Use luatex, verify glossary

This commit is contained in:
2024-04-12 09:32:02 +02:00
parent bba8128daa
commit 893fabe70b
8 changed files with 679 additions and 368 deletions

View File

@@ -1,4 +1,4 @@
% Created 2023-01-31 Tue 23:33
% Created 2024-04-12 Fri 09:30
% Intended LaTeX compiler: pdflatex
\documentclass[a4paper, twoside, 11pt, onecolumn, bibliography=totoc, openright, appendixprefix=true]{scrreprt}
@@ -7,12 +7,14 @@
\newacronym{siso}{SISO}{Single-Input Single-Output}
\newacronym{nass}{NASS}{Nano Active Stabilization System}
\newacronym{lti}{LTI}{Linear Time Invariant}
\newacronym{esrf}{ESRF}{European Synchrotron Radiation Facility}
\newglossaryentry{ka}{name=\ensuremath{k_a},description={{Actuator Stiffness in}}}
\newglossaryentry{phi}{name=\ensuremath{\phi},description={{A woody bush}}}
\input{config_extra.tex}
\addbibresource{ref.bib}
\addbibresource{phd-thesis.bib}
\author{Dehaeze Thomas}
\date{2023-01-31}
\date{2024-04-12}
\title{Mechatronic approach for the design of a Nano Active Stabilization System}
\subtitle{PhD Thesis}
\hypersetup{
@@ -20,7 +22,7 @@
pdftitle={Mechatronic approach for the design of a Nano Active Stabilization System},
pdfkeywords={},
pdfsubject={},
pdfcreator={Emacs 28.2 (Org mode 9.5.2)},
pdfcreator={Emacs 29.3 (Org mode 9.6)},
pdflang={English}}
\usepackage{biblatex}
@@ -56,6 +58,7 @@
\newpage
\chapter*{Abstract}
\gls{phi}
\chapter*{Résumé}
@@ -71,7 +74,7 @@
\section{Context of this thesis / Background and Motivation}
\begin{itemize}
\item ESRF (Figure \ref{fig:esrf_picture})
\item \gls{esrf} (Figure \ref{fig:esrf_picture})
\end{itemize}
\begin{figure}[htbp]
@@ -98,13 +101,14 @@ Alternative: \texttt{id31\_microstation\_cad\_view.png} (CAD view)
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.49\linewidth]{figs/id31_beamline_schematic.png}
\includegraphics[scale=1,width=\linewidth]{figs/id31_beamline_schematic.png}
\caption{\label{fig:id31_beamline_schematic}ID31 Beamline Schematic. With light source, nano-focusing optics, sample stage and detector.}
\end{figure}
\begin{itemize}
\item Few words about science made on ID31 and why nano-meter accuracy is required
\item Typical experiments (tomography, \ldots{}), various samples (up to 50kg)
\item Where to explain the goal of each stage? (e.g. micro-hexapod: static positioning, Ty and Rz: scans, \ldots{})
\item Example of picture obtained (Figure \ref{fig:id31_tomography_result})
\end{itemize}
@@ -116,6 +120,8 @@ Alternative: \texttt{id31\_microstation\_cad\_view.png} (CAD view)
\begin{itemize}
\item Explain wanted positioning accuracy and why micro-station cannot have this accuracy (backlash, play, thermal expansion, \ldots{})
\item Speak about the metrology concept, and why it is not included in this thesis
\end{itemize}
\section{Challenge definition}
@@ -161,6 +167,7 @@ First hexapod with control bandwidth higher than the suspension modes that accep
\cite{hanieh03_activ_stewar}
\cite{afzali-far16_vibrat_dynam_isotr_hexap_analy_studies}
\cite{naves20_desig}
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org}
\item Positioning stations
\item Mechatronic approach?
\cite{rankers98_machin}
@@ -184,29 +191,40 @@ Because of this, the designer wants to be able to predict the performance of the
\caption{\label{fig:nass_mechatronics_approach}Overview of the mechatronic approach used for the Nano-Active-Stabilization-System}
\end{figure}
\textbf{Goals}:
\begin{itemize}
\item Design \gls{nass} such that it is easy to control (and maintain).
Have good performances by design and not by complex control strategies.
\end{itemize}
\textbf{Models}:
\begin{itemize}
\item Uniaxial Model:
\begin{itemize}
\item Effect of limited support compliance
\item Effect of change of payload
\end{itemize}
\item Rotating Model
\begin{itemize}
\item Gyroscopic effects
\end{itemize}
\item Multi Body Model
\item Finite Element Models
\end{itemize}
\chapter{Conceptual Design Development}
\minitoc
\paragraph{Abstract}
Schematic that summarizes this phase.
Uniaxial => Rotation => Multi body => Simulations
\section{Constrains on the system}
\begin{itemize}
\item Size
\item Payload
\item Connections to samples
\item \ldots{} should justify the nano-hexapod design
\begin{itemize}
\item choice of parallel architecture
\end{itemize}
\item[{$\square$}] Picture/schematic of the micro-station with indicated location of Nano-Hexapod
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/chapter1_overview.png}
\caption{\label{fig:chapter1_overview}Figure caption}
\end{figure}
\section{Uni-axial Model}
\begin{itemize}
\item Explain what we want to capture with this model
\item Schematic of the uniaxial model (with X-ray)
@@ -222,7 +240,16 @@ Uniaxial => Rotation => Multi body => Simulations
\caption{\label{fig:mass_spring_damper_nass}3-DoF uniaxial mass-spring-damper model of the NASS}
\end{figure}
\subsection{Noise Budgeting}
\subsection{Micro Station Model}
\subsection{Nano Hexapod Model}
\subsection{Disturbance Identification}
\subsection{Open Loop Dynamic Noise Budgeting}
\begin{itemize}
\item List all disturbances with their spectral densities
\item Show how they have been measured
\item Say that repeatable errors can be calibrated (show measurement of Hans-Peter?)
\end{itemize}
\begin{figure}[htbp]
\centering
@@ -236,25 +263,6 @@ Uniaxial => Rotation => Multi body => Simulations
\caption{\label{fig:asd_ground_motion_ustation_dist}Amplitude Spectral density of the measured disturbance sources}
\end{figure}
\subsection{Effect of support compliance}
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty\_support.org}{study}
\begin{itemize}
\item \textbf{goal}: make the nano-hexapod independent of the support compliance
\item Simple 2DoF model
\item Generalized to any support compliance
\item \textbf{conclusion}: frequency of nano-hexapod resonances should be lower than first suspension mode of the support
\end{itemize}
\subsection{Effect of payload dynamics}
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty\_payload.org}{study}
\begin{itemize}
\item \textbf{goal}: be robust to a change of payload
\item Simple 2DoF model
\item Generalized to any payload dynamics
\end{itemize}
\subsection{Active Damping}
Conclusion: IFF is better for this application
@@ -276,10 +284,35 @@ Conclusion: IFF is better for this application
\end{itemize}
\section{Effect of rotation}
\cite{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb,dehaeze21_activ_dampin_rotat_platf_using}
\subsection{Position Feedback Controller}
\subsection{Effect of support compliance}
\subsection{X-Y rotating platform model}
\begin{itemize}
\item \textbf{goal}: make the nano-hexapod independent of the support compliance
\item Simple 2DoF model
\item Generalized to any support compliance
\item \textbf{conclusion}: frequency of nano-hexapod resonances should be lower than first suspension mode of the support
\end{itemize}
\subsection{Effect of payload dynamics}
\begin{itemize}
\item \textbf{goal}: be robust to a change of payload
\item Simple 2DoF model
\item Generalized to any payload dynamics
\end{itemize}
\subsection{Conclusion}
\section{Effect of rotation}
Papers:
\begin{itemize}
\item \cite{dehaeze20_activ_dampin_rotat_platf_integ_force_feedb}
\item \cite{dehaeze21_activ_dampin_rotat_platf_using}
\end{itemize}
\subsection{System Description and Analysis}
\begin{itemize}
\item x-y-Rz model
@@ -294,25 +327,24 @@ Conclusion: IFF is better for this application
\caption{\label{fig:2dof_rotating_system}Mass spring damper model of an X-Y stage on top of a rotating stage}
\end{figure}
\subsection{Effect of rotational velocity on the system dynamics}
\begin{itemize}
\item Campbell diagram
\end{itemize}
\subsection{Decentralized Integral Force Feedback}
\subsection{Integral Force Feedback}
\begin{itemize}
\item Control diagram
\item Root Locus: unstable with pure IFF
\end{itemize}
\subsection{Two proposed modification of IFF}
\subsection{IFF with an High Pass Filter}
\begin{itemize}
\item Comparison of parallel stiffness and change of controller
\item Transmissibility
\end{itemize}
\subsection{IFF with a stiffness in parallel with the force sensor}
\subsection{Relative Damping Control}
\subsection{Comparison of Active Damping Techniques}
\subsection{Rotating Nano-Hexapod}
\subsection{Nano Active Stabilization System with rotation}
\subsection{Conclusion}
@@ -323,7 +355,56 @@ Conclusion: IFF is better for this application
\item APA is a nice architecture for parallel stiffness + integrated force sensor (have to speak about IFF before that)
\end{itemize}
\section{Multi Body Model - Nano Hexapod}
\section{Micro Station - Modal Analysis}
Conclusion:
\begin{itemize}
\item complex dynamics: need multi-body model of the micro-station to represent the limited compliance\ldots{}
\end{itemize}
\subsection{Measurement Setup}
\subsection{Frequency Analysis}
\subsection{Modal Analysis}
\section{Micro Station - Multi Body Model}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.7\linewidth]{figs/simscape_first_model_screenshot.jpg}
\caption{\label{fig:simscape_first_model_screenshot}3D view of the multi-body model of the micro-station}
\end{figure}
\subsection{Kinematics}
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/kinematics.org}
\begin{itemize}
\item Small overview of each stage and associated stiffnesses / inertia
\item schematic that shows to considered DoF
\item import from CAD
\end{itemize}
\subsection{Modal Analysis and Dynamic Modeling}
\begin{itemize}
\item Picture of the experimental setup
\item Location of accelerometers
\item Show obtained modes
\item Validation of rigid body assumption
\item Explain how this helps tuning the multi-body model
\end{itemize}
\subsection{Disturbances and Positioning errors}
\subsection{Validation of the Model}
\begin{itemize}
\item Most important metric: support compliance
\item Compare model and measurement
\end{itemize}
\section{Nano Hexapod - Multi Body Model}
\begin{itemize}
\item What we want to capture with this model
\item Explain what is a multi body model (rigid body, springs, etc\ldots{})
@@ -333,7 +414,26 @@ Conclusion: IFF is better for this application
\subsection{Stewart Platform Architecture}
\begin{figure}
\begin{subfigure}{0.49\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.8\linewidth]{stewart_architecture_example.png}
\end{center}
\subcaption{Initial position}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.8\linewidth]{stewart_architecture_example_pose.png}
\end{center}
\subcaption{After some motion}
\end{subfigure}
\caption{\label{fig:stewart_platform_architecture}Stewart Platform Architecture}
\end{figure}
Configurable Simscape Model: \url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org}
\begin{itemize}
\item Explain the different frames, etc\ldots{}
\item Little review
\item explain key elements:
\begin{itemize}
@@ -359,12 +459,15 @@ Conclusion: IFF is better for this application
\item Piezoelectric effects
\item mass spring damper representation (2dof)
\item Compare the model and the experiment
\item Here, just a basic 2DoF model of the APA is used
\end{itemize}
\subsection{Dynamics}
\subsection{Dynamics of the Nano-Hexapod}
\begin{itemize}
\item Effect of joints stiffnesses
\item[{$\square$}] The APA model should maybe not be used here, same for the nice top and bottom plates. Here the detailed design is not yet performed
\end{itemize}
\begin{figure}[htbp]
@@ -373,46 +476,24 @@ Conclusion: IFF is better for this application
\caption{\label{fig:simscape_nano_hexapod}3D view of the multi-body model of the Nano-Hexapod (simplified)}
\end{figure}
\section{Multi Body Model - Micro Station}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.7\linewidth]{figs/simscape_first_model_screenshot.jpg}
\caption{\label{fig:simscape_first_model_screenshot}3D view of the multi-body model of the micro-station}
\end{figure}
\section{Control Architecture - Concept Validation}
\subsection{Kinematics}
\begin{itemize}
\item Small overview of each stage and associated stiffnesses / inertia
\item schematic that shows to considered DoF
\item import from CAD
\end{itemize}
\subsection{Modal Analysis}
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-measurements/modal-analysis/index.org}{study}
\begin{itemize}
\item Picture of the experimental setup
\item Location of accelerometers
\item Show obtained modes
\item Validation of rigid body assumption
\item Explain how this helps tuning the multi-body model
\end{itemize}
\subsection{Validation of the Model}
\begin{itemize}
\item Most important metric: support compliance
\item Compare model and measurement
\end{itemize}
\section{Control Architecture}
Discussion of:
\begin{itemize}
\item Transformation matrices / control architecture
\item Transformation matrices / control architecture (computation of the position error in the frame of the nano-hexapod)
\item Control of parallel architectures
\item Control in the frame of struts or cartesian?
\item Effect of rotation on IFF? => APA
\item HAC-LAC
\item New noise budgeting?
\end{itemize}
\subsection{Control Kinematics}
\begin{itemize}
\item Explain how the position error can be expressed in the frame of the nano-hexapod
\item block diagram
\item Explain how to go from external metrology to the frame of the nano-hexapod
\end{itemize}
\subsection{High Authority Control - Low Authority Control (HAC-LAC)}
@@ -438,14 +519,6 @@ Discussion of:
\item Damping optimization
\end{itemize}
\subsection{Control Kinematics}
\begin{itemize}
\item Explain how the position error can be expressed in the frame of the nano-hexapod
\item block diagram
\item Explain how to go from external metrology to the frame of the nano-hexapod
\end{itemize}
\subsection{Decoupled Dynamics}
\begin{itemize}
@@ -461,52 +534,34 @@ Discussion of:
\item Controller design
\end{itemize}
\section{Simulations - Concept Validation}
\begin{itemize}
\item Tomography experiment
\item Open VS Closed loop results
\item \textbf{Conclusion}: concept validation
nano hexapod architecture with APA
decentralized IFF + centralized HAC
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/simscape_nass_final.png}
\caption{\label{fig:simscape_nass_final}3D view of the multi-body model including the micro-station, the nano-hexapod and the associated metrology}
\end{figure}
\section{Conclusion}
\section{Conceptual Design - Conclusion}
\chapter{Detailed Design}
\minitoc
\paragraph{Abstract}
CAD view of the nano-hexapod with key components:
\begin{itemize}
\item plates
\item flexible joints
\item APA
\item required instrumentation (ADC, DAC, Speedgoat, Amplifiers, Force Sensor instrumentation, \ldots{})
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/chapter2_overview.png}
\caption{\label{fig:chapter2_overview}Figure caption}
\end{figure}
\section{Optimal Nano-Hexapod geometry}
\section{Nano-Hexapod Kinematics - Optimal Geometry?}
\begin{itemize}
\item[{$\square$}] Geometry?
\begin{itemize}
\item[{$\square$}] Cubic architecture?
\item[{$\square$}] Kinematics
\item[{$\square$}] Trade-off for the strut orientation
\end{itemize}
\item[{$\square$}] Sensors required
\item[{$\square$}] Maybe this can be just merged with the last section in this chapter?
\end{itemize}
\subsection{Optimal strut orientation}
\subsection{Cubic Architecture: a Special Case?}
\section{Including Flexible elements in the Multi-body model}
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/cubic-configuration.org}
\section{Nano-Hexapod Dynamics - Including Flexible elements in the Multi-body model}
\begin{itemize}
\item[{$\square$}] Should this be an appendix?
\end{itemize}
Reduced order flexible bodies \cite{brumund21_multib_simul_reduc_order_flexib_bodies_fea}
\begin{itemize}
\item Used with APA, Flexible joints, Plates
@@ -533,8 +588,17 @@ Reduced order flexible bodies \cite{brumund21_multib_simul_reduc_order_flexib_bo
\item Obtained transfer functions and comparison with Simscape model with reduced order flexible body
\end{itemize}
\section{Amplified Piezoelectric Actuator}
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa/index.org}{study 1}, \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa300ml/test-bench-apa300ml.org}{study 2}
\section{Actuator Choice}
\begin{itemize}
\item From previous study: APA seems a nice choice
\item First tests with the APA95ML: validation of a basic model (maybe already presented)
\item Optimal stiffness?
\item Talk about piezoelectric actuator? bandwidth? noise?
\item Specifications: stiffness, stroke, \ldots{} => choice of the APA
\item FEM of the APA
\item Validation with flexible APA in the simscape model
\end{itemize}
\begin{figure}[htbp]
\centering
@@ -542,10 +606,6 @@ Reduced order flexible bodies \cite{brumund21_multib_simul_reduc_order_flexib_bo
\caption{\label{fig:apa_schmeatic}Schematical representation of an Amplified Piezoelectric Actuator}
\end{figure}
\begin{itemize}
\item First tests with the APA95ML
\end{itemize}
\subsection{Model}
Piezoelectric equations
@@ -568,6 +628,12 @@ Piezoelectric equations
\item (2 DoF, FEM, \ldots{})
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1]{figs/root_locus_iff_rot_stiffness.png}
\caption{\label{fig:root_locus_iff_rot_stiffness}Limitation of the attainable damping due to the APA design}
\end{figure}
\subsection{Experimental System Identification}
\begin{itemize}
@@ -585,7 +651,17 @@ Piezoelectric equations
\item IFF results: OK
\end{itemize}
\section{Flexible Joints}
\section{Design of Nano-Hexapod Flexible Joints}
\begin{itemize}
\item Perfect flexible joint
\item Imperfection of the flexible joint: Model
\item Study of the effect of limited stiffness in constrain directions and non-null stiffness in other directions
\item Obtained Specification
\item Design optimisation (FEM)
\item Implementation of flexible elements in the Simscape model: close to simplified model
\end{itemize}
\subsection{Effect of flexible joint characteristics on obtained dynamics}
\begin{itemize}
@@ -594,10 +670,12 @@ Piezoelectric equations
\item Obtained specifications (trade-off)
\end{itemize}
\subsection{Flexible joint geometry optimization}
\begin{itemize}
\item Chosen geometry
\item Show different existing geometry for flexible joints used on hexapods
\item Optimisation with Ansys
\item Validation with Simscape model
\end{itemize}
@@ -611,13 +689,25 @@ Piezoelectric equations
\item Obtained results
\end{itemize}
\section{Instrumentation}
\subsection{DAC}
\section{Choice of Instrumentation}
\begin{itemize}
\item Discussion of the choice of other elements:
\begin{itemize}
\item Encoder
\item DAC
\item ADC (reading of the force sensors)
\item real time controller
\item Voltage amplifiers
\end{itemize}
\item Give some requirements + chosen elements + measurements / validation
\end{itemize}
\subsection{ADC}
\subsection{DAC and ADC}
Force sensor
\begin{itemize}
\item Force sensor
\end{itemize}
\subsection{Voltage amplifier (\href{https://research.tdehaeze.xyz/test-bench-pd200/}{link})}
@@ -632,17 +722,25 @@ Force sensor
\item Noise measurement
\end{itemize}
\section{Obtained Mechanical Design}
\section{Obtained Design}
\begin{itemize}
\item Explain again the different specifications in terms of space, payload, etc..
\item CAD view of the nano-hexapod
\item Chosen geometry, materials, ease of mounting, cabling, \ldots{}
\item Validation on Simscape with accurate model?
\end{itemize}
\section{Detailed Design - Conclusion}
\chapter{Experimental Validation}
\minitoc
\paragraph{Abstract}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=\linewidth]{figs/chapter3_overview.png}
\caption{\label{fig:chapter3_overview}Figure caption}
\end{figure}
Schematic representation of the experimental validation process.
\begin{itemize}
\item APA
@@ -651,62 +749,36 @@ Schematic representation of the experimental validation process.
\item Nano-hexapod with Spindle
\end{itemize}
\section{Amplified Piezoelectric Actuator (\href{https://research.tdehaeze.xyz/test-bench-apa300ml/}{link})}
\section{Amplified Piezoelectric Actuator}
APA alone:
\begin{itemize}
\item \textbf{Goal}: Tune model of APA
\item[{$\square$}] FRF and fit with FEM model
\item[{$\square$}] Show all six FRF and how close they are
\item[{$\square$}] IFF
\end{itemize}
\section{Flexible Joints}
\section{Struts}
Strut (APA + joints):
\begin{itemize}
\item[{$\square$}] FRF, tune model
\item[{$\square$}] Issue with encoder (comparison with axial motion)
\item[{$\square$}] IFF
\end{itemize}
\section{Nano-Hexapod}
Mounting
Test bench on top of soft table:
\begin{itemize}
\item \textbf{Goal}: Tune model of nano-hexapod, validation of dynamics
\item modal analysis soft table (first mode at xxx Hz => rigid body in Simscape)
\item FRF + comp model (multiple masses)
\item IFF and robustness to change of mass
\end{itemize}
\section{Rotating Nano-Hexapod}
\begin{itemize}
\item \textbf{Goal}: validation of control strategy with rotation
\item Interferometers to have more stroke
\end{itemize}
\begin{figure}[htbp]
\centering
\includegraphics[scale=1,width=0.49\linewidth]{example-image-a.png}
\caption{\label{fig:rot_nano_hexapod_bench_schematic}Schematic of the rotating nano-hexapod test bench}
\end{figure}
\section{ID31 Micro Station}
\begin{itemize}
\item \textbf{Goal}: full validation without the full metrology
\end{itemize}
\section{Experimental Validation - Conclusion}
\chapter{Conclusion and Future Work}
\section{Alternative Architecture}
\url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/alternative-micro-station-architecture.org}
\appendix
\chapter{Mathematical Tools for Mechatronics}
\section{Feedback Control}
\section{Dynamical Noise Budgeting}
\subsection{Power Spectral Density}
\subsection{Cumulative Amplitude Spectrum}
\chapter{Stewart Platform - Kinematics}
\chapter{Comments on something}
\printbibliography[heading=bibintoc,title={Bibliography}]
\chapter*{List of Publications}
@@ -722,5 +794,6 @@ Test bench on top of soft table:
\end{refsection}
\printglossary[type=\acronymtype]
\printglossary[type=\glossarytype]
\printglossary
\end{document}