Update matlab script
This commit is contained in:
parent
93a2bb9f5a
commit
c23ffb5870
@ -4,7 +4,7 @@ clear; close all; clc;
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
freqs = logspace(-1, 2, 1000);
|
||||
freqs = logspace(-1, 3, 1000);
|
||||
|
||||
% Gravimeter Model - Parameters
|
||||
% <<sec:gravimeter_model>>
|
||||
@ -107,7 +107,7 @@ for out_i = 1:4
|
||||
xlim([1e-1, 2e1]); ylim([1e-4, 1e0]);
|
||||
|
||||
if in_i == 1
|
||||
ylabel('Amplitude [m/N]')
|
||||
ylabel('Amplitude [$\frac{m/s^2}{N}$]')
|
||||
else
|
||||
set(gca, 'YTickLabel',[]);
|
||||
end
|
||||
@ -156,6 +156,12 @@ size(Gx)
|
||||
|
||||
% The diagonal and off-diagonal elements of $G_x$ are shown in Figure [[fig:gravimeter_jacobian_plant]].
|
||||
|
||||
% It is shown at the system is:
|
||||
% - decoupled at high frequency thanks to a diagonal mass matrix (the Jacobian being evaluated at the center of mass of the payload)
|
||||
% - coupled at low frequency due to the non-diagonal terms in the stiffness matrix, especially the term corresponding to a coupling between a force in the x direction to a rotation around z (due to the torque applied by the stiffness 1).
|
||||
|
||||
% The choice of the frame in this the Jacobian is evaluated is discussed in Section [[sec:choice_jacobian_reference]].
|
||||
|
||||
|
||||
figure;
|
||||
|
||||
@ -538,12 +544,10 @@ w0 = 2*pi*0.1; % Controller Pole [rad/s]
|
||||
|
||||
K_cen = diag(1./diag(abs(evalfr(Gx, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
|
||||
L_cen = K_cen*Gx;
|
||||
G_cen = feedback(G, pinv(Jt')*K_cen*pinv(Ja));
|
||||
|
||||
K_svd = diag(1./diag(abs(evalfr(Gsvd, j*wc))))*(1/abs(evalfr(1/(1 + s/w0), j*wc)))/(1 + s/w0);
|
||||
L_svd = K_svd*Gsvd;
|
||||
U_inv = inv(U);
|
||||
G_svd = feedback(G, inv(V')*K_svd*U_inv(1:3, :));
|
||||
|
||||
|
||||
|
||||
@ -598,6 +602,43 @@ linkaxes([ax1,ax2],'x');
|
||||
% Closed-Loop system Performances
|
||||
% <<sec:gravimeter_closed_loop_results>>
|
||||
|
||||
% Now the system is identified again with additional inputs and outputs:
|
||||
% - $x$, $y$ and $R_z$ ground motion
|
||||
% - $x$, $y$ and $R_z$ acceleration of the payload.
|
||||
|
||||
|
||||
%% Name of the Simulink File
|
||||
mdl = 'gravimeter';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Dx'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Dy'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Rz'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Abs_Motion'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Abs_Motion'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Abs_Motion'], 3, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
|
||||
G = linearize(mdl, io);
|
||||
G.InputName = {'Dx', 'Dy', 'Rz', 'F1', 'F2', 'F3'};
|
||||
G.OutputName = {'Ax', 'Ay', 'Arz', 'Ax1', 'Ay1', 'Ax2', 'Ay2'};
|
||||
|
||||
|
||||
|
||||
% The loop is closed using the developed controllers.
|
||||
|
||||
G_cen = lft(G, -pinv(Jt')*K_cen*pinv(Ja));
|
||||
G_svd = lft(G, -inv(V')*K_svd*U_inv(1:3, :));
|
||||
|
||||
|
||||
|
||||
% Let's first verify the stability of the closed-loop systems:
|
||||
|
||||
isstable(G_cen)
|
||||
@ -629,9 +670,9 @@ tiledlayout(1, 3, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G( 1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen(1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd(1,1)/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
|
||||
plot(freqs, abs(squeeze(freqresp(G( 'Ax','Dx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen('Ax','Dx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd('Ax','Dx')/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Transmissibility'); xlabel('Frequency [Hz]');
|
||||
@ -640,9 +681,9 @@ legend('location', 'southwest');
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G( 2,2)/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen(2,2)/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd(2,2)/s^2, freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G( 'Ay','Dy')/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen('Ay','Dy')/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd('Ay','Dy')/s^2, freqs, 'Hz'))), '--');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
|
||||
@ -650,9 +691,9 @@ title('$D_y/D_{w,y}$');
|
||||
|
||||
ax3 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G( 3,3)/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen(3,3)/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd(3,3)/s^2, freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G( 'Arz','Rz')/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen('Arz','Rz')/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd('Arz','Rz')/s^2, freqs, 'Hz'))), '--');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
|
||||
@ -660,7 +701,7 @@ title('$R_z/R_{w,z}$');
|
||||
|
||||
linkaxes([ax1,ax2,ax3],'xy');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
xlim([1e-2, 5e1]); ylim([1e-7, 1e-2]);
|
||||
xlim([1e-2, 5e1]); ylim([1e-2, 1e1]);
|
||||
|
||||
|
||||
|
||||
@ -686,8 +727,10 @@ for out_i = 1:3
|
||||
end
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Transmissibility'); xlabel('Frequency [Hz]');
|
||||
ylim([1e-6, 1e3]);
|
||||
|
||||
% Robustness to a change of actuator position
|
||||
% <<sec:robustness_actuator_position>>
|
||||
|
||||
% Let say we change the position of the actuators:
|
||||
|
||||
@ -699,26 +742,36 @@ mdl = 'gravimeter';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Dx'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Dy'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Rz'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F1'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F2'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/F3'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Abs_Motion'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Abs_Motion'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Abs_Motion'], 3, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_side'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_side'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_top'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Acc_top'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
|
||||
G = linearize(mdl, io);
|
||||
G.InputName = {'F1', 'F2', 'F3'};
|
||||
G.OutputName = {'Ax1', 'Ay1', 'Ax2', 'Ay2'};
|
||||
|
||||
G_cen_b = feedback(G, pinv(Jt')*K_cen*pinv(Ja));
|
||||
G_svd_b = feedback(G, inv(V')*K_svd*U_inv(1:3, :));
|
||||
G.InputName = {'Dx', 'Dy', 'Rz', 'F1', 'F2', 'F3'};
|
||||
G.OutputName = {'Ax', 'Ay', 'Arz', 'Ax1', 'Ay1', 'Ax2', 'Ay2'};
|
||||
|
||||
|
||||
|
||||
% The new plant is computed, and the centralized and SVD control architectures are applied using the previsouly computed Jacobian matrices and $U$ and $V$ matrices.
|
||||
% The loop is closed using the developed controllers.
|
||||
|
||||
% The closed-loop system are still stable, and their
|
||||
G_cen_b = lft(G, -pinv(Jt')*K_cen*pinv(Ja));
|
||||
G_svd_b = lft(G, -inv(V')*K_svd*U_inv(1:3, :));
|
||||
|
||||
|
||||
|
||||
% The new plant is computed, and the centralized and SVD control architectures are applied using the previously computed Jacobian matrices and $U$ and $V$ matrices.
|
||||
|
||||
% The closed-loop system are still stable in both cases, and the obtained transmissibility are equivalent as shown in Figure [[fig:gravimeter_transmissibility_offset_act]].
|
||||
|
||||
|
||||
freqs = logspace(-2, 2, 1000);
|
||||
@ -728,9 +781,9 @@ tiledlayout(1, 3, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen(1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Initial');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen_b(1,1)/s^2, freqs, 'Hz'))), 'DisplayName', 'Jacobian');
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd_b(1,1)/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen( 'Ax','Dx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Open-Loop');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen_b('Ax','Dx')/s^2, freqs, 'Hz'))), 'DisplayName', 'Centralized');
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd_b('Ax','Dx')/s^2, freqs, 'Hz'))), '--', 'DisplayName', 'SVD');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Transmissibility'); xlabel('Frequency [Hz]');
|
||||
@ -739,9 +792,9 @@ legend('location', 'southwest');
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen(2,2)/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen_b(2,2)/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd_b(2,2)/s^2, freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen( 'Ay','Dy')/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen_b('Ay','Dy')/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd_b('Ay','Dy')/s^2, freqs, 'Hz'))), '--');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
|
||||
@ -749,9 +802,9 @@ title('$D_y/D_{w,y}$');
|
||||
|
||||
ax3 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen(3,3)/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen_b(3,3)/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd_b(3,3)/s^2, freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen( 'Arz','Rz')/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_cen_b('Arz','Rz')/s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G_svd_b('Arz','Rz')/s^2, freqs, 'Hz'))), '--');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
set(gca, 'YTickLabel',[]); xlabel('Frequency [Hz]');
|
||||
@ -759,7 +812,7 @@ title('$R_z/R_{w,z}$');
|
||||
|
||||
linkaxes([ax1,ax2,ax3],'xy');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
xlim([1e-2, 5e1]); ylim([1e-7, 3e-4]);
|
||||
xlim([1e-2, 5e1]); ylim([1e-2, 1e1]);
|
||||
|
||||
% Decoupling of the mass matrix
|
||||
|
||||
@ -939,6 +992,7 @@ legend('location', 'southeast');
|
||||
ylim([1e-8, 1e0]);
|
||||
|
||||
% SVD decoupling performances
|
||||
% <<sec:decoupling_performances>>
|
||||
% As the SVD is applied on a *real approximation* of the plant dynamics at a frequency $\omega_0$, it is foreseen that the effectiveness of the decoupling depends on the validity of the real approximation.
|
||||
|
||||
% Let's do the SVD decoupling on a plant that is mostly real (low damping) and one with a large imaginary part (larger damping).
|
||||
|
Loading…
Reference in New Issue
Block a user