}(t) = 3.25 + 4.25\sin(2\pi \cdot t) \]
|
|
|
|
Verify that the voltage offset is zero!
|
|
|
|
Measure the output vertical displacement $d$ using the interferometer.
|
|
|
|
Then, plot $d$ as a function of $V_a$, and perform a linear regression.
|
|
Conclude on the obtained stroke.
|
|
|
|
** Stiffness Measurement
|
|
|
|
Add some (known) weight $\delta m g$ on the suspended mass and measure the deflection $\delta d$.
|
|
This can be tested when the piezoelectric stacks are open-circuit.
|
|
|
|
As the stiffness will be around $k \approx 10^6 N/m$, an added mass of $m \approx 100g$ will induce a static deflection of $\approx 1\mu m$ which should be large enough for a precise measurement using the interferometer.
|
|
|
|
Then the obtained stiffness is:
|
|
\begin{equation}
|
|
k = \frac{\delta m g}{\delta d}
|
|
\end{equation}
|
|
|
|
** Hysteresis measurement
|
|
|
|
Supply a quasi static sinusoidal excitation $V_a$ at different voltages.
|
|
|
|
The offset should be 65V, and the sin amplitude can range from 1V up to 85V.
|
|
|
|
For each excitation amplitude, the vertical displacement $d$ of the mass is measured.
|
|
|
|
Then, $d$ is plotted as a function of $V_a$ for all the amplitudes.
|
|
|
|
** Piezoelectric Actuator Constant
|
|
|
|
Using the measurement test-bench, it is rather easy the determine the static gain between the applied voltage $V_a$ to the induced displacement $d$.
|
|
Use a quasi static (1Hz) excitation signal $V_a$ on the piezoelectric stack and measure the vertical displacement $d$.
|
|
Perform a linear regression to obtain:
|
|
\begin{equation}
|
|
d = g_{d/V_a} \cdot V_a
|
|
\end{equation}
|
|
|
|
Using the Simscape model of the APA, it is possible to determine the static gain between the actuator force $F_a$ to the induced displacement $d$:
|
|
\begin{equation}
|
|
d = g_{d/F_a} \cdot F_a
|
|
\end{equation}
|
|
|
|
From the two gains, it is then easy to determine $g_a$:
|
|
\begin{equation}
|
|
g_a = \frac{F_a}{V_a} = \frac{F_a}{d} \cdot \frac{d}{V_a} = \frac{g_{d/V_a}}{g_{d/F_a}}
|
|
\end{equation}
|
|
|
|
** Piezoelectric Sensor Constant
|
|
|
|
From a quasi static (1Hz) excitation of the piezoelectric stack, measure the gain from $V_a$ to $V_s$:
|
|
\begin{equation}
|
|
V_s = g_{V_s/V_a} V_a
|
|
\end{equation}
|
|
|
|
Using the simscape model, compute the static gain from the actuator force $F_a$ to the strain of the sensor stack $dl$:
|
|
\begin{equation}
|
|
dl = g_{dl/F_a} F_a
|
|
\end{equation}
|
|
|
|
Then, the static gain from the sensor stack strain $dl$ to the general voltage $V_s$ is:
|
|
\begin{equation}
|
|
g_s = \frac{V_s}{dl} = \frac{V_s}{V_a} \cdot \frac{V_a}{F_a} \cdot \frac{F_a}{dl} = \frac{g_{V_s/V_a}}{g_a \cdot g_{dl/F_a}}
|
|
\end{equation}
|
|
|
|
Alternatively, we could impose an external force to add strain in the APA that should be equally present in all the 3 stacks and equal to 1/5 of the vertical strain.
|
|
This external force can be some weight added, or a piezo in parallel.
|
|
|
|
** Capacitance Measurement
|
|
|
|
Measure the capacitance of the 3 stacks individually using a precise multi-meter.
|
|
|
|
** Dynamical Behavior
|
|
|
|
Perform a system identification from $V_a$ to the measured displacement $d$ by the interferometer and by the encoder, and to the general voltage $V_s$.
|
|
|
|
This can be performed using different excitation signals.
|
|
|
|
This can also be performed with and without the encoder fixed to the APA.
|
|
|
|
** Compare the results obtained for all 7 APA300ML
|
|
|
|
Compare all the obtained parameters for all the test APA.
|
|
|
|
* Measurement Results
|