16 KiB
Glossary and Acronyms - Tables
| label | name | description |
|---|---|---|
| ka | \ensuremath{k_a} | Actuator Stiffness in |
| phi | \ensuremath{ɸ} | A woody bush |
| key | abbreviation | full form |
|---|---|---|
| mimo | MIMO | Multiple-Inputs Multiple-Outputs |
| siso | SISO | Single-Input Single-Output |
| nass | NASS | Nano Active Stabilization System |
| lti | LTI | Linear Time Invariant |
Title Page
Abstract
Résumé
Acknowledgments
Table of Contents
Introduction
Test
minitoc
Test
- acronyms acrshort:nass acrshort:mimo acrshort:lti Single-Input Single-Output (SISO)
- glossary terms gls:ka, gls:phi.
- Bibliography citations: cite:&dehaeze21_activ_dampin_rotat_platf_using;&dehaeze21_mechat_approac_devel_nano_activ_stabil_system.
Some Footnote1
blabla
sdlfk
sldkjf asdf
lksdfjasd
lksdfjasd
lksdfjasd
blabla
Source Blocks
Figures
Table Result
x = 1:10;
y = x.^2;
| $x$ | $y = x^2$ |
|---|---|
| 1 | 1 |
| 2 | 4 |
| 3 | 9 |
| 4 | 16 |
| 5 | 25 |
| 6 | 36 |
| 7 | 49 |
| 8 | 64 |
| 9 | 81 |
| 10 | 100 |
Inline Results
Results can be automatically outputed as shown below.
sqrt(2)
1.4142
y
y =
1 4 9 16 25 36 49 64 81 100
Caption and Reference
Captions can be added to code blocks. Moreover, we can link to specific bode blocks (Listing lst:matlab_figure or lst:matlab_svd).
figure;
[X,Y,Z] = peaks;
contour(X,Y,Z,20)
A = [1 2; 3 4; 5 6; 7 8]
[U,S,V] = svd(A)
A = [1 2; 3 4; 5 6; 7 8]
A =
1 2
3 4
5 6
7 8
[U,S,V] = svd(A)
U =
-0.152483233310201 -0.82264747222566 -0.394501022283829 -0.379959133877596
-0.349918371807964 -0.42137528768458 0.242796545704357 0.800655879510063
-0.547353510305727 -0.0201031031435029 0.697909975442776 -0.461434357387336
-0.74478864880349 0.381169081397575 -0.546205498863303 0.0407376117548695
S =
14.2690954992615 0
0 0.626828232417541
0 0
0 0
V =
-0.641423027995072 0.767187395072177
-0.767187395072177 -0.641423027995072
Source Blocks with Line Numbers
Citation cite:&taghirad13_paral;&dehaeze21_activ_dampin_rotat_platf_using
The Listing lst:matlab_line_numbers has line numbers as the -n option was used.
Specific lines of codes can be referenced. For instance, the code used to specify the wanted the vertical label is on line (test).
figure;
plot(t, x)
xlabel('Time [s]');
ylabel('Output [V]'); (ref:test)
Numbering can be continued by using +n option as shown below.
figure;
plot(t, u)
xlabel('Time [s]');
ylabel('Input [V]');
Images
Normal Image
Figure fig:general_control_names shows the results of the Tikz code of listing lst:tikz_test.
\begin{tikzpicture}
% Blocs
\node[block={2.0cm}{2.0cm}] (P) {$P$};
\node[block={1.5cm}{1.5cm}, below=0.7 of P] (K) {$K$};
% Input and outputs coordinates
\coordinate[] (inputw) at ($(P.south west)!0.75!(P.north west)$);
\coordinate[] (inputu) at ($(P.south west)!0.25!(P.north west)$);
\coordinate[] (outputz) at ($(P.south east)!0.75!(P.north east)$);
\coordinate[] (outputv) at ($(P.south east)!0.25!(P.north east)$);
% Connections and labels
\draw[<-] (inputw) node[above left, align=right]{(weighted)\\exogenous inputs\\$w$} -- ++(-1.5, 0);
\draw[<-] (inputu) -- ++(-0.8, 0) |- node[left, near start, align=right]{control signals\\$u$} (K.west);
\draw[->] (outputz) node[above right, align=left]{(weighted)\\exogenous outputs\\$z$} -- ++(1.5, 0);
\draw[->] (outputv) -- ++(0.8, 0) |- node[right, near start, align=left]{sensed output\\$v$} (K.east);
\end{tikzpicture}
Sub Images
Link to subfigure fig:general_control_names_1.
| file:figs/general_control_names.png | file:figs/general_control_names.png |
| <<fig:general_control_names_1>> sub figure caption | <<fig:general_control_names_2>> sub figure caption |
Tables
Table tab:table_with_equations shows a table with some mathematics inside.
| $N$ | $N^2$ | $N^3$ | $N^4$ | $\sqrt n$ | $\sqrt[4]N$ |
|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 4 | 8 | 16 | 1.4142136 | 1.1892071 |
| 3 | 9 | 27 | 81 | 1.7320508 | 1.3160740 |
| 1 | 2 | 3 | 4 | 5 | |
| 1 | 1 | 2 | 3 | 4 | 5 |
| 2 | 2 | 4 | 6 | 8 | 10 |
| 3 | 3 | 6 | 9 | 12 | 15 |
| 4 | 4 | 8 | 12 | 16 | 20 |
| 5 | 5 | 10 | 15 | 20 | 25 |
| Classical Control | Modern Control | Robust Control | |
|---|---|---|---|
| Date | 1930- | 1960- | 1980- |
| Tools | Transfer Functions | State Space formulation | Disk margin |
| Nyquist Plots | Riccati Equations | Systems and Signals Norms ($\mathcal{H}_\infty$, $\mathcal{H}_2$ Norms) | |
| Bode Plots | Closed Loop Transfer Functions | ||
| Phase and Gain margins | Weighting Functions | ||
| Control Architectures | Proportional, Integral, Derivative | Full State Feedback | General Control Configuration |
| Leads, Lags | LQR, LQG | ||
| Kalman Filters | |||
| Advantages | Study Stability | Automatic Synthesis | Automatic Synthesis |
| Simple | MIMO | MIMO | |
| Natural | Optimization Problem | Optimization Problem | |
| Guaranteed Robustness | |||
| Easy specification of performances | |||
| Disadvantages | Manual Method | No Guaranteed Robustness | Required knowledge of specific tools |
| Only SISO | Difficult Rejection of Perturbations | Need a reasonably good model of the system |
Bibliography
Glossary
Appendix
Mathematical formulas
Comments on something
Footnotes
1this is a footnote with citation cite:&dehaeze21_mechat_approac_devel_nano_activ_stabil_system.


