Compare commits
18 Commits
9f0ace8959
...
master
Author | SHA1 | Date | |
---|---|---|---|
a980b834bb | |||
335df6b6dd | |||
7424500e7b | |||
311b120cf4 | |||
519580d31c | |||
c88f4c6097 | |||
e77d747590 | |||
192841352e | |||
dc72858a1f | |||
245e6776a4 | |||
c23ffb5870 | |||
93a2bb9f5a | |||
5e7a2c9436 | |||
cb32883aa1 | |||
c9fd923312 | |||
e02f522e81 | |||
2285284e91 | |||
222d0f7dbe |
12
.gitignore
vendored
@@ -1,5 +1,6 @@
|
||||
auto/
|
||||
*.tex
|
||||
_minted*
|
||||
|
||||
nohup.out
|
||||
|
||||
@@ -36,3 +37,14 @@ octave-workspace
|
||||
|
||||
# Simulink Cache
|
||||
*.slxc
|
||||
|
||||
## Build tool auxiliary files:
|
||||
*.fdb_latexmk
|
||||
*.synctex
|
||||
*.synctex(busy)
|
||||
*.synctex.gz
|
||||
*.synctex.gz(busy)
|
||||
*.pdfsync
|
||||
|
||||
.auctex-auto/
|
||||
_minted-index/
|
||||
|
BIN
docs/Comparison.docx
Normal file
BIN
docs/Modal decomposition for control of MIMO system.pptx
Normal file
103
docs/modal_control_gravimeter_numerical.m
Normal file
@@ -0,0 +1,103 @@
|
||||
clc
|
||||
clear all
|
||||
close all
|
||||
|
||||
%% System properties
|
||||
g = 100000;
|
||||
w0 = 2*pi*.5; % MinusK BM1 tablle
|
||||
l = 0.5; %[m]
|
||||
la = 1; %[m]
|
||||
h = 1.7; %[m]
|
||||
ha = 1.7;% %[m]
|
||||
m = 400; %[kg]
|
||||
k = 15e3;%[N/m]
|
||||
kv = k;
|
||||
kh = 15e3;
|
||||
I = 115;%[kg m^2]
|
||||
dampv = 0.03;
|
||||
damph = 0.03;
|
||||
s = tf('s');
|
||||
|
||||
%% State-space model
|
||||
M = [m 0 0
|
||||
0 m 0
|
||||
0 0 I];
|
||||
|
||||
la = l;
|
||||
ha = h;
|
||||
kv = k;
|
||||
kh = k;
|
||||
|
||||
%Jacobian of the bottom sensor
|
||||
Js1 = [1 0 h/2
|
||||
0 1 -l/2];
|
||||
|
||||
%Jacobian of the top sensor
|
||||
Js2 = [1 0 -h/2
|
||||
0 1 0];
|
||||
|
||||
%Jacobian of the actuators
|
||||
Ja = [1 0 ha/2 %Left horizontal actuator
|
||||
%1 0 h/2 %Right horizontal actuator
|
||||
0 1 -la/2 %Left vertical actuator
|
||||
0 1 la/2]; %Right vertical actuator
|
||||
Jah = [1 0 ha/2];
|
||||
Jav = [0 1 -la/2 %Left vertical actuator
|
||||
0 1 la/2]; %Right vertical actuator
|
||||
Jta = Ja';
|
||||
Jtah = Jah';
|
||||
Jtav = Jav';
|
||||
K = kv*Jtav*Jav + kh*Jtah*Jah;
|
||||
C = dampv*kv*Jtav*Jav+damph*kh*Jtah*Jah;
|
||||
|
||||
E = [1 0 0
|
||||
0 1 0
|
||||
0 0 1]; %projecting ground motion in the directions of the legs
|
||||
|
||||
AA = [zeros(3) eye(3)
|
||||
-M\K -M\C];
|
||||
|
||||
BB = [zeros(3,3)
|
||||
M\Jta ];
|
||||
|
||||
% CC = [[Js1;Js2] zeros(4,3)];
|
||||
CC = [[Jah;Jav] zeros(3,3)];
|
||||
|
||||
% DD = zeros(4,3);
|
||||
DD = zeros(3);
|
||||
|
||||
G = ss(AA,BB,CC,DD);
|
||||
%% Modal coordinates
|
||||
[V,D] = eig(M\K);
|
||||
Mm = V'*M*V; % Modal mass matrix
|
||||
Dm = V'*C*V; % Modal damping matrix
|
||||
Km = V'*K*V; % Modal stiffness matrix
|
||||
|
||||
Bm = inv(Mm)*V'*Jta;
|
||||
% Cm = [Js1;Js2]*V;
|
||||
Cm = [Jah;Jav]*V;
|
||||
|
||||
|
||||
omega = real(sqrt(inv(Mm)*Km));
|
||||
zeta = real(0.5*inv(Mm)*Dm*inv(omega));
|
||||
|
||||
Gm = [1/(s^2+2*zeta(1,1)*omega(1,1)*s+omega(1,1)^2),0,0;
|
||||
0,1/(s^2+2*zeta(2,2)*omega(2,2)*s+omega(2,2)^2),0;
|
||||
0,0,1/(s^2+2*zeta(3,3)*omega(3,3)*s+omega(3,3)^2)];
|
||||
figure(1)
|
||||
bode(G,Cm*Gm*Bm)
|
||||
figure(2)
|
||||
bode(G,Gm)
|
||||
|
||||
%% Controller
|
||||
s = tf('s');
|
||||
w0 = 2*pi*0.1;
|
||||
Kc = 100/(1+s/w0);
|
||||
Knet = inv(Bm)*Kc*inv(Cm);
|
||||
Gc = -lft(G,Knet);
|
||||
isstable(Gc)
|
||||
|
||||
|
||||
|
||||
|
||||
|
BIN
docs/svd.pptx
Normal file
BIN
figs/3dof_model_fully_parallel.pdf
Normal file
BIN
figs/3dof_model_fully_parallel.png
Normal file
After Width: | Height: | Size: 18 KiB |
BIN
figs/block_diagram_jacobian_decoupling.pdf
Normal file
BIN
figs/block_diagram_jacobian_decoupling.png
Normal file
After Width: | Height: | Size: 12 KiB |
5026
figs/coupled_plant_bode.pdf
Normal file
BIN
figs/coupled_plant_bode.png
Normal file
After Width: | Height: | Size: 215 KiB |
3946
figs/coupled_plant_bode_spurious.pdf
Normal file
BIN
figs/coupled_plant_bode_spurious.png
Normal file
After Width: | Height: | Size: 179 KiB |
BIN
figs/decoupling_modal.pdf
Normal file
BIN
figs/decoupling_modal.png
Normal file
After Width: | Height: | Size: 10 KiB |
BIN
figs/decoupling_svd.pdf
Normal file
BIN
figs/decoupling_svd.png
Normal file
After Width: | Height: | Size: 9.5 KiB |
BIN
figs/gravimeter_block_cok.pdf
Normal file
BIN
figs/gravimeter_block_cok.png
Normal file
After Width: | Height: | Size: 12 KiB |
BIN
figs/gravimeter_block_com.pdf
Normal file
BIN
figs/gravimeter_block_com.png
Normal file
After Width: | Height: | Size: 12 KiB |
BIN
figs/gravimeter_block_decentralized.pdf
Normal file
BIN
figs/gravimeter_block_decentralized.png
Normal file
After Width: | Height: | Size: 1.8 KiB |
Before Width: | Height: | Size: 72 KiB After Width: | Height: | Size: 86 KiB |
Before Width: | Height: | Size: 144 KiB After Width: | Height: | Size: 152 KiB |
Before Width: | Height: | Size: 149 KiB After Width: | Height: | Size: 155 KiB |
Before Width: | Height: | Size: 170 KiB After Width: | Height: | Size: 173 KiB |
Before Width: | Height: | Size: 115 KiB After Width: | Height: | Size: 116 KiB |
Before Width: | Height: | Size: 111 KiB After Width: | Height: | Size: 114 KiB |
BIN
figs/gravimeter_model_analytical.pdf
Normal file
BIN
figs/gravimeter_model_analytical.png
Normal file
After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 209 KiB After Width: | Height: | Size: 201 KiB |
Before Width: | Height: | Size: 164 KiB After Width: | Height: | Size: 204 KiB |
Before Width: | Height: | Size: 63 KiB After Width: | Height: | Size: 71 KiB |
Before Width: | Height: | Size: 127 KiB After Width: | Height: | Size: 128 KiB |
Before Width: | Height: | Size: 130 KiB After Width: | Height: | Size: 120 KiB |
BIN
figs/jacobian_decoupling_arch.pdf
Normal file
BIN
figs/jacobian_decoupling_arch.png
Normal file
After Width: | Height: | Size: 12 KiB |
BIN
figs/jacobian_plant.pdf
Normal file
BIN
figs/jacobian_plant.png
Normal file
After Width: | Height: | Size: 84 KiB |
BIN
figs/jacobian_plant_spurious.pdf
Normal file
BIN
figs/jacobian_plant_spurious.png
Normal file
After Width: | Height: | Size: 108 KiB |
BIN
figs/modal_plant.pdf
Normal file
BIN
figs/modal_plant.png
Normal file
After Width: | Height: | Size: 78 KiB |
BIN
figs/modal_plant_spurious.pdf
Normal file
BIN
figs/modal_plant_spurious.png
Normal file
After Width: | Height: | Size: 115 KiB |
BIN
figs/model_planar_2.pdf
Normal file
BIN
figs/model_planar_2.png
Normal file
After Width: | Height: | Size: 99 KiB |
BIN
figs/model_test_decoupling.pdf
Normal file
BIN
figs/model_test_decoupling.png
Normal file
After Width: | Height: | Size: 23 KiB |
BIN
figs/model_test_decoupling_spurious_res.pdf
Normal file
BIN
figs/model_test_decoupling_spurious_res.png
Normal file
After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 308 KiB After Width: | Height: | Size: 307 KiB |
BIN
figs/plant_frame_K.pdf
Normal file
BIN
figs/plant_frame_K.png
Normal file
After Width: | Height: | Size: 112 KiB |
BIN
figs/plant_frame_L.pdf
Normal file
BIN
figs/plant_frame_L.png
Normal file
After Width: | Height: | Size: 113 KiB |
BIN
figs/plant_frame_M.pdf
Normal file
BIN
figs/plant_frame_M.png
Normal file
After Width: | Height: | Size: 108 KiB |
BIN
figs/stewart_architecture_example.pdf
Normal file
BIN
figs/stewart_architecture_example.png
Normal file
After Width: | Height: | Size: 37 KiB |
BIN
figs/svd_plant.pdf
Normal file
BIN
figs/svd_plant.png
Normal file
After Width: | Height: | Size: 79 KiB |
BIN
figs/svd_plant_spurious.pdf
Normal file
BIN
figs/svd_plant_spurious.png
Normal file
After Width: | Height: | Size: 115 KiB |
@@ -4,7 +4,7 @@ clear; close all; clc;
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
freqs = logspace(-1, 2, 1000);
|
||||
freqs = logspace(-1, 3, 1000);
|
||||
|
||||
% Gravimeter Model - Parameters
|
||||
% <<sec:gravimeter_model>>
|
||||
@@ -107,7 +107,7 @@ for out_i = 1:4
|
||||
xlim([1e-1, 2e1]); ylim([1e-4, 1e0]);
|
||||
|
||||
if in_i == 1
|
||||
ylabel('Amplitude [m/N]')
|
||||
ylabel('Amplitude [$\frac{m/s^2}{N}$]')
|
||||
else
|
||||
set(gca, 'YTickLabel',[]);
|
||||
end
|
||||
@@ -156,6 +156,12 @@ size(Gx)
|
||||
|
||||
% The diagonal and off-diagonal elements of $G_x$ are shown in Figure [[fig:gravimeter_jacobian_plant]].
|
||||
|
||||
% It is shown at the system is:
|
||||
% - decoupled at high frequency thanks to a diagonal mass matrix (the Jacobian being evaluated at the center of mass of the payload)
|
||||
% - coupled at low frequency due to the non-diagonal terms in the stiffness matrix, especially the term corresponding to a coupling between a force in the x direction to a rotation around z (due to the torque applied by the stiffness 1).
|
||||
|
||||
% The choice of the frame in this the Jacobian is evaluated is discussed in Section [[sec:choice_jacobian_reference]].
|
||||
|
||||
|
||||
figure;
|
||||
|
||||
@@ -171,7 +177,7 @@ plot(freqs, abs(squeeze(freqresp(Gx(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,
|
||||
'DisplayName', '$G_x(i,j)\ i \neq j$');
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
for i_in_out = 1:3
|
||||
plot(freqs, abs(squeeze(freqresp(Gx(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||
plot(freqs, abs(squeeze(freqresp(Gx(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@@ -256,7 +262,7 @@ plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,
|
||||
'DisplayName', '$G_x(i,j)\ i \neq j$');
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
for i_in_out = 1:3
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@@ -329,14 +335,14 @@ ylim([1e-4, 1e2]);
|
||||
RGA_svd = zeros(length(freqs), size(Gsvd,1), size(Gsvd,2));
|
||||
Gsvd_inv = inv(Gsvd);
|
||||
for f_i = 1:length(freqs)
|
||||
RGA_svd(f_i, :, :) = abs(evalfr(Gsvd, j*2*pi*freqs(f_i)).*evalfr(Gsvd_inv, j*2*pi*freqs(f_i))');
|
||||
RGA_svd(f_i, :, :) = abs(evalfr(Gsvd, j*2*pi*freqs(f_i)).*evalfr(Gsvd_inv, j*2*pi*freqs(f_i))');
|
||||
end
|
||||
|
||||
% Relative Gain Array for the decoupled plant using the Jacobian:
|
||||
RGA_x = zeros(length(freqs), size(Gx,1), size(Gx,2));
|
||||
Gx_inv = inv(Gx);
|
||||
for f_i = 1:length(freqs)
|
||||
RGA_x(f_i, :, :) = abs(evalfr(Gx, j*2*pi*freqs(f_i)).*evalfr(Gx_inv, j*2*pi*freqs(f_i))');
|
||||
RGA_x(f_i, :, :) = abs(evalfr(Gx, j*2*pi*freqs(f_i)).*evalfr(Gx_inv, j*2*pi*freqs(f_i))');
|
||||
end
|
||||
|
||||
figure;
|
||||
@@ -356,8 +362,8 @@ plot(freqs, RGA_svd(:, 1, 2), '--', 'color', [0 0 0 0.2], ...
|
||||
plot(freqs, RGA_svd(:, 1, 1), 'k-', ...
|
||||
'DisplayName', '$RGA_{SVD}(i,i)$');
|
||||
for ch_i = 1:3
|
||||
plot(freqs, RGA_svd(:, ch_i, ch_i), 'k-', ...
|
||||
'HandleVisibility', 'off');
|
||||
plot(freqs, RGA_svd(:, ch_i, ch_i), 'k-', ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@@ -378,8 +384,8 @@ plot(freqs, RGA_x(:, 1, 2), '--', 'color', [0 0 0 0.2], ...
|
||||
plot(freqs, RGA_x(:, 1, 1), 'k-', ...
|
||||
'DisplayName', '$RGA_{X}(i,i)$');
|
||||
for ch_i = 1:3
|
||||
plot(freqs, RGA_x(:, ch_i, ch_i), 'k-', ...
|
||||
'HandleVisibility', 'off');
|
||||
plot(freqs, RGA_x(:, ch_i, ch_i), 'k-', ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@@ -406,14 +412,14 @@ ylim([1e-5, 1e1]);
|
||||
RGA_svd = zeros(size(Gsvd,1), size(Gsvd,2), length(freqs));
|
||||
Gsvd_inv = inv(Gsvd);
|
||||
for f_i = 1:length(freqs)
|
||||
RGA_svd(:, :, f_i) = abs(evalfr(Gsvd, j*2*pi*freqs(f_i)).*evalfr(Gsvd_inv, j*2*pi*freqs(f_i))');
|
||||
RGA_svd(:, :, f_i) = abs(evalfr(Gsvd, j*2*pi*freqs(f_i)).*evalfr(Gsvd_inv, j*2*pi*freqs(f_i))');
|
||||
end
|
||||
|
||||
% Relative Gain Array for the decoupled plant using the Jacobian:
|
||||
RGA_x = zeros(size(Gx,1), size(Gx,2), length(freqs));
|
||||
Gx_inv = inv(Gx);
|
||||
for f_i = 1:length(freqs)
|
||||
RGA_x(:, :, f_i) = abs(evalfr(Gx, j*2*pi*freqs(f_i)).*evalfr(Gx_inv, j*2*pi*freqs(f_i))');
|
||||
RGA_x(:, :, f_i) = abs(evalfr(Gx, j*2*pi*freqs(f_i)).*evalfr(Gx_inv, j*2*pi*freqs(f_i))');
|
||||
end
|
||||
|
||||
RGA_num_svd = squeeze(sum(sum(RGA_svd - eye(3))));
|
||||
@@ -448,8 +454,8 @@ plot(freqs, abs(squeeze(freqresp(Gsvd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5
|
||||
'DisplayName', '$G_{SVD}(i,j),\ i \neq j$');
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
for ch_i = 1:3
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))), ...
|
||||
'DisplayName', sprintf('$G_{SVD}(%i,%i)$', ch_i, ch_i));
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))), ...
|
||||
'DisplayName', sprintf('$G_{SVD}(%i,%i)$', ch_i, ch_i));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@@ -461,7 +467,7 @@ ylim([1e-8, 1e0])
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for ch_i = 1:3
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))));
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
@@ -538,12 +544,10 @@ w0 = 2*pi*0.1; % Controller Pole [rad/s]
|
||||
|
||||
K_cen = diag(1./diag(abs(evalfr(Gx, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
|
||||
L_cen = K_cen*Gx;
|
||||
G_cen = feedback(G, pinv(Jt')*K_cen*pinv(Ja));
|
||||
|
||||
K_svd = diag(1./diag(abs(evalfr(Gsvd, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
|
||||
L_svd = K_svd*Gsvd;
|
||||
U_inv = inv(U);
|
||||
G_svd = feedback(G, inv(V')*K_svd*U_inv(1:3, :));
|
||||
|
||||
|
||||
|
||||
@@ -558,16 +562,16 @@ ax1 = nexttile([2, 1]);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(L_svd(1, 1), freqs, 'Hz'))), 'DisplayName', '$L_{SVD}(i,i)$');
|
||||
for i_in_out = 2:3
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
plot(freqs, abs(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
plot(freqs, abs(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
|
||||
end
|
||||
|
||||
set(gca,'ColorOrderIndex',2)
|
||||
plot(freqs, abs(squeeze(freqresp(L_cen(1, 1), freqs, 'Hz'))), ...
|
||||
'DisplayName', '$L_{J}(i,i)$');
|
||||
for i_in_out = 2:3
|
||||
set(gca,'ColorOrderIndex',2)
|
||||
plot(freqs, abs(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
|
||||
set(gca,'ColorOrderIndex',2)
|
||||
plot(freqs, abs(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@@ -579,13 +583,13 @@ ylim([5e-2, 2e3])
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i_in_out = 1:3
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))));
|
||||
end
|
||||
set(gca,'ColorOrderIndex',2)
|
||||
for i_in_out = 1:3
|
||||
set(gca,'ColorOrderIndex',2)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',2)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
@@ -598,6 +602,43 @@ linkaxes([ax1,ax2],'x');
|
||||
% Closed-Loop system Performances
|
||||
% <<sec:gravimeter_closed_loop_results>>
|
||||
|
||||
% Now the system is identified again with additional inputs and outputs:
|
||||
% - $x$, $y$ and $R_z$ ground motion
|
||||
% - $x$, $y$ and $R_z$ acceleration of the payload.
|
||||
|
||||
|
||||
%% Name of the Simulink File
|
||||
mdl = 'gravimeter';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Dx'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Dy'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Rz'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Abs_Motion'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Abs_Motion'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Abs_Motion'], 3, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
|
||||
G = linearize(mdl, io);
|
||||
G.InputName = {'Dx', 'Dy', 'Rz', 'F1', 'F2', 'F3'};
|
||||
G.OutputName = {'Ax', 'Ay', 'Arz', 'Ax1', 'Ay1', 'Ax2', 'Ay2'};
|
||||
|
||||
|
||||
|
||||
% The loop is closed using the developed controllers.
|
||||
|
||||
G_cen = lft(G, -pinv(Jt')*K_cen*pinv(Ja));
|
||||
G_svd = lft(G, -inv(V')*K_svd*U_inv(1:3, :));
|
||||
|
||||
|
||||
|
||||
% Let's first verify the stability of the closed-loop systems:
|
||||
|
||||
isstable(G_cen)
|
||||
@@ -629,9 +670,9 @@ tiledlayout(1, 3, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G( 1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen(1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd(1,1)/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
|
||||
plot(freqs, abs(squeeze(freqresp(G( 'Ax','Dx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen('Ax','Dx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd('Ax','Dx')/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Transmissibility'); xlabel('Frequency [Hz]');
|
||||
@@ -640,9 +681,9 @@ legend('location', 'southwest');
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G( 2,2)/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen(2,2)/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd(2,2)/s^2, freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G( 'Ay','Dy')/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen('Ay','Dy')/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd('Ay','Dy')/s^2, freqs, 'Hz'))), '--');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
|
||||
@@ -650,9 +691,9 @@ title('$D_y/D_{w,y}$');
|
||||
|
||||
ax3 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G( 3,3)/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen(3,3)/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd(3,3)/s^2, freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G( 'Arz','Rz')/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen('Arz','Rz')/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd('Arz','Rz')/s^2, freqs, 'Hz'))), '--');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
|
||||
@@ -660,7 +701,7 @@ title('$R_z/R_{w,z}$');
|
||||
|
||||
linkaxes([ax1,ax2,ax3],'xy');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
xlim([1e-2, 5e1]); ylim([1e-7, 1e-2]);
|
||||
xlim([1e-2, 5e1]); ylim([1e-2, 1e1]);
|
||||
|
||||
|
||||
|
||||
@@ -686,8 +727,10 @@ for out_i = 1:3
|
||||
end
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Transmissibility'); xlabel('Frequency [Hz]');
|
||||
ylim([1e-6, 1e3]);
|
||||
|
||||
% Robustness to a change of actuator position
|
||||
% <<sec:robustness_actuator_position>>
|
||||
|
||||
% Let say we change the position of the actuators:
|
||||
|
||||
@@ -699,26 +742,36 @@ mdl = 'gravimeter';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Dx'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Dy'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Rz'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Abs_Motion'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Abs_Motion'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Abs_Motion'], 3, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
|
||||
G = linearize(mdl, io);
|
||||
G.InputName = {'F1', 'F2', 'F3'};
|
||||
G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
|
||||
|
||||
G_cen_b = feedback(G, pinv(Jt')*K_cen*pinv(Ja));
|
||||
G_svd_b = feedback(G, inv(V')*K_svd*U_inv(1:3, :));
|
||||
G.InputName = {'Dx', 'Dy', 'Rz', 'F1', 'F2', 'F3'};
|
||||
G.OutputName = {'Ax', 'Ay', 'Arz', 'Ax1', 'Ay1', 'Ax2', 'Ay2'};
|
||||
|
||||
|
||||
|
||||
% The new plant is computed, and the centralized and SVD control architectures are applied using the previsouly computed Jacobian matrices and $U$ and $V$ matrices.
|
||||
% The loop is closed using the developed controllers.
|
||||
|
||||
% The closed-loop system are still stable, and their
|
||||
G_cen_b = lft(G, -pinv(Jt')*K_cen*pinv(Ja));
|
||||
G_svd_b = lft(G, -inv(V')*K_svd*U_inv(1:3, :));
|
||||
|
||||
|
||||
|
||||
% The new plant is computed, and the centralized and SVD control architectures are applied using the previously computed Jacobian matrices and $U$ and $V$ matrices.
|
||||
|
||||
% The closed-loop system are still stable in both cases, and the obtained transmissibility are equivalent as shown in Figure [[fig:gravimeter_transmissibility_offset_act]].
|
||||
|
||||
|
||||
freqs = logspace(-2, 2, 1000);
|
||||
@@ -728,9 +781,9 @@ tiledlayout(1, 3, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen(1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Initial');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen_b(1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Jacobian');
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd_b(1,1)/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen( 'Ax','Dx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen_b('Ax','Dx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd_b('Ax','Dx')/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Transmissibility'); xlabel('Frequency [Hz]');
|
||||
@@ -739,9 +792,9 @@ legend('location', 'southwest');
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen(2,2)/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen_b(2,2)/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd_b(2,2)/s^2, freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen( 'Ay','Dy')/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen_b('Ay','Dy')/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd_b('Ay','Dy')/s^2, freqs, 'Hz'))), '--');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
|
||||
@@ -749,9 +802,9 @@ title('$D_y/D_{w,y}$');
|
||||
|
||||
ax3 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen(3,3)/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen_b(3,3)/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd_b(3,3)/s^2, freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen( 'Arz','Rz')/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen_b('Arz','Rz')/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd_b('Arz','Rz')/s^2, freqs, 'Hz'))), '--');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
|
||||
@@ -759,7 +812,7 @@ title('$R_z/R_{w,z}$');
|
||||
|
||||
linkaxes([ax1,ax2,ax3],'xy');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
xlim([1e-2, 5e1]); ylim([1e-7, 3e-4]);
|
||||
xlim([1e-2, 5e1]); ylim([1e-2, 1e1]);
|
||||
|
||||
% Decoupling of the mass matrix
|
||||
|
||||
@@ -819,7 +872,7 @@ plot(freqs, abs(squeeze(freqresp(GM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,
|
||||
'DisplayName', '$G_x(i,j)\ i \neq j$');
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
for i_in_out = 1:3
|
||||
plot(freqs, abs(squeeze(freqresp(GM(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||
plot(freqs, abs(squeeze(freqresp(GM(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@@ -866,7 +919,7 @@ plot(freqs, abs(squeeze(freqresp(GK(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,
|
||||
'DisplayName', '$G_x(i,j)\ i \neq j$');
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
for i_in_out = 1:3
|
||||
plot(freqs, abs(squeeze(freqresp(GK(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||
plot(freqs, abs(squeeze(freqresp(GK(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@@ -930,7 +983,7 @@ plot(freqs, abs(squeeze(freqresp(GKM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0
|
||||
'DisplayName', '$G_x(i,j)\ i \neq j$');
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
for i_in_out = 1:3
|
||||
plot(freqs, abs(squeeze(freqresp(GKM(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||
plot(freqs, abs(squeeze(freqresp(GKM(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@@ -938,11 +991,13 @@ xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
||||
legend('location', 'southeast');
|
||||
ylim([1e-8, 1e0]);
|
||||
|
||||
% SVD decoupling performances :noexport:
|
||||
% SVD decoupling performances
|
||||
% <<sec:decoupling_performances>>
|
||||
% As the SVD is applied on a *real approximation* of the plant dynamics at a frequency $\omega_0$, it is foreseen that the effectiveness of the decoupling depends on the validity of the real approximation.
|
||||
|
||||
% Let's do the SVD decoupling on a plant that is mostly real (low damping) and one with a large imaginary part (larger damping).
|
||||
|
||||
la = l/2; % Position of Act. [m]
|
||||
ha = 0; % Position of Act. [m]
|
||||
% Start with small damping, the obtained diagonal and off-diagonal terms are shown in Figure [[fig:gravimeter_svd_low_damping]].
|
||||
|
||||
c = 2e1; % Actuator Damping [N/(m/s)]
|
||||
|
||||
@@ -970,6 +1025,37 @@ H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
|
||||
[U,S,V] = svd(H1);
|
||||
Gsvd = inv(U)*G*inv(V');
|
||||
|
||||
figure;
|
||||
|
||||
% Magnitude
|
||||
hold on;
|
||||
for i_in = 1:3
|
||||
for i_out = [1:i_in-1, i_in+1:3]
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||
'DisplayName', '$G_{svd}(i,j)\ i \neq j$');
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
for i_in_out = 1:3
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{svd}(%d,%d)$', i_in_out, i_in_out));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
||||
legend('location', 'northwest');
|
||||
ylim([1e-8, 1e0]);
|
||||
|
||||
|
||||
|
||||
% #+name: fig:gravimeter_svd_low_damping
|
||||
% #+caption: Diagonal and off-diagonal term when decoupling with SVD on the gravimeter with small damping
|
||||
% #+RESULTS:
|
||||
% [[file:figs/gravimeter_svd_low_damping.png]]
|
||||
|
||||
% Now take a larger damping, the obtained diagonal and off-diagonal terms are shown in Figure [[fig:gravimeter_svd_high_damping]].
|
||||
|
||||
c = 5e2; % Actuator Damping [N/(m/s)]
|
||||
|
||||
%% Name of the Simulink File
|
||||
@@ -996,63 +1082,6 @@ H1 = pinv(D*real(H1'*diag(exp(j*angle(diag(H1*D*H1.'))/2))));
|
||||
[U,S,V] = svd(H1);
|
||||
Gsvdd = inv(U)*G*inv(V');
|
||||
|
||||
JMa = [1 0 -h/2
|
||||
0 1 l/2
|
||||
1 0 h/2
|
||||
0 1 0];
|
||||
|
||||
JMt = [1 0 -ha
|
||||
0 1 la
|
||||
0 1 -la];
|
||||
|
||||
GM = pinv(JMa)*G*pinv(JMt');
|
||||
GM.InputName = {'Fx', 'Fy', 'Mz'};
|
||||
GM.OutputName = {'Dx', 'Dy', 'Rz'};
|
||||
|
||||
figure;
|
||||
|
||||
% Magnitude
|
||||
hold on;
|
||||
for i_in = 1:3
|
||||
for i_out = [1:i_in-1, i_in+1:3]
|
||||
plot(freqs, abs(squeeze(freqresp(GM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
plot(freqs, abs(squeeze(freqresp(GM(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||
'DisplayName', '$G_x(i,j)\ i \neq j$');
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
for i_in_out = 1:3
|
||||
plot(freqs, abs(squeeze(freqresp(GM(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
||||
legend('location', 'southeast');
|
||||
ylim([1e-8, 1e0]);
|
||||
|
||||
figure;
|
||||
|
||||
% Magnitude
|
||||
hold on;
|
||||
for i_in = 1:3
|
||||
for i_out = [1:i_in-1, i_in+1:3]
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
end
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||
'DisplayName', '$G_x(i,j)\ i \neq j$');
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
for i_in_out = 1:3
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
||||
legend('location', 'southeast');
|
||||
ylim([1e-8, 1e0]);
|
||||
|
||||
figure;
|
||||
|
||||
% Magnitude
|
||||
@@ -1064,13 +1093,13 @@ for i_in = 1:3
|
||||
end
|
||||
end
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvdd(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,0,0.2], ...
|
||||
'DisplayName', '$G_x(i,j)\ i \neq j$');
|
||||
'DisplayName', '$G_{svd}(i,j)\ i \neq j$');
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
for i_in_out = 1:3
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvdd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_x(%d,%d)$', i_in_out, i_in_out));
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvdd(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_{svd}(%d,%d)$', i_in_out, i_in_out));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Magnitude');
|
||||
legend('location', 'southeast');
|
||||
legend('location', 'northwest');
|
||||
ylim([1e-8, 1e0]);
|
||||
|
1969
index.html
1
index.html
Symbolic link
@@ -0,0 +1 @@
|
||||
svd-control.html
|
BIN
matlab/suspended_mass.slx
Normal file
@@ -108,7 +108,7 @@ plot(freqs, abs(squeeze(freqresp(Gu(i_out, i_in), freqs, 'Hz'))), 'color', [0,0,
|
||||
'DisplayName', '$G_u(i,j)\ i \neq j$');
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
for i_in_out = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Gu(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_u(%d,%d)$', i_in_out, i_in_out));
|
||||
plot(freqs, abs(squeeze(freqresp(Gu(i_in_out, i_in_out), freqs, 'Hz'))), 'DisplayName', sprintf('$G_u(%d,%d)$', i_in_out, i_in_out));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@@ -246,21 +246,21 @@ ylim([1e-3, 1e3]);
|
||||
RGA_coupled = zeros(length(freqs), size(Gu,1), size(Gu,2));
|
||||
Gu_inv = inv(Gu);
|
||||
for f_i = 1:length(freqs)
|
||||
RGA_coupled(f_i, :, :) = abs(evalfr(Gu, j*2*pi*freqs(f_i)).*evalfr(Gu_inv, j*2*pi*freqs(f_i))');
|
||||
RGA_coupled(f_i, :, :) = abs(evalfr(Gu, j*2*pi*freqs(f_i)).*evalfr(Gu_inv, j*2*pi*freqs(f_i))');
|
||||
end
|
||||
|
||||
% Relative Gain Array for the decoupled plant using SVD:
|
||||
RGA_svd = zeros(length(freqs), size(Gsvd,1), size(Gsvd,2));
|
||||
Gsvd_inv = inv(Gsvd);
|
||||
for f_i = 1:length(freqs)
|
||||
RGA_svd(f_i, :, :) = abs(evalfr(Gsvd, j*2*pi*freqs(f_i)).*evalfr(Gsvd_inv, j*2*pi*freqs(f_i))');
|
||||
RGA_svd(f_i, :, :) = abs(evalfr(Gsvd, j*2*pi*freqs(f_i)).*evalfr(Gsvd_inv, j*2*pi*freqs(f_i))');
|
||||
end
|
||||
|
||||
% Relative Gain Array for the decoupled plant using the Jacobian:
|
||||
RGA_x = zeros(length(freqs), size(Gx,1), size(Gx,2));
|
||||
Gx_inv = inv(Gx);
|
||||
for f_i = 1:length(freqs)
|
||||
RGA_x(f_i, :, :) = abs(evalfr(Gx, j*2*pi*freqs(f_i)).*evalfr(Gx_inv, j*2*pi*freqs(f_i))');
|
||||
RGA_x(f_i, :, :) = abs(evalfr(Gx, j*2*pi*freqs(f_i)).*evalfr(Gx_inv, j*2*pi*freqs(f_i))');
|
||||
end
|
||||
|
||||
figure;
|
||||
@@ -280,8 +280,8 @@ plot(freqs, RGA_svd(:, 1, 2), '--', 'color', [0 0 0 0.2], ...
|
||||
plot(freqs, RGA_svd(:, 1, 1), 'k-', ...
|
||||
'DisplayName', '$RGA_{SVD}(i,i)$');
|
||||
for ch_i = 1:6
|
||||
plot(freqs, RGA_svd(:, ch_i, ch_i), 'k-', ...
|
||||
'HandleVisibility', 'off');
|
||||
plot(freqs, RGA_svd(:, ch_i, ch_i), 'k-', ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@@ -302,8 +302,8 @@ plot(freqs, RGA_x(:, 1, 2), '--', 'color', [0 0 0 0.2], ...
|
||||
plot(freqs, RGA_x(:, 1, 1), 'k-', ...
|
||||
'DisplayName', '$RGA_{X}(i,i)$');
|
||||
for ch_i = 1:6
|
||||
plot(freqs, RGA_x(:, ch_i, ch_i), 'k-', ...
|
||||
'HandleVisibility', 'off');
|
||||
plot(freqs, RGA_x(:, ch_i, ch_i), 'k-', ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@@ -335,8 +335,8 @@ plot(freqs, abs(squeeze(freqresp(Gsvd(1, 2), freqs, 'Hz'))), 'color', [0,0,0,0.5
|
||||
'DisplayName', '$G_{SVD}(i,j),\ i \neq j$');
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
for ch_i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))), ...
|
||||
'DisplayName', sprintf('$G_{SVD}(%i,%i)$', ch_i, ch_i));
|
||||
plot(freqs, abs(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))), ...
|
||||
'DisplayName', sprintf('$G_{SVD}(%i,%i)$', ch_i, ch_i));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@@ -348,7 +348,7 @@ ylim([1e-1, 1e5])
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for ch_i = 1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))));
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gsvd(ch_i, ch_i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
@@ -450,16 +450,16 @@ ax1 = nexttile([2, 1]);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(L_svd(1, 1), freqs, 'Hz'))), 'DisplayName', '$L_{SVD}(i,i)$');
|
||||
for i_in_out = 2:6
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
plot(freqs, abs(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
plot(freqs, abs(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
|
||||
end
|
||||
|
||||
set(gca,'ColorOrderIndex',2)
|
||||
plot(freqs, abs(squeeze(freqresp(L_cen(1, 1), freqs, 'Hz'))), ...
|
||||
'DisplayName', '$L_{J}(i,i)$');
|
||||
for i_in_out = 2:6
|
||||
set(gca,'ColorOrderIndex',2)
|
||||
plot(freqs, abs(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
|
||||
set(gca,'ColorOrderIndex',2)
|
||||
plot(freqs, abs(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))), 'HandleVisibility', 'off');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@@ -471,13 +471,13 @@ ylim([5e-2, 2e3])
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
for i_in_out = 1:6
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',1)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(L_svd(i_in_out, i_in_out), freqs, 'Hz'))));
|
||||
end
|
||||
set(gca,'ColorOrderIndex',2)
|
||||
for i_in_out = 1:6
|
||||
set(gca,'ColorOrderIndex',2)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',2)
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(L_cen(i_in_out, i_in_out), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
|