Use luatex, verify glossary
This commit is contained in:
391
phd-thesis.org
391
phd-thesis.org
@@ -19,9 +19,12 @@
|
||||
|
||||
#+BIND: org-latex-bib-compiler "biber"
|
||||
|
||||
#+TODO: TODO(t) MAKE(m) COPY(c) | DONE(d)
|
||||
|
||||
#+LATEX_HEADER: \input{config.tex}
|
||||
#+LATEX_HEADER_EXTRA: \input{config_extra.tex}
|
||||
#+LATEX_HEADER_EXTRA: \addbibresource{ref.bib}
|
||||
#+LATEX_HEADER_EXTRA: \addbibresource{phd-thesis.bib}
|
||||
|
||||
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
|
||||
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
||||
@@ -93,12 +96,13 @@
|
||||
| phi | \ensuremath{\phi} | A woody bush |
|
||||
|
||||
#+name: acronyms
|
||||
| key | abbreviation | full form |
|
||||
|------+--------------+----------------------------------|
|
||||
| mimo | MIMO | Multiple-Inputs Multiple-Outputs |
|
||||
| siso | SISO | Single-Input Single-Output |
|
||||
| nass | NASS | Nano Active Stabilization System |
|
||||
| lti | LTI | Linear Time Invariant |
|
||||
| key | abbreviation | full form |
|
||||
|------+--------------+-----------------------------------------|
|
||||
| mimo | MIMO | Multiple-Inputs Multiple-Outputs |
|
||||
| siso | SISO | Single-Input Single-Output |
|
||||
| nass | NASS | Nano Active Stabilization System |
|
||||
| lti | LTI | Linear Time Invariant |
|
||||
| esrf | ESRF | European Synchrotron Radiation Facility |
|
||||
|
||||
* Title Page :ignore:
|
||||
|
||||
@@ -137,6 +141,8 @@
|
||||
:UNNUMBERED: notoc
|
||||
:END:
|
||||
|
||||
\gls{phi}
|
||||
|
||||
* Résumé
|
||||
:PROPERTIES:
|
||||
:UNNUMBERED: notoc
|
||||
@@ -160,7 +166,7 @@
|
||||
* Introduction
|
||||
** Context of this thesis / Background and Motivation
|
||||
|
||||
- ESRF (Figure [[fig:esrf_picture]])
|
||||
- \gls{esrf} (Figure [[fig:esrf_picture]])
|
||||
|
||||
#+name: fig:esrf_picture
|
||||
#+caption: European Synchrotron Radiation Facility
|
||||
@@ -356,6 +362,7 @@ Alternative: =id31_microstation_cad_view.png= (CAD view)
|
||||
|
||||
- Few words about science made on ID31 and why nano-meter accuracy is required
|
||||
- Typical experiments (tomography, ...), various samples (up to 50kg)
|
||||
- Where to explain the goal of each stage? (e.g. micro-hexapod: static positioning, Ty and Rz: scans, ...)
|
||||
- Example of picture obtained (Figure [[fig:id31_tomography_result]])
|
||||
|
||||
#+name: fig:id31_tomography_result
|
||||
@@ -365,6 +372,8 @@ Alternative: =id31_microstation_cad_view.png= (CAD view)
|
||||
|
||||
- Explain wanted positioning accuracy and why micro-station cannot have this accuracy (backlash, play, thermal expansion, ...)
|
||||
|
||||
- Speak about the metrology concept, and why it is not included in this thesis
|
||||
|
||||
** Challenge definition
|
||||
|
||||
#+name: fig:nass_concept_schematic
|
||||
@@ -406,6 +415,7 @@ Alternative: =id31_microstation_cad_view.png= (CAD view)
|
||||
cite:hanieh03_activ_stewar
|
||||
cite:afzali-far16_vibrat_dynam_isotr_hexap_analy_studies
|
||||
cite:naves20_desig
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org]]
|
||||
- Positioning stations
|
||||
- Mechatronic approach?
|
||||
cite:rankers98_machin
|
||||
@@ -523,25 +533,32 @@ Alternative: =id31_microstation_cad_view.png= (CAD view)
|
||||
#+RESULTS:
|
||||
[[file:figs/nass_mechatronics_approach.png]]
|
||||
|
||||
*Goals*:
|
||||
- Design \gls{nass} such that it is easy to control (and maintain).
|
||||
Have good performances by design and not by complex control strategies.
|
||||
|
||||
|
||||
*Models*:
|
||||
- Uniaxial Model:
|
||||
- Effect of limited support compliance
|
||||
- Effect of change of payload
|
||||
- Rotating Model
|
||||
- Gyroscopic effects
|
||||
- Multi Body Model
|
||||
- Finite Element Models
|
||||
|
||||
* Conceptual Design Development
|
||||
\minitoc
|
||||
**** Abstract
|
||||
|
||||
Schematic that summarizes this phase.
|
||||
Uniaxial => Rotation => Multi body => Simulations
|
||||
#+name: fig:chapter1_overview
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/chapter1_overview.png]]
|
||||
|
||||
** Constrains on the system
|
||||
** COPY Uni-axial Model
|
||||
# [[file:/home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A1-nass-uniaxial-model/nass-uniaxial-model.org][NASS - Uniaxial Model]]
|
||||
|
||||
- Size
|
||||
- Payload
|
||||
- Connections to samples
|
||||
- ... should justify the nano-hexapod design
|
||||
- choice of parallel architecture
|
||||
|
||||
- [ ] Picture/schematic of the micro-station with indicated location of Nano-Hexapod
|
||||
|
||||
** Uni-axial Model
|
||||
*** Introduction :ignore:
|
||||
|
||||
- Explain what we want to capture with this model
|
||||
@@ -639,7 +656,14 @@ Uniaxial => Rotation => Multi body => Simulations
|
||||
#+RESULTS:
|
||||
[[file:figs/mass_spring_damper_nass.png]]
|
||||
|
||||
*** Noise Budgeting
|
||||
*** Micro Station Model
|
||||
*** Nano Hexapod Model
|
||||
*** Disturbance Identification
|
||||
*** Open Loop Dynamic Noise Budgeting
|
||||
|
||||
- List all disturbances with their spectral densities
|
||||
- Show how they have been measured
|
||||
- Say that repeatable errors can be calibrated (show measurement of Hans-Peter?)
|
||||
|
||||
#+name: fig:measurement_microstation_vibration_picture
|
||||
#+caption: Setup used to measure the micro-station vibrations during operation
|
||||
@@ -651,21 +675,6 @@ Uniaxial => Rotation => Multi body => Simulations
|
||||
#+attr_latex: :width 0.49\linewidth
|
||||
[[file:example-image-b.png]]
|
||||
|
||||
*** Effect of support compliance
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty_support.org::+TITLE: Effect of Uncertainty on the support's dynamics on the isolation platform dynamics][study]]
|
||||
|
||||
- *goal*: make the nano-hexapod independent of the support compliance
|
||||
- Simple 2DoF model
|
||||
- Generalized to any support compliance
|
||||
- *conclusion*: frequency of nano-hexapod resonances should be lower than first suspension mode of the support
|
||||
|
||||
*** Effect of payload dynamics
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/uncertainty_payload.org::+TITLE: Effect of Uncertainty on the payload's dynamics on the isolation platform dynamics][study]]
|
||||
|
||||
- *goal*: be robust to a change of payload
|
||||
- Simple 2DoF model
|
||||
- Generalized to any payload dynamics
|
||||
|
||||
*** Active Damping
|
||||
|
||||
Conclusion: IFF is better for this application
|
||||
@@ -683,12 +692,32 @@ Conclusion: IFF is better for this application
|
||||
- Sensitivity to disturbances
|
||||
|
||||
|
||||
** Effect of rotation
|
||||
*** Position Feedback Controller
|
||||
*** Effect of support compliance
|
||||
|
||||
- *goal*: make the nano-hexapod independent of the support compliance
|
||||
- Simple 2DoF model
|
||||
- Generalized to any support compliance
|
||||
- *conclusion*: frequency of nano-hexapod resonances should be lower than first suspension mode of the support
|
||||
|
||||
*** Effect of payload dynamics
|
||||
|
||||
- *goal*: be robust to a change of payload
|
||||
- Simple 2DoF model
|
||||
- Generalized to any payload dynamics
|
||||
|
||||
*** Conclusion
|
||||
|
||||
** COPY Effect of rotation
|
||||
# [[file:/home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A2-nass-rotating-3dof-model/nass-rotating-3dof-model.org][NASS - Rotating 3DoF Model]]
|
||||
|
||||
*** Introduction :ignore:
|
||||
|
||||
[[cite:&dehaeze20_activ_dampin_rotat_platf_integ_force_feedb;&dehaeze21_activ_dampin_rotat_platf_using]]
|
||||
Papers:
|
||||
- [[cite:dehaeze20_activ_dampin_rotat_platf_integ_force_feedb]]
|
||||
- [[cite:dehaeze21_activ_dampin_rotat_platf_using]]
|
||||
|
||||
*** X-Y rotating platform model
|
||||
*** System Description and Analysis
|
||||
|
||||
- x-y-Rz model
|
||||
- explain why this is representing the NASS
|
||||
@@ -759,19 +788,22 @@ Conclusion: IFF is better for this application
|
||||
#+RESULTS:
|
||||
[[file:figs/2dof_rotating_system.png]]
|
||||
|
||||
*** Effect of rotational velocity on the system dynamics
|
||||
|
||||
- Campbell diagram
|
||||
|
||||
*** Decentralized Integral Force Feedback
|
||||
*** Integral Force Feedback
|
||||
|
||||
- Control diagram
|
||||
- Root Locus: unstable with pure IFF
|
||||
|
||||
*** Two proposed modification of IFF
|
||||
*** IFF with an High Pass Filter
|
||||
|
||||
- Comparison of parallel stiffness and change of controller
|
||||
- Transmissibility
|
||||
*** IFF with a stiffness in parallel with the force sensor
|
||||
|
||||
*** Relative Damping Control
|
||||
|
||||
*** Comparison of Active Damping Techniques
|
||||
|
||||
*** Rotating Nano-Hexapod
|
||||
|
||||
*** Nano Active Stabilization System with rotation
|
||||
|
||||
*** Conclusion
|
||||
|
||||
@@ -780,7 +812,56 @@ Conclusion: IFF is better for this application
|
||||
- Conclusion: minimum stiffness is required
|
||||
- APA is a nice architecture for parallel stiffness + integrated force sensor (have to speak about IFF before that)
|
||||
|
||||
** Multi Body Model - Nano Hexapod
|
||||
** TODO Micro Station - Modal Analysis
|
||||
# [[file:/home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A3-micro-station-modal-analysis/modal-analysis.org][Micro Station - Modal Analysis]]
|
||||
*** Introduction :ignore:
|
||||
|
||||
Conclusion:
|
||||
- complex dynamics: need multi-body model of the micro-station to represent the limited compliance...
|
||||
|
||||
*** Measurement Setup
|
||||
|
||||
*** Frequency Analysis
|
||||
|
||||
*** Modal Analysis
|
||||
|
||||
** TODO Micro Station - Multi Body Model
|
||||
# [[file:/home/thomas/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A4-simscape-micro-station/simscape-micro-station.org][Simscape - Micro-Station]]
|
||||
|
||||
*** Introduction :ignore:
|
||||
|
||||
#+name: fig:simscape_first_model_screenshot
|
||||
#+caption: 3D view of the multi-body model of the micro-station
|
||||
#+attr_latex: :width 0.7\linewidth
|
||||
[[file:figs/simscape_first_model_screenshot.jpg]]
|
||||
|
||||
*** Kinematics
|
||||
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/kinematics.org::+TITLE: Kinematics of the station]]
|
||||
|
||||
- Small overview of each stage and associated stiffnesses / inertia
|
||||
- schematic that shows to considered DoF
|
||||
- import from CAD
|
||||
|
||||
*** Modal Analysis and Dynamic Modeling
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/matlab/micro-station-modal-analysis/modal-analysis.org][modal-analysis]]
|
||||
|
||||
- Picture of the experimental setup
|
||||
- Location of accelerometers
|
||||
- Show obtained modes
|
||||
- Validation of rigid body assumption
|
||||
- Explain how this helps tuning the multi-body model
|
||||
|
||||
*** Disturbances and Positioning errors
|
||||
|
||||
*** Validation of the Model
|
||||
|
||||
- Most important metric: support compliance
|
||||
- Compare model and measurement
|
||||
|
||||
** TODO Nano Hexapod - Multi Body Model
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A5-simscape-nano-hexapod/simscape-nano-hexapod.org][Simscape - Nano-Hexapod]]
|
||||
|
||||
*** Introduction :ignore:
|
||||
|
||||
- What we want to capture with this model
|
||||
@@ -809,6 +890,8 @@ Conclusion: IFF is better for this application
|
||||
#+end_subfigure
|
||||
#+end_figure
|
||||
|
||||
Configurable Simscape Model: [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org]]
|
||||
- Explain the different frames, etc...
|
||||
|
||||
- Little review
|
||||
- explain key elements:
|
||||
@@ -829,52 +912,37 @@ Conclusion: IFF is better for this application
|
||||
- Piezoelectric effects
|
||||
- mass spring damper representation (2dof)
|
||||
- Compare the model and the experiment
|
||||
- Here, just a basic 2DoF model of the APA is used
|
||||
|
||||
*** Dynamics
|
||||
*** Dynamics of the Nano-Hexapod
|
||||
|
||||
- Effect of joints stiffnesses
|
||||
|
||||
- [ ] The APA model should maybe not be used here, same for the nice top and bottom plates. Here the detailed design is not yet performed
|
||||
|
||||
#+name: fig:simscape_nano_hexapod
|
||||
#+caption: 3D view of the multi-body model of the Nano-Hexapod (simplified)
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/simscape_nano_hexapod.png]]
|
||||
|
||||
** Multi Body Model - Micro Station
|
||||
*** Introduction :ignore:
|
||||
** TODO Control Architecture - Concept Validation
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/A6-simscape-nass/simscape-nass.org][Simscape - NASS]]
|
||||
|
||||
#+name: fig:simscape_first_model_screenshot
|
||||
#+caption: 3D view of the multi-body model of the micro-station
|
||||
#+attr_latex: :width 0.7\linewidth
|
||||
[[file:figs/simscape_first_model_screenshot.jpg]]
|
||||
|
||||
*** Kinematics
|
||||
|
||||
- Small overview of each stage and associated stiffnesses / inertia
|
||||
- schematic that shows to considered DoF
|
||||
- import from CAD
|
||||
|
||||
*** Modal Analysis
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-measurements/modal-analysis/index.org][study]]
|
||||
|
||||
- Picture of the experimental setup
|
||||
- Location of accelerometers
|
||||
- Show obtained modes
|
||||
- Validation of rigid body assumption
|
||||
- Explain how this helps tuning the multi-body model
|
||||
|
||||
*** Validation of the Model
|
||||
|
||||
- Most important metric: support compliance
|
||||
- Compare model and measurement
|
||||
|
||||
** Control Architecture
|
||||
*** Introduction :ignore:
|
||||
|
||||
Discussion of:
|
||||
- Transformation matrices / control architecture
|
||||
- Transformation matrices / control architecture (computation of the position error in the frame of the nano-hexapod)
|
||||
- Control of parallel architectures
|
||||
- Control in the frame of struts or cartesian?
|
||||
- Effect of rotation on IFF? => APA
|
||||
- HAC-LAC
|
||||
- New noise budgeting?
|
||||
|
||||
*** Control Kinematics
|
||||
|
||||
- Explain how the position error can be expressed in the frame of the nano-hexapod
|
||||
- block diagram
|
||||
- Explain how to go from external metrology to the frame of the nano-hexapod
|
||||
|
||||
*** High Authority Control - Low Authority Control (HAC-LAC)
|
||||
|
||||
@@ -893,12 +961,6 @@ Discussion of:
|
||||
- Root Locus
|
||||
- Damping optimization
|
||||
|
||||
*** Control Kinematics
|
||||
|
||||
- Explain how the position error can be expressed in the frame of the nano-hexapod
|
||||
- block diagram
|
||||
- Explain how to go from external metrology to the frame of the nano-hexapod
|
||||
|
||||
*** Decoupled Dynamics
|
||||
|
||||
- Centralized HAC
|
||||
@@ -910,46 +972,36 @@ Discussion of:
|
||||
- Decoupled plant
|
||||
- Controller design
|
||||
|
||||
** Simulations - Concept Validation
|
||||
*** Introduction :ignore:
|
||||
|
||||
- Tomography experiment
|
||||
- Open VS Closed loop results
|
||||
- *Conclusion*: concept validation
|
||||
nano hexapod architecture with APA
|
||||
decentralized IFF + centralized HAC
|
||||
|
||||
#+name: fig:simscape_nass_final
|
||||
#+caption: 3D view of the multi-body model including the micro-station, the nano-hexapod and the associated metrology
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/simscape_nass_final.png]]
|
||||
|
||||
** Conclusion
|
||||
|
||||
** Conceptual Design - Conclusion
|
||||
|
||||
* Detailed Design
|
||||
\minitoc
|
||||
**** Abstract
|
||||
|
||||
CAD view of the nano-hexapod with key components:
|
||||
- plates
|
||||
- flexible joints
|
||||
- APA
|
||||
- required instrumentation (ADC, DAC, Speedgoat, Amplifiers, Force Sensor instrumentation, ...)
|
||||
#+name: fig:chapter2_overview
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/chapter2_overview.png]]
|
||||
|
||||
** TODO Nano-Hexapod Kinematics - Optimal Geometry?
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B1-nass-geometry/nass-geometry.org][NASS - Geometry]]
|
||||
|
||||
- [ ] Maybe this can be just merged with the last section in this chapter?
|
||||
|
||||
** Optimal Nano-Hexapod geometry
|
||||
*** Introduction :ignore:
|
||||
- [ ] Geometry?
|
||||
- [ ] Cubic architecture?
|
||||
- [ ] Kinematics
|
||||
- [ ] Trade-off for the strut orientation
|
||||
- [ ] Sensors required
|
||||
|
||||
*** Optimal strut orientation
|
||||
|
||||
|
||||
*** Cubic Architecture: a Special Case?
|
||||
|
||||
** Including Flexible elements in the Multi-body model
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/cubic-configuration.org]]
|
||||
|
||||
** TODO Nano-Hexapod Dynamics - Including Flexible elements in the Multi-body model
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B2-nass-fem/nass-fem.org][NASS - FEM]]
|
||||
|
||||
- [ ] Should this be an appendix?
|
||||
|
||||
*** Introduction :ignore:
|
||||
Reduced order flexible bodies [[cite:brumund21_multib_simul_reduc_order_flexib_bodies_fea]]
|
||||
- Used with APA, Flexible joints, Plates
|
||||
@@ -969,17 +1021,24 @@ Reduced order flexible bodies [[cite:brumund21_multib_simul_reduc_order_flexib_b
|
||||
- Test bench
|
||||
- Obtained transfer functions and comparison with Simscape model with reduced order flexible body
|
||||
|
||||
** Amplified Piezoelectric Actuator
|
||||
** TODO Actuator Choice
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B3-nass-actuator-choice/nass-actuator-choice.org][NASS - Actuator]]
|
||||
|
||||
*** Introduction :ignore:
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa/index.org::+TITLE: Test Bench - Amplified Piezoelectric Actuator][study 1]], [[file:~/Cloud/work-projects/ID31-NASS/matlab/test-bench-apa300ml/test-bench-apa300ml.org::+TITLE: Nano-Hexapod Struts - Test Bench][study 2]]
|
||||
|
||||
- From previous study: APA seems a nice choice
|
||||
- First tests with the APA95ML: validation of a basic model (maybe already presented)
|
||||
- Optimal stiffness?
|
||||
- Talk about piezoelectric actuator? bandwidth? noise?
|
||||
- Specifications: stiffness, stroke, ... => choice of the APA
|
||||
- FEM of the APA
|
||||
- Validation with flexible APA in the simscape model
|
||||
|
||||
#+name: fig:apa_schmeatic
|
||||
#+caption: Schematical representation of an Amplified Piezoelectric Actuator
|
||||
#+attr_latex: :width 0.49\linewidth
|
||||
[[file:example-image-a.png]]
|
||||
|
||||
- First tests with the APA95ML
|
||||
|
||||
*** Model
|
||||
|
||||
Piezoelectric equations
|
||||
@@ -1015,9 +1074,18 @@ Piezoelectric equations
|
||||
- Tuned Simscape model
|
||||
- IFF results: OK
|
||||
|
||||
** Flexible Joints
|
||||
** TODO Design of Nano-Hexapod Flexible Joints
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B4-nass-flexible-joints/nass-flexible-joints.org][NASS - Flexible Joints]]
|
||||
|
||||
*** Introduction :ignore:
|
||||
|
||||
- Perfect flexible joint
|
||||
- Imperfection of the flexible joint: Model
|
||||
- Study of the effect of limited stiffness in constrain directions and non-null stiffness in other directions
|
||||
- Obtained Specification
|
||||
- Design optimisation (FEM)
|
||||
- Implementation of flexible elements in the Simscape model: close to simplified model
|
||||
|
||||
*** Effect of flexible joint characteristics on obtained dynamics
|
||||
|
||||
- Based on Simscape model
|
||||
@@ -1028,6 +1096,7 @@ Piezoelectric equations
|
||||
*** Flexible joint geometry optimization
|
||||
|
||||
- Chosen geometry
|
||||
- Show different existing geometry for flexible joints used on hexapods
|
||||
- Optimisation with Ansys
|
||||
- Validation with Simscape model
|
||||
|
||||
@@ -1038,15 +1107,22 @@ Piezoelectric equations
|
||||
- Test bench
|
||||
- Obtained results
|
||||
|
||||
** Instrumentation
|
||||
** TODO Choice of Instrumentation
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B5-nass-instrumentation/nass-instrumentation.org][NASS - Instrumentation]]
|
||||
|
||||
*** Introduction :ignore:
|
||||
|
||||
*** DAC
|
||||
- Discussion of the choice of other elements:
|
||||
- Encoder
|
||||
- DAC
|
||||
- ADC (reading of the force sensors)
|
||||
- real time controller
|
||||
- Voltage amplifiers
|
||||
- Give some requirements + chosen elements + measurements / validation
|
||||
|
||||
*** DAC and ADC
|
||||
|
||||
*** ADC
|
||||
|
||||
Force sensor
|
||||
- Force sensor
|
||||
|
||||
*** Voltage amplifier ([[https://research.tdehaeze.xyz/test-bench-pd200/][link]])
|
||||
|
||||
@@ -1057,67 +1133,68 @@ Force sensor
|
||||
*** Encoder ([[https://research.tdehaeze.xyz/test-bench-vionic/][link]])
|
||||
- Noise measurement
|
||||
|
||||
** Obtained Design
|
||||
** TODO Obtained Design
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/B6-nass-design/nass-design.org][NASS - Design]]
|
||||
|
||||
- Explain again the different specifications in terms of space, payload, etc..
|
||||
- CAD view of the nano-hexapod
|
||||
- Chosen geometry, materials, ease of mounting, cabling, ...
|
||||
- Validation on Simscape with accurate model?
|
||||
|
||||
** Detailed Design - Conclusion
|
||||
* Experimental Validation
|
||||
\minitoc
|
||||
**** Abstract
|
||||
|
||||
#+name: fig:chapter3_overview
|
||||
#+caption: Figure caption
|
||||
#+attr_latex: :width \linewidth
|
||||
[[file:figs/chapter3_overview.png]]
|
||||
|
||||
Schematic representation of the experimental validation process.
|
||||
- APA
|
||||
- Strut
|
||||
- Nano-hexapod on suspended table
|
||||
- Nano-hexapod with Spindle
|
||||
|
||||
** Amplified Piezoelectric Actuator ([[https://research.tdehaeze.xyz/test-bench-apa300ml/][link]])
|
||||
** COPY Amplified Piezoelectric Actuator
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C1-test-bench-apa/test-bench-apa.org][Test Bench - APA]]
|
||||
|
||||
APA alone:
|
||||
- *Goal*: Tune model of APA
|
||||
- [ ] FRF and fit with FEM model
|
||||
- [ ] Show all six FRF and how close they are
|
||||
- [ ] IFF
|
||||
** TODO Flexible Joints
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C2-test-bench-flexible-joints/test-bench-flexible-joints.org][Test Bench - Flexible Joints]]
|
||||
|
||||
** Struts
|
||||
** TODO Struts
|
||||
SCHEDULED: <2024-04-15 Mon>
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C3-test-bench-struts/test-bench-struts.org][Test Bench - Struts]]
|
||||
|
||||
Strut (APA + joints):
|
||||
- [ ] FRF, tune model
|
||||
- [ ] Issue with encoder (comparison with axial motion)
|
||||
- [ ] IFF
|
||||
** TODO Nano-Hexapod
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C4-test-bench-nano-hexapod/test-bench-nano-hexapod.org][Test Bench - Nano Hexapod]]
|
||||
|
||||
** Nano-Hexapod
|
||||
** TODO Rotating Nano-Hexapod
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C5-test-bench-nass-spindle/test-bench-nass-spindle.org][Test Bench - NASS Spindle]]
|
||||
|
||||
Mounting
|
||||
|
||||
Test bench on top of soft table:
|
||||
- *Goal*: Tune model of nano-hexapod, validation of dynamics
|
||||
- modal analysis soft table (first mode at xxx Hz => rigid body in Simscape)
|
||||
- FRF + comp model (multiple masses)
|
||||
- IFF and robustness to change of mass
|
||||
|
||||
** Rotating Nano-Hexapod
|
||||
|
||||
- *Goal*: validation of control strategy with rotation
|
||||
- Interferometers to have more stroke
|
||||
|
||||
#+name: fig:rot_nano_hexapod_bench_schematic
|
||||
#+caption: Schematic of the rotating nano-hexapod test bench
|
||||
#+attr_latex: :width 0.49\linewidth
|
||||
[[file:example-image-a.png]]
|
||||
|
||||
** ID31 Micro Station
|
||||
|
||||
- *Goal*: full validation without the full metrology
|
||||
** TODO ID31 Micro Station
|
||||
# [[file:~/Cloud/work-projects/ID31-NASS/phd-thesis-chapters/C6-test-bench-id31/test-bench-id31.org][Test Bench - ID31]]
|
||||
|
||||
** Experimental Validation - Conclusion
|
||||
* Conclusion and Future Work
|
||||
|
||||
** Alternative Architecture
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/nass-simscape/org/alternative-micro-station-architecture.org]]
|
||||
|
||||
* Appendix :ignore:
|
||||
#+latex: \appendix
|
||||
|
||||
* Mathematical Tools for Mechatronics
|
||||
** Feedback Control
|
||||
|
||||
|
||||
** Dynamical Noise Budgeting
|
||||
*** Power Spectral Density
|
||||
|
||||
*** Cumulative Amplitude Spectrum
|
||||
|
||||
* Stewart Platform - Kinematics
|
||||
* Comments on something
|
||||
* Bibliography :ignore:
|
||||
#+latex: \printbibliography[heading=bibintoc,title={Bibliography}]
|
||||
|
||||
@@ -1140,7 +1217,9 @@ Test bench on top of soft table:
|
||||
#+end_export
|
||||
|
||||
* Glossary :ignore:
|
||||
|
||||
#+latex: \printglossary[type=\acronymtype]
|
||||
#+latex: \printglossary[type=\glossarytype]
|
||||
#+latex: \printglossary
|
||||
|
||||
* Footnotes
|
||||
|
Reference in New Issue
Block a user