Use luatex, verify glossary
This commit is contained in:
447
phd-thesis.tex
447
phd-thesis.tex
@@ -1,4 +1,4 @@
|
||||
% Created 2023-01-31 Tue 23:33
|
||||
% Created 2024-04-12 Fri 09:30
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[a4paper, twoside, 11pt, onecolumn, bibliography=totoc, openright, appendixprefix=true]{scrreprt}
|
||||
|
||||
@@ -7,12 +7,14 @@
|
||||
\newacronym{siso}{SISO}{Single-Input Single-Output}
|
||||
\newacronym{nass}{NASS}{Nano Active Stabilization System}
|
||||
\newacronym{lti}{LTI}{Linear Time Invariant}
|
||||
\newacronym{esrf}{ESRF}{European Synchrotron Radiation Facility}
|
||||
\newglossaryentry{ka}{name=\ensuremath{k_a},description={{Actuator Stiffness in}}}
|
||||
\newglossaryentry{phi}{name=\ensuremath{\phi},description={{A woody bush}}}
|
||||
\input{config_extra.tex}
|
||||
\addbibresource{ref.bib}
|
||||
\addbibresource{phd-thesis.bib}
|
||||
\author{Dehaeze Thomas}
|
||||
\date{2023-01-31}
|
||||
\date{2024-04-12}
|
||||
\title{Mechatronic approach for the design of a Nano Active Stabilization System}
|
||||
\subtitle{PhD Thesis}
|
||||
\hypersetup{
|
||||
@@ -20,7 +22,7 @@
|
||||
pdftitle={Mechatronic approach for the design of a Nano Active Stabilization System},
|
||||
pdfkeywords={},
|
||||
pdfsubject={},
|
||||
pdfcreator={Emacs 28.2 (Org mode 9.5.2)},
|
||||
pdfcreator={Emacs 29.3 (Org mode 9.6)},
|
||||
pdflang={English}}
|
||||
\usepackage{biblatex}
|
||||
|
||||
@@ -56,6 +58,7 @@
|
||||
\newpage
|
||||
|
||||
\chapter*{Abstract}
|
||||
\gls{phi}
|
||||
|
||||
\chapter*{Résumé}
|
||||
|
||||
@@ -71,7 +74,7 @@
|
||||
\section{Context of this thesis / Background and Motivation}
|
||||
|
||||
\begin{itemize}
|
||||
\item ESRF (Figure \ref{fig:esrf_picture})
|
||||
\item \gls{esrf} (Figure \ref{fig:esrf_picture})
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
@@ -98,13 +101,14 @@ Alternative: \texttt{id31\_microstation\_cad\_view.png} (CAD view)
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=0.49\linewidth]{figs/id31_beamline_schematic.png}
|
||||
\includegraphics[scale=1,width=\linewidth]{figs/id31_beamline_schematic.png}
|
||||
\caption{\label{fig:id31_beamline_schematic}ID31 Beamline Schematic. With light source, nano-focusing optics, sample stage and detector.}
|
||||
\end{figure}
|
||||
|
||||
\begin{itemize}
|
||||
\item Few words about science made on ID31 and why nano-meter accuracy is required
|
||||
\item Typical experiments (tomography, \ldots{}), various samples (up to 50kg)
|
||||
\item Where to explain the goal of each stage? (e.g. micro-hexapod: static positioning, Ty and Rz: scans, \ldots{})
|
||||
\item Example of picture obtained (Figure \ref{fig:id31_tomography_result})
|
||||
\end{itemize}
|
||||
|
||||
@@ -116,6 +120,8 @@ Alternative: \texttt{id31\_microstation\_cad\_view.png} (CAD view)
|
||||
|
||||
\begin{itemize}
|
||||
\item Explain wanted positioning accuracy and why micro-station cannot have this accuracy (backlash, play, thermal expansion, \ldots{})
|
||||
|
||||
\item Speak about the metrology concept, and why it is not included in this thesis
|
||||
\end{itemize}
|
||||
|
||||
\section{Challenge definition}
|
||||
@@ -161,6 +167,7 @@ First hexapod with control bandwidth higher than the suspension modes that accep
|
||||
\cite{hanieh03_activ_stewar}
|
||||
\cite{afzali-far16_vibrat_dynam_isotr_hexap_analy_studies}
|
||||
\cite{naves20_desig}
|
||||
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org}
|
||||
\item Positioning stations
|
||||
\item Mechatronic approach?
|
||||
\cite{rankers98_machin}
|
||||
@@ -184,29 +191,40 @@ Because of this, the designer wants to be able to predict the performance of the
|
||||
\caption{\label{fig:nass_mechatronics_approach}Overview of the mechatronic approach used for the Nano-Active-Stabilization-System}
|
||||
\end{figure}
|
||||
|
||||
\textbf{Goals}:
|
||||
\begin{itemize}
|
||||
\item Design \gls{nass} such that it is easy to control (and maintain).
|
||||
Have good performances by design and not by complex control strategies.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\textbf{Models}:
|
||||
\begin{itemize}
|
||||
\item Uniaxial Model:
|
||||
\begin{itemize}
|
||||
\item Effect of limited support compliance
|
||||
\item Effect of change of payload
|
||||
\end{itemize}
|
||||
\item Rotating Model
|
||||
\begin{itemize}
|
||||
\item Gyroscopic effects
|
||||
\end{itemize}
|
||||
\item Multi Body Model
|
||||
\item Finite Element Models
|
||||
\end{itemize}
|
||||
|
||||
\chapter{Conceptual Design Development}
|
||||
\minitoc
|
||||
\paragraph{Abstract}
|
||||
|
||||
Schematic that summarizes this phase.
|
||||
Uniaxial => Rotation => Multi body => Simulations
|
||||
|
||||
\section{Constrains on the system}
|
||||
|
||||
\begin{itemize}
|
||||
\item Size
|
||||
\item Payload
|
||||
\item Connections to samples
|
||||
\item \ldots{} should justify the nano-hexapod design
|
||||
\begin{itemize}
|
||||
\item choice of parallel architecture
|
||||
\end{itemize}
|
||||
|
||||
\item[{$\square$}] Picture/schematic of the micro-station with indicated location of Nano-Hexapod
|
||||
\end{itemize}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=\linewidth]{figs/chapter1_overview.png}
|
||||
\caption{\label{fig:chapter1_overview}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\section{Uni-axial Model}
|
||||
|
||||
\begin{itemize}
|
||||
\item Explain what we want to capture with this model
|
||||
\item Schematic of the uniaxial model (with X-ray)
|
||||
@@ -222,7 +240,16 @@ Uniaxial => Rotation => Multi body => Simulations
|
||||
\caption{\label{fig:mass_spring_damper_nass}3-DoF uniaxial mass-spring-damper model of the NASS}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Noise Budgeting}
|
||||
\subsection{Micro Station Model}
|
||||
\subsection{Nano Hexapod Model}
|
||||
\subsection{Disturbance Identification}
|
||||
\subsection{Open Loop Dynamic Noise Budgeting}
|
||||
|
||||
\begin{itemize}
|
||||
\item List all disturbances with their spectral densities
|
||||
\item Show how they have been measured
|
||||
\item Say that repeatable errors can be calibrated (show measurement of Hans-Peter?)
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@@ -236,25 +263,6 @@ Uniaxial => Rotation => Multi body => Simulations
|
||||
\caption{\label{fig:asd_ground_motion_ustation_dist}Amplitude Spectral density of the measured disturbance sources}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Effect of support compliance}
|
||||
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty\_support.org}{study}
|
||||
|
||||
\begin{itemize}
|
||||
\item \textbf{goal}: make the nano-hexapod independent of the support compliance
|
||||
\item Simple 2DoF model
|
||||
\item Generalized to any support compliance
|
||||
\item \textbf{conclusion}: frequency of nano-hexapod resonances should be lower than first suspension mode of the support
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Effect of payload dynamics}
|
||||
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty\_payload.org}{study}
|
||||
|
||||
\begin{itemize}
|
||||
\item \textbf{goal}: be robust to a change of payload
|
||||
\item Simple 2DoF model
|
||||
\item Generalized to any payload dynamics
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Active Damping}
|
||||
|
||||
Conclusion: IFF is better for this application
|
||||
@@ -276,10 +284,35 @@ Conclusion: IFF is better for this application
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\section{Effect of rotation}
|
||||
\cite{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb,dehaeze21_activ_dampin_rotat_platf_using}
|
||||
\subsection{Position Feedback Controller}
|
||||
\subsection{Effect of support compliance}
|
||||
|
||||
\subsection{X-Y rotating platform model}
|
||||
\begin{itemize}
|
||||
\item \textbf{goal}: make the nano-hexapod independent of the support compliance
|
||||
\item Simple 2DoF model
|
||||
\item Generalized to any support compliance
|
||||
\item \textbf{conclusion}: frequency of nano-hexapod resonances should be lower than first suspension mode of the support
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Effect of payload dynamics}
|
||||
|
||||
\begin{itemize}
|
||||
\item \textbf{goal}: be robust to a change of payload
|
||||
\item Simple 2DoF model
|
||||
\item Generalized to any payload dynamics
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Conclusion}
|
||||
|
||||
\section{Effect of rotation}
|
||||
|
||||
Papers:
|
||||
\begin{itemize}
|
||||
\item \cite{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb}
|
||||
\item \cite{dehaeze21_activ_dampin_rotat_platf_using}
|
||||
\end{itemize}
|
||||
|
||||
\subsection{System Description and Analysis}
|
||||
|
||||
\begin{itemize}
|
||||
\item x-y-Rz model
|
||||
@@ -294,25 +327,24 @@ Conclusion: IFF is better for this application
|
||||
\caption{\label{fig:2dof_rotating_system}Mass spring damper model of an X-Y stage on top of a rotating stage}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Effect of rotational velocity on the system dynamics}
|
||||
|
||||
\begin{itemize}
|
||||
\item Campbell diagram
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Decentralized Integral Force Feedback}
|
||||
\subsection{Integral Force Feedback}
|
||||
|
||||
\begin{itemize}
|
||||
\item Control diagram
|
||||
\item Root Locus: unstable with pure IFF
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Two proposed modification of IFF}
|
||||
\subsection{IFF with an High Pass Filter}
|
||||
|
||||
\begin{itemize}
|
||||
\item Comparison of parallel stiffness and change of controller
|
||||
\item Transmissibility
|
||||
\end{itemize}
|
||||
\subsection{IFF with a stiffness in parallel with the force sensor}
|
||||
|
||||
\subsection{Relative Damping Control}
|
||||
|
||||
\subsection{Comparison of Active Damping Techniques}
|
||||
|
||||
\subsection{Rotating Nano-Hexapod}
|
||||
|
||||
\subsection{Nano Active Stabilization System with rotation}
|
||||
|
||||
\subsection{Conclusion}
|
||||
|
||||
@@ -323,7 +355,56 @@ Conclusion: IFF is better for this application
|
||||
\item APA is a nice architecture for parallel stiffness + integrated force sensor (have to speak about IFF before that)
|
||||
\end{itemize}
|
||||
|
||||
\section{Multi Body Model - Nano Hexapod}
|
||||
\section{Micro Station - Modal Analysis}
|
||||
Conclusion:
|
||||
\begin{itemize}
|
||||
\item complex dynamics: need multi-body model of the micro-station to represent the limited compliance\ldots{}
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Measurement Setup}
|
||||
|
||||
\subsection{Frequency Analysis}
|
||||
|
||||
\subsection{Modal Analysis}
|
||||
|
||||
\section{Micro Station - Multi Body Model}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=0.7\linewidth]{figs/simscape_first_model_screenshot.jpg}
|
||||
\caption{\label{fig:simscape_first_model_screenshot}3D view of the multi-body model of the micro-station}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Kinematics}
|
||||
|
||||
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/kinematics.org}
|
||||
|
||||
\begin{itemize}
|
||||
\item Small overview of each stage and associated stiffnesses / inertia
|
||||
\item schematic that shows to considered DoF
|
||||
\item import from CAD
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Modal Analysis and Dynamic Modeling}
|
||||
\begin{itemize}
|
||||
\item Picture of the experimental setup
|
||||
\item Location of accelerometers
|
||||
\item Show obtained modes
|
||||
\item Validation of rigid body assumption
|
||||
\item Explain how this helps tuning the multi-body model
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Disturbances and Positioning errors}
|
||||
|
||||
\subsection{Validation of the Model}
|
||||
|
||||
\begin{itemize}
|
||||
\item Most important metric: support compliance
|
||||
\item Compare model and measurement
|
||||
\end{itemize}
|
||||
|
||||
\section{Nano Hexapod - Multi Body Model}
|
||||
|
||||
\begin{itemize}
|
||||
\item What we want to capture with this model
|
||||
\item Explain what is a multi body model (rigid body, springs, etc\ldots{})
|
||||
@@ -333,7 +414,26 @@ Conclusion: IFF is better for this application
|
||||
|
||||
\subsection{Stewart Platform Architecture}
|
||||
|
||||
\begin{figure}
|
||||
\begin{subfigure}{0.49\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=1,width=0.8\linewidth]{stewart_architecture_example.png}
|
||||
\end{center}
|
||||
\subcaption{Initial position}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.49\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=1,width=0.8\linewidth]{stewart_architecture_example_pose.png}
|
||||
\end{center}
|
||||
\subcaption{After some motion}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:stewart_platform_architecture}Stewart Platform Architecture}
|
||||
\end{figure}
|
||||
|
||||
Configurable Simscape Model: \url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org}
|
||||
\begin{itemize}
|
||||
\item Explain the different frames, etc\ldots{}
|
||||
|
||||
\item Little review
|
||||
\item explain key elements:
|
||||
\begin{itemize}
|
||||
@@ -359,12 +459,15 @@ Conclusion: IFF is better for this application
|
||||
\item Piezoelectric effects
|
||||
\item mass spring damper representation (2dof)
|
||||
\item Compare the model and the experiment
|
||||
\item Here, just a basic 2DoF model of the APA is used
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Dynamics}
|
||||
\subsection{Dynamics of the Nano-Hexapod}
|
||||
|
||||
\begin{itemize}
|
||||
\item Effect of joints stiffnesses
|
||||
|
||||
\item[{$\square$}] The APA model should maybe not be used here, same for the nice top and bottom plates. Here the detailed design is not yet performed
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
@@ -373,46 +476,24 @@ Conclusion: IFF is better for this application
|
||||
\caption{\label{fig:simscape_nano_hexapod}3D view of the multi-body model of the Nano-Hexapod (simplified)}
|
||||
\end{figure}
|
||||
|
||||
\section{Multi Body Model - Micro Station}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=0.7\linewidth]{figs/simscape_first_model_screenshot.jpg}
|
||||
\caption{\label{fig:simscape_first_model_screenshot}3D view of the multi-body model of the micro-station}
|
||||
\end{figure}
|
||||
\section{Control Architecture - Concept Validation}
|
||||
|
||||
\subsection{Kinematics}
|
||||
|
||||
\begin{itemize}
|
||||
\item Small overview of each stage and associated stiffnesses / inertia
|
||||
\item schematic that shows to considered DoF
|
||||
\item import from CAD
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Modal Analysis}
|
||||
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-measurements/modal-analysis/index.org}{study}
|
||||
|
||||
\begin{itemize}
|
||||
\item Picture of the experimental setup
|
||||
\item Location of accelerometers
|
||||
\item Show obtained modes
|
||||
\item Validation of rigid body assumption
|
||||
\item Explain how this helps tuning the multi-body model
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Validation of the Model}
|
||||
|
||||
\begin{itemize}
|
||||
\item Most important metric: support compliance
|
||||
\item Compare model and measurement
|
||||
\end{itemize}
|
||||
|
||||
\section{Control Architecture}
|
||||
Discussion of:
|
||||
\begin{itemize}
|
||||
\item Transformation matrices / control architecture
|
||||
\item Transformation matrices / control architecture (computation of the position error in the frame of the nano-hexapod)
|
||||
\item Control of parallel architectures
|
||||
\item Control in the frame of struts or cartesian?
|
||||
\item Effect of rotation on IFF? => APA
|
||||
\item HAC-LAC
|
||||
\item New noise budgeting?
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Control Kinematics}
|
||||
|
||||
\begin{itemize}
|
||||
\item Explain how the position error can be expressed in the frame of the nano-hexapod
|
||||
\item block diagram
|
||||
\item Explain how to go from external metrology to the frame of the nano-hexapod
|
||||
\end{itemize}
|
||||
|
||||
\subsection{High Authority Control - Low Authority Control (HAC-LAC)}
|
||||
@@ -438,14 +519,6 @@ Discussion of:
|
||||
\item Damping optimization
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Control Kinematics}
|
||||
|
||||
\begin{itemize}
|
||||
\item Explain how the position error can be expressed in the frame of the nano-hexapod
|
||||
\item block diagram
|
||||
\item Explain how to go from external metrology to the frame of the nano-hexapod
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Decoupled Dynamics}
|
||||
|
||||
\begin{itemize}
|
||||
@@ -461,52 +534,34 @@ Discussion of:
|
||||
\item Controller design
|
||||
\end{itemize}
|
||||
|
||||
\section{Simulations - Concept Validation}
|
||||
\begin{itemize}
|
||||
\item Tomography experiment
|
||||
\item Open VS Closed loop results
|
||||
\item \textbf{Conclusion}: concept validation
|
||||
nano hexapod architecture with APA
|
||||
decentralized IFF + centralized HAC
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=\linewidth]{figs/simscape_nass_final.png}
|
||||
\caption{\label{fig:simscape_nass_final}3D view of the multi-body model including the micro-station, the nano-hexapod and the associated metrology}
|
||||
\end{figure}
|
||||
|
||||
\section{Conclusion}
|
||||
|
||||
\section{Conceptual Design - Conclusion}
|
||||
|
||||
\chapter{Detailed Design}
|
||||
\minitoc
|
||||
\paragraph{Abstract}
|
||||
|
||||
CAD view of the nano-hexapod with key components:
|
||||
\begin{itemize}
|
||||
\item plates
|
||||
\item flexible joints
|
||||
\item APA
|
||||
\item required instrumentation (ADC, DAC, Speedgoat, Amplifiers, Force Sensor instrumentation, \ldots{})
|
||||
\end{itemize}
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=\linewidth]{figs/chapter2_overview.png}
|
||||
\caption{\label{fig:chapter2_overview}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
\section{Optimal Nano-Hexapod geometry}
|
||||
\section{Nano-Hexapod Kinematics - Optimal Geometry?}
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Geometry?
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Cubic architecture?
|
||||
\item[{$\square$}] Kinematics
|
||||
\item[{$\square$}] Trade-off for the strut orientation
|
||||
\end{itemize}
|
||||
\item[{$\square$}] Sensors required
|
||||
\item[{$\square$}] Maybe this can be just merged with the last section in this chapter?
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Optimal strut orientation}
|
||||
|
||||
|
||||
\subsection{Cubic Architecture: a Special Case?}
|
||||
|
||||
\section{Including Flexible elements in the Multi-body model}
|
||||
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/cubic-configuration.org}
|
||||
|
||||
\section{Nano-Hexapod Dynamics - Including Flexible elements in the Multi-body model}
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Should this be an appendix?
|
||||
\end{itemize}
|
||||
Reduced order flexible bodies \cite{brumund21_multib_simul_reduc_order_flexib_bodies_fea}
|
||||
\begin{itemize}
|
||||
\item Used with APA, Flexible joints, Plates
|
||||
@@ -533,8 +588,17 @@ Reduced order flexible bodies \cite{brumund21_multib_simul_reduc_order_flexib_bo
|
||||
\item Obtained transfer functions and comparison with Simscape model with reduced order flexible body
|
||||
\end{itemize}
|
||||
|
||||
\section{Amplified Piezoelectric Actuator}
|
||||
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa/index.org}{study 1}, \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa300ml/test-bench-apa300ml.org}{study 2}
|
||||
\section{Actuator Choice}
|
||||
|
||||
\begin{itemize}
|
||||
\item From previous study: APA seems a nice choice
|
||||
\item First tests with the APA95ML: validation of a basic model (maybe already presented)
|
||||
\item Optimal stiffness?
|
||||
\item Talk about piezoelectric actuator? bandwidth? noise?
|
||||
\item Specifications: stiffness, stroke, \ldots{} => choice of the APA
|
||||
\item FEM of the APA
|
||||
\item Validation with flexible APA in the simscape model
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
@@ -542,10 +606,6 @@ Reduced order flexible bodies \cite{brumund21_multib_simul_reduc_order_flexib_bo
|
||||
\caption{\label{fig:apa_schmeatic}Schematical representation of an Amplified Piezoelectric Actuator}
|
||||
\end{figure}
|
||||
|
||||
\begin{itemize}
|
||||
\item First tests with the APA95ML
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Model}
|
||||
|
||||
Piezoelectric equations
|
||||
@@ -568,6 +628,12 @@ Piezoelectric equations
|
||||
\item (2 DoF, FEM, \ldots{})
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1]{figs/root_locus_iff_rot_stiffness.png}
|
||||
\caption{\label{fig:root_locus_iff_rot_stiffness}Limitation of the attainable damping due to the APA design}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Experimental System Identification}
|
||||
|
||||
\begin{itemize}
|
||||
@@ -585,7 +651,17 @@ Piezoelectric equations
|
||||
\item IFF results: OK
|
||||
\end{itemize}
|
||||
|
||||
\section{Flexible Joints}
|
||||
\section{Design of Nano-Hexapod Flexible Joints}
|
||||
|
||||
\begin{itemize}
|
||||
\item Perfect flexible joint
|
||||
\item Imperfection of the flexible joint: Model
|
||||
\item Study of the effect of limited stiffness in constrain directions and non-null stiffness in other directions
|
||||
\item Obtained Specification
|
||||
\item Design optimisation (FEM)
|
||||
\item Implementation of flexible elements in the Simscape model: close to simplified model
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Effect of flexible joint characteristics on obtained dynamics}
|
||||
|
||||
\begin{itemize}
|
||||
@@ -594,10 +670,12 @@ Piezoelectric equations
|
||||
\item Obtained specifications (trade-off)
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\subsection{Flexible joint geometry optimization}
|
||||
|
||||
\begin{itemize}
|
||||
\item Chosen geometry
|
||||
\item Show different existing geometry for flexible joints used on hexapods
|
||||
\item Optimisation with Ansys
|
||||
\item Validation with Simscape model
|
||||
\end{itemize}
|
||||
@@ -611,13 +689,25 @@ Piezoelectric equations
|
||||
\item Obtained results
|
||||
\end{itemize}
|
||||
|
||||
\section{Instrumentation}
|
||||
\subsection{DAC}
|
||||
\section{Choice of Instrumentation}
|
||||
|
||||
\begin{itemize}
|
||||
\item Discussion of the choice of other elements:
|
||||
\begin{itemize}
|
||||
\item Encoder
|
||||
\item DAC
|
||||
\item ADC (reading of the force sensors)
|
||||
\item real time controller
|
||||
\item Voltage amplifiers
|
||||
\end{itemize}
|
||||
\item Give some requirements + chosen elements + measurements / validation
|
||||
\end{itemize}
|
||||
|
||||
\subsection{ADC}
|
||||
\subsection{DAC and ADC}
|
||||
|
||||
Force sensor
|
||||
\begin{itemize}
|
||||
\item Force sensor
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Voltage amplifier (\href{https://research.tdehaeze.xyz/test-bench-pd200/}{link})}
|
||||
|
||||
@@ -632,17 +722,25 @@ Force sensor
|
||||
\item Noise measurement
|
||||
\end{itemize}
|
||||
|
||||
\section{Obtained Mechanical Design}
|
||||
|
||||
\section{Obtained Design}
|
||||
\begin{itemize}
|
||||
\item Explain again the different specifications in terms of space, payload, etc..
|
||||
\item CAD view of the nano-hexapod
|
||||
\item Chosen geometry, materials, ease of mounting, cabling, \ldots{}
|
||||
\item Validation on Simscape with accurate model?
|
||||
\end{itemize}
|
||||
|
||||
\section{Detailed Design - Conclusion}
|
||||
\chapter{Experimental Validation}
|
||||
\minitoc
|
||||
\paragraph{Abstract}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=\linewidth]{figs/chapter3_overview.png}
|
||||
\caption{\label{fig:chapter3_overview}Figure caption}
|
||||
\end{figure}
|
||||
|
||||
Schematic representation of the experimental validation process.
|
||||
\begin{itemize}
|
||||
\item APA
|
||||
@@ -651,62 +749,36 @@ Schematic representation of the experimental validation process.
|
||||
\item Nano-hexapod with Spindle
|
||||
\end{itemize}
|
||||
|
||||
\section{Amplified Piezoelectric Actuator (\href{https://research.tdehaeze.xyz/test-bench-apa300ml/}{link})}
|
||||
\section{Amplified Piezoelectric Actuator}
|
||||
|
||||
APA alone:
|
||||
\begin{itemize}
|
||||
\item \textbf{Goal}: Tune model of APA
|
||||
\item[{$\square$}] FRF and fit with FEM model
|
||||
\item[{$\square$}] Show all six FRF and how close they are
|
||||
\item[{$\square$}] IFF
|
||||
\end{itemize}
|
||||
\section{Flexible Joints}
|
||||
|
||||
\section{Struts}
|
||||
|
||||
Strut (APA + joints):
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] FRF, tune model
|
||||
\item[{$\square$}] Issue with encoder (comparison with axial motion)
|
||||
\item[{$\square$}] IFF
|
||||
\end{itemize}
|
||||
|
||||
\section{Nano-Hexapod}
|
||||
|
||||
Mounting
|
||||
|
||||
Test bench on top of soft table:
|
||||
\begin{itemize}
|
||||
\item \textbf{Goal}: Tune model of nano-hexapod, validation of dynamics
|
||||
\item modal analysis soft table (first mode at xxx Hz => rigid body in Simscape)
|
||||
\item FRF + comp model (multiple masses)
|
||||
\item IFF and robustness to change of mass
|
||||
\end{itemize}
|
||||
|
||||
\section{Rotating Nano-Hexapod}
|
||||
|
||||
\begin{itemize}
|
||||
\item \textbf{Goal}: validation of control strategy with rotation
|
||||
\item Interferometers to have more stroke
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\centering
|
||||
\includegraphics[scale=1,width=0.49\linewidth]{example-image-a.png}
|
||||
\caption{\label{fig:rot_nano_hexapod_bench_schematic}Schematic of the rotating nano-hexapod test bench}
|
||||
\end{figure}
|
||||
|
||||
\section{ID31 Micro Station}
|
||||
|
||||
\begin{itemize}
|
||||
\item \textbf{Goal}: full validation without the full metrology
|
||||
\end{itemize}
|
||||
|
||||
\section{Experimental Validation - Conclusion}
|
||||
\chapter{Conclusion and Future Work}
|
||||
|
||||
\section{Alternative Architecture}
|
||||
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/alternative-micro-station-architecture.org}
|
||||
|
||||
\appendix
|
||||
|
||||
\chapter{Mathematical Tools for Mechatronics}
|
||||
\section{Feedback Control}
|
||||
|
||||
|
||||
\section{Dynamical Noise Budgeting}
|
||||
\subsection{Power Spectral Density}
|
||||
|
||||
\subsection{Cumulative Amplitude Spectrum}
|
||||
|
||||
\chapter{Stewart Platform - Kinematics}
|
||||
\chapter{Comments on something}
|
||||
\printbibliography[heading=bibintoc,title={Bibliography}]
|
||||
|
||||
\chapter*{List of Publications}
|
||||
@@ -722,5 +794,6 @@ Test bench on top of soft table:
|
||||
\end{refsection}
|
||||
|
||||
\printglossary[type=\acronymtype]
|
||||
\printglossary[type=\glossarytype]
|
||||
\printglossary
|
||||
\end{document}
|
||||
|
Reference in New Issue
Block a user