#+TITLE: Amplifier Piezoelectric Actuator APA300ML - Test Bench :DRAWER: #+LANGUAGE: en #+EMAIL: dehaeze.thomas@gmail.com #+AUTHOR: Dehaeze Thomas #+HTML_LINK_HOME: ../index.html #+HTML_LINK_UP: ../index.html #+HTML_HEAD: #+HTML_HEAD: #+BIND: org-latex-image-default-option "scale=1" #+BIND: org-latex-image-default-width "" #+LaTeX_CLASS: scrreprt #+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full] #+LaTeX_HEADER_EXTRA: \input{preamble.tex} #+PROPERTY: header-args:matlab :session *MATLAB* #+PROPERTY: header-args:matlab+ :comments org #+PROPERTY: header-args:matlab+ :exports both #+PROPERTY: header-args:matlab+ :results none #+PROPERTY: header-args:matlab+ :eval no-export #+PROPERTY: header-args:matlab+ :noweb yes #+PROPERTY: header-args:matlab+ :mkdirp yes #+PROPERTY: header-args:matlab+ :output-dir figs #+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}") #+PROPERTY: header-args:latex+ :imagemagick t :fit yes #+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150 #+PROPERTY: header-args:latex+ :imoutoptions -quality 100 #+PROPERTY: header-args:latex+ :results file raw replace #+PROPERTY: header-args:latex+ :buffer no #+PROPERTY: header-args:latex+ :tangle no #+PROPERTY: header-args:latex+ :eval no-export #+PROPERTY: header-args:latex+ :exports results #+PROPERTY: header-args:latex+ :mkdirp yes #+PROPERTY: header-args:latex+ :output-dir figs #+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png") :END: * Introduction :ignore: The goal of this test bench is to extract all the important parameters of the Amplified Piezoelectric Actuator APA300ML. This include: - Stroke - Stiffness - Hysteresis - Gain from the applied voltage $V_a$ to the generated Force $F_a$ - Gain from the sensor stack strain $\delta L$ to the generated voltage $V_s$ - Dynamical behavior * Model of an Amplified Piezoelectric Actuator and Sensor Consider a schematic of the Amplified Piezoelectric Actuator in Figure [[fig:apa_model_schematic]]. #+name: fig:apa_model_schematic #+caption: Amplified Piezoelectric Actuator Schematic [[file:figs/apa_model_schematic.png]] A voltage $V_a$ applied to the actuator stacks will induce an actuator force $F_a$: \begin{equation} F_a = g_a \cdot V_a \end{equation} A change of length $dl$ of the sensor stack will induce a voltage $V_s$: \begin{equation} V_s = g_s \cdot dl \end{equation} We wish here to experimental measure $g_a$ and $g_s$. The block-diagram model of the piezoelectric actuator is then as shown in Figure [[fig:apa-model-simscape-schematic]]. #+begin_src latex :file apa-model-simscape-schematic.pdf \begin{tikzpicture} \node[block={2.0cm}{2.0cm}, align=center] (model) at (0,0){Simscape\\Model}; \node[block, left=1.0 of model] (ga){$g_a(s)$}; \node[block, right=1.0 of model] (gs){$g_s(s)$}; \draw[<-] (ga.west) -- node[midway, above]{$V_a$} node[midway, below]{$[V]$} ++(-1.0, 0); \draw[->] (ga.east) --node[midway, above]{$F_a$} node[midway, below]{$[N]$} (model.west); \draw[->] (model.east) --node[midway, above]{$dl$} node[midway, below]{$[m]$} (gs.west); \draw[->] (gs.east) -- node[midway, above]{$V_s$} node[midway, below]{$[V]$} ++(1.0, 0); \end{tikzpicture} #+end_src #+name: fig:apa-model-simscape-schematic #+caption: Model of the APA with Simscape/Simulink #+RESULTS: [[file:figs/apa-model-simscape-schematic.png]] * Test-Bench Description #+begin_note Here are the documentation of the equipment used for this test bench: - Voltage Amplifier: [[file:doc/PD200-V7-R1.pdf][PD200]] - Amplified Piezoelectric Actuator: [[file:doc/APA300ML.pdf][APA300ML]] - DAC/ADC: Speedgoat [[file:doc/IO131-OEM-Datasheet.pdf][IO313]] - Encoder: [[file:doc/L-9517-9678-05-A_Data_sheet_VIONiC_series_en.pdf][Renishaw Vionic]] and used [[file:doc/L-9517-9862-01-C_Data_sheet_RKLC_EN.pdf][Ruler]] - Interferometer: [[https://www.attocube.com/en/products/laser-displacement-sensor/displacement-measuring-interferometer][Attocube IDS3010]] #+end_note #+name: fig:test_bench_apa_alone #+caption: Schematic of the Test Bench [[file:figs/test_bench_apa_alone.png]] * Measurement Procedure ** Introduction :ignore: ** Stroke Measurement Using the PD200 amplifier, output a voltage: \[ V_a = 65 + 85 \sin(2\pi \cdot t) \] To have a quasi-static excitation between -80 and 150V. As the gain of the PD200 amplifier is 20, the DAC output voltage should be: \[ V_{dac}(t) = 3.25 + 4.25\sin(2\pi \cdot t) \] Verify that the voltage offset is zero! Measure the output vertical displacement $d$ using the interferometer. Then, plot $d$ as a function of $V_a$, and perform a linear regression. Conclude on the obtained stroke. ** Stiffness Measurement Add some (known) weight $\delta m g$ on the suspended mass and measure the deflection $\delta d$. This can be tested when the piezoelectric stacks are open-circuit. As the stiffness will be around $k \approx 10^6 N/m$, an added mass of $m \approx 100g$ will induce a static deflection of $\approx 1\mu m$ which should be large enough for a precise measurement using the interferometer. Then the obtained stiffness is: \begin{equation} k = \frac{\delta m g}{\delta d} \end{equation} ** Hysteresis measurement Supply a quasi static sinusoidal excitation $V_a$ at different voltages. The offset should be 65V, and the sin amplitude can range from 1V up to 85V. For each excitation amplitude, the vertical displacement $d$ of the mass is measured. Then, $d$ is plotted as a function of $V_a$ for all the amplitudes. ** Piezoelectric Actuator Constant Using the measurement test-bench, it is rather easy the determine the static gain between the applied voltage $V_a$ to the induced displacement $d$. Use a quasi static (1Hz) excitation signal $V_a$ on the piezoelectric stack and measure the vertical displacement $d$. Perform a linear regression to obtain: \begin{equation} d = g_{d/V_a} \cdot V_a \end{equation} Using the Simscape model of the APA, it is possible to determine the static gain between the actuator force $F_a$ to the induced displacement $d$: \begin{equation} d = g_{d/F_a} \cdot F_a \end{equation} From the two gains, it is then easy to determine $g_a$: \begin{equation} g_a = \frac{F_a}{V_a} = \frac{F_a}{d} \cdot \frac{d}{V_a} = \frac{g_{d/V_a}}{g_{d/F_a}} \end{equation} ** Piezoelectric Sensor Constant From a quasi static (1Hz) excitation of the piezoelectric stack, measure the gain from $V_a$ to $V_s$: \begin{equation} V_s = g_{V_s/V_a} V_a \end{equation} Using the simscape model, compute the static gain from the actuator force $F_a$ to the strain of the sensor stack $dl$: \begin{equation} dl = g_{dl/F_a} F_a \end{equation} Then, the static gain from the sensor stack strain $dl$ to the general voltage $V_s$ is: \begin{equation} g_s = \frac{V_s}{dl} = \frac{V_s}{V_a} \cdot \frac{V_a}{F_a} \cdot \frac{F_a}{dl} = \frac{g_{V_s/V_a}}{g_a \cdot g_{dl/F_a}} \end{equation} Alternatively, we could impose an external force to add strain in the APA that should be equally present in all the 3 stacks and equal to 1/5 of the vertical strain. This external force can be some weight added, or a piezo in parallel. ** Capacitance Measurement Measure the capacitance of the 3 stacks individually using a precise multi-meter. ** Dynamical Behavior Perform a system identification from $V_a$ to the measured displacement $d$ by the interferometer and by the encoder, and to the general voltage $V_s$. This can be performed using different excitation signals. This can also be performed with and without the encoder fixed to the APA. ** Compare the results obtained for all 7 APA300ML Compare all the obtained parameters for all the test APA. * Measurement Results