Version before large rework
This commit is contained in:
parent
139dcc3adc
commit
d5fdeb1be8
@ -552,7 +552,7 @@ CLOSED: [2024-05-29 Wed 18:58]
|
|||||||
% ====================
|
% ====================
|
||||||
% IFF Control
|
% IFF Control
|
||||||
\node[block={2em}{2em}, right=0.6 of f, color=colorblue, fill=colorblue!10!white] (iff) {$g/s$};
|
\node[block={2em}{2em}, right=0.6 of f, color=colorblue, fill=colorblue!10!white] (iff) {$g/s$};
|
||||||
\draw[->, draw=colorblue] (fsensn.east)node[above right, color=colorblue]{$f_m$} -- ++(1.6, 0) |- (iff.east);
|
\draw[->, draw=colorblue] (fsensn.east)node[above right, color=colorblue]{$f_n$} -- ++(1.6, 0) |- (iff.east);
|
||||||
\draw[->, draw=colorblue] (iff.west) -- (f.east) node[above right, color=colorblue]{$f$};
|
\draw[->, draw=colorblue] (iff.west) -- (f.east) node[above right, color=colorblue]{$f$};
|
||||||
% ====================
|
% ====================
|
||||||
\end{scope}
|
\end{scope}
|
||||||
@ -701,7 +701,7 @@ CLOSED: [2024-05-29 Wed 17:09]
|
|||||||
\coordinate[] (outputX) at ($(P.south east)!0.5!(P.north east)$);
|
\coordinate[] (outputX) at ($(P.south east)!0.5!(P.north east)$);
|
||||||
|
|
||||||
\node[block, left=0.8 of inputF] (J) {$\bm{J}^{-T}$};
|
\node[block, left=0.8 of inputF] (J) {$\bm{J}^{-T}$};
|
||||||
\node[block={2.0cm}{2.0cm}, left=0.8 of J] (K) {\begin{matrix}K_x & & 0 \\ & \ddots & \\ 0 & & K_z\end{matrix}};
|
\node[block={2.0cm}{2.0cm}, left=0.8 of J] (K) {\begin{matrix}K_x & & 0 \\ & \ddots & \\ 0 & & K_{R_z}\end{matrix}};
|
||||||
\node[addb={+}{}{}{}{-}, left=0.8 of K] (subr) {};
|
\node[addb={+}{}{}{}{-}, left=0.8 of K] (subr) {};
|
||||||
|
|
||||||
% Connections and labels
|
% Connections and labels
|
||||||
@ -909,6 +909,7 @@ Only recently, high bandwidth (100Hz) have been reported with the use of voice c
|
|||||||
| Architecture | Sensors and measured DoFs | Metrology Use | Stroke, DoF | Samples | Institute, BL | Ref |
|
| Architecture | Sensors and measured DoFs | Metrology Use | Stroke, DoF | Samples | Institute, BL | Ref |
|
||||||
|-----------------------------------------------------------------+--------------------------------+---------------------+-------------------------+--------------+----------------+-------------------------------------------|
|
|-----------------------------------------------------------------+--------------------------------+---------------------+-------------------------+--------------+----------------+-------------------------------------------|
|
||||||
| Spindle / *XYZ piezo stage* / Spherical retroreflector / Sample | 3 interferometers[fn:1]: $YZ$ | Characterization | XYZ: 100um, Rz: 180 deg | micron scale | PETRA III, P06 | [[cite:&schroer17_ptynam;&schropp20_ptynam]] |
|
| Spindle / *XYZ piezo stage* / Spherical retroreflector / Sample | 3 interferometers[fn:1]: $YZ$ | Characterization | XYZ: 100um, Rz: 180 deg | micron scale | PETRA III, P06 | [[cite:&schroer17_ptynam;&schropp20_ptynam]] |
|
||||||
|
| | | | | | | |
|
||||||
| Spindle / Metrology Ring / *XYZ* Stage / Sample | 3 Capacitive: $YZR_x$ | Post processing | | micron scale | NSLS, X8C | cite:&wang12_autom_marker_full_field_hard |
|
| Spindle / Metrology Ring / *XYZ* Stage / Sample | 3 Capacitive: $YZR_x$ | Post processing | | micron scale | NSLS, X8C | cite:&wang12_autom_marker_full_field_hard |
|
||||||
| *XYZ piezo stage* / Spindle / Metrology Ring / Sample | 2 interferometers [fn:1]: $YZ$ | Detector triggering | | micron scale | NSLS, HRX | [[cite:&xu23_high_nsls_ii]] |
|
| *XYZ piezo stage* / Spindle / Metrology Ring / Sample | 2 interferometers [fn:1]: $YZ$ | Detector triggering | | micron scale | NSLS, HRX | [[cite:&xu23_high_nsls_ii]] |
|
||||||
|
|
||||||
@ -917,7 +918,7 @@ Only recently, high bandwidth (100Hz) have been reported with the use of voice c
|
|||||||
#+caption: End-Station with integrated feedback loops based on online metrology. Stages used for feedback are indicated in bold font.
|
#+caption: End-Station with integrated feedback loops based on online metrology. Stages used for feedback are indicated in bold font.
|
||||||
#+attr_latex: :environment tabularx :width \linewidth :align lllllllX
|
#+attr_latex: :environment tabularx :width \linewidth :align lllllllX
|
||||||
#+attr_latex: :center t :booktabs t :font \scriptsize
|
#+attr_latex: :center t :booktabs t :font \scriptsize
|
||||||
| Architecture | Sensors and measured DoFs | Bandwidth | Stroke, DoF | Samples | Institute, BL | Ref |
|
| Stacked Stages | Sensors and measured DoFs | Bandwidth | Stroke, DoF | Samples | Institute, BL | Ref |
|
||||||
|--------------------------------------------------------------------+--------------------------------------+-----------+--------------------------------------+------------+-------------------+----------------------------------------------------------------------------------|
|
|--------------------------------------------------------------------+--------------------------------------+-----------+--------------------------------------+------------+-------------------+----------------------------------------------------------------------------------|
|
||||||
| *XYZ piezo motors* / Mirrors / Sample | 3 interferometers[fn:3]: $XYZ$ | 3 PID | XYZ: 3mm | light | APS | [[cite:&nazaretski15_pushin_limit]] |
|
| *XYZ piezo motors* / Mirrors / Sample | 3 interferometers[fn:3]: $XYZ$ | 3 PID | XYZ: 3mm | light | APS | [[cite:&nazaretski15_pushin_limit]] |
|
||||||
| *Piezo Hexapod* / Spindle / Metrology Ring / Sample | 12 Capacitive[fn:4]: $XYZR_xR_y$ | 10Hz | XYZ: 50um, Rx/Ry:500urad, Rz: 180deg | light | ESRF, ID16a | [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]] |
|
| *Piezo Hexapod* / Spindle / Metrology Ring / Sample | 12 Capacitive[fn:4]: $XYZR_xR_y$ | 10Hz | XYZ: 50um, Rx/Ry:500urad, Rz: 180deg | light | ESRF, ID16a | [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]] |
|
||||||
@ -927,72 +928,6 @@ Only recently, high bandwidth (100Hz) have been reported with the use of voice c
|
|||||||
| *Parallel XYZ voice coil stage* / Sample | 3 interferometers[fn:2]: $XYZ$ | 100Hz | XYZ: 3mm | up to 350g | Diamond, I14 | [[cite:&kelly22_delta_robot_long_travel_nano]] |
|
| *Parallel XYZ voice coil stage* / Sample | 3 interferometers[fn:2]: $XYZ$ | 100Hz | XYZ: 3mm | up to 350g | Diamond, I14 | [[cite:&kelly22_delta_robot_long_travel_nano]] |
|
||||||
| Rz / *Parallel XYZ voice coil stage* / Sample | 3 interferometers[fn:1]: $XYZ$ | 100Hz | YZ: 3mm, Rz: +-110deg | light | LNLS, CARNAUBA | [[cite:&geraldes23_sapot_carnaub_sirius_lnls]] |
|
| Rz / *Parallel XYZ voice coil stage* / Sample | 3 interferometers[fn:1]: $XYZ$ | 100Hz | YZ: 3mm, Rz: +-110deg | light | LNLS, CARNAUBA | [[cite:&geraldes23_sapot_carnaub_sirius_lnls]] |
|
||||||
|
|
||||||
** TODO [#C] Review of two stage control
|
|
||||||
|
|
||||||
[[elisp:(helm-bibtex nil nil "Two Stage Actuator ")][Two Stage Actuator]]:
|
|
||||||
- [X] cite:&xu12_desig_devel_flexur_based_dual
|
|
||||||
- [ ] cite:&pahk01_ultra_precis_posit_system_servo_motor
|
|
||||||
- [ ] cite:&kobayashi03_phase_stabil_servo_contr_dual
|
|
||||||
disk drive
|
|
||||||
- [ ] cite:&michellod06_strat_contr_dual_nano_system_singl_metrol
|
|
||||||
- [ ] cite:&woody06_desig_perfor_dual_drive_system
|
|
||||||
- [ ] cite:&chassagne07_nano_posit_system_with_sub
|
|
||||||
- [ ] cite:&schitter08_dual
|
|
||||||
- [X] cite:&buice09_desig_evaluat_singl_axis_precis
|
|
||||||
- [X] cite:&liu10_desig_contr_long_travel_nano_posit_stage
|
|
||||||
- [ ] cite:&ting11_contr_desig_high_frequen_cuttin
|
|
||||||
- [ ] cite:&okazaki12_dual_servo_mechan_stage_contin_posit
|
|
||||||
- [ ] cite:&ito13_high_precis_posit_system_using
|
|
||||||
- [ ] cite:&yamaguchi13_advan_high_perfor_motion_contr_mechat_system
|
|
||||||
- [ ] cite:&kim13_desig_contr_singl_stage_dual
|
|
||||||
- [ ] cite:&wu13_desig
|
|
||||||
- [ ] cite:&parmar14_large_dynam_range_nanop_using
|
|
||||||
- [ ] cite:&ito15_low_stiff_dual_stage_actuat
|
|
||||||
- [ ] cite:&qingsong16_desig_implem_large_range_compl_microp_system
|
|
||||||
- [ ] cite:&zhu17_flexur_based_paral_actuat_dual
|
|
||||||
- [ ] cite:&wang17_devel_contr_long_strok_precis_stage
|
|
||||||
- [ ] cite:&okyay18_modal_analy_metrol_error_budget
|
|
||||||
- [ ] cite:&csencsics18_system_contr_desig_voice_coil
|
|
||||||
- [ ] cite:&okyay18_mechat_desig_actuat_optim_contr
|
|
||||||
- [ ] cite:&kong18_vibrat_isolat_dual_stage_actuat
|
|
||||||
- [ ] cite:&du19_multi_actuat_system_contr
|
|
||||||
- [ ] cite:&yun20_inves_two_stage_vibrat_suppr
|
|
||||||
- [ ] cite:&mukherjee20_hybrid_contr_precis_posit_applic
|
|
||||||
- [ ] cite:&barros21_feedf_contr_piezoel_dual_actuat_system
|
|
||||||
|
|
||||||
*To read in details*:
|
|
||||||
- [X] cite:&choi08_desig_contr_nanop_xy_theta_scann
|
|
||||||
*top*
|
|
||||||
- [X] [[cite:&buice09_desig_evaluat_singl_axis_precis]]
|
|
||||||
- [X] cite:&shinno11_newly_devel_long_range_posit
|
|
||||||
- [ ] cite:&okazaki12_dual_servo_mechan_stage_contin_posit
|
|
||||||
- [ ] cite:&shan15_contr_review
|
|
||||||
*good review*
|
|
||||||
- [X] cite:&okyay16_mechat_desig_dynam_contr_metrol
|
|
||||||
*Good review*
|
|
||||||
#+begin_quote
|
|
||||||
The alternative, sliding contact bearings are limited to 2-10 [μm] motion resolution, due to stick-slip motion [[cite:&slocum92_precis_machin_desig]], hence they are not preferred.
|
|
||||||
Stick-slip occurs due to the difference between static and dynamic coefficients of friction in such bearings, which results in an impact-like disturbance in the control system during motion reversal.
|
|
||||||
#+end_quote
|
|
||||||
- [X] cite:&kong18_vibrat_isolat_dual_stage_actuat
|
|
||||||
*only found example of dual stage with hexapod*
|
|
||||||
#+begin_quote
|
|
||||||
The coarse stage is usually actuated by VCMs or other linear motors, and the fine stage is usually actuated by piezoelectric actuators or VCMs.
|
|
||||||
#+end_quote
|
|
||||||
|
|
||||||
#+name: tab:introduction_dual_stages
|
|
||||||
#+caption: for each example, interferometers are used as the measured stage position (and signal feedback for the short stroke actuator).
|
|
||||||
#+attr_latex: :environment tabularx :width \linewidth :align lXX
|
|
||||||
#+attr_latex: :center t :booktabs t
|
|
||||||
| DoF | Long Stroke | Short Stroke | Bandwidth | |
|
|
||||||
|--------+---------------------------------+---------------+---------------+------------------------------------------------------|
|
|
||||||
| X,Y | 2 axis, linear motor | 2 piezo | | cite:&chassagne07_nano_posit_system_with_sub |
|
|
||||||
| X,Y,Rz | 1 axis, iron core linear motor | 4 VCM | 85Hz | cite:&choi08_desig_contr_nanop_xy_theta_scann |
|
|
||||||
| X | 1 axis, DC motor, feedscrew | 1 PZT | | cite:&buice09_desig_evaluat_singl_axis_precis |
|
|
||||||
| X,Y,Rz | 1 axis, ballscrew, rotary motor | 3 piezo | 3 PID, few Hz | cite:&liu10_desig_contr_long_travel_nano_posit_stage |
|
|
||||||
| X | 1 axis, Servo motor, ball screw | 1 VCM | | cite:&shinno11_newly_devel_long_range_posit |
|
|
||||||
| X | 1 axis, VCM | 1 piezo stack | | cite:&xu12_desig_devel_flexur_based_dual |
|
|
||||||
|
|
||||||
** DONE [#C] Review about Stewart platform control
|
** DONE [#C] Review about Stewart platform control
|
||||||
CLOSED: [2024-05-29 Wed 16:16]
|
CLOSED: [2024-05-29 Wed 16:16]
|
||||||
|
|
||||||
@ -1112,20 +1047,115 @@ Bandwidth is rarely specified
|
|||||||
|
|
||||||
Same table for nano positioning stages without integrated metrology?
|
Same table for nano positioning stages without integrated metrology?
|
||||||
|
|
||||||
** TODO [#C] Ask for permission to use figures
|
** TODO [#B] Talk about performance specifications
|
||||||
|
|
||||||
- [ ] Veijo (OH1, OH2)
|
Smallest beamsize: 200nm x 100nm
|
||||||
- [ ] Cloetens (tomo + mapping)
|
- Goal: Keep the PoI in the beam: peak to peak errors of 200nm in Dy and 100nm in Dz
|
||||||
- [ ] Focus size (Ray Barret)
|
- RMS errors (/ by 6.6) gives 30nmRMS in Dy and 15nmRMS in Dz.
|
||||||
- [ ] ID16b
|
- Ry error <1.7urad, 250nrad RMS
|
||||||
- [ ] ID11
|
|
||||||
- [ ] Wang
|
What is the filtering?
|
||||||
- [ ] Chroer
|
|
||||||
- [ ] Villar
|
** TODO [#B] Add table to compare Stewart platforms
|
||||||
- [ ] Nazaretski
|
|
||||||
- [ ] Shinno
|
[[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org]]
|
||||||
- [ ] Schmidth
|
|
||||||
- [ ]
|
** TODO [#C] Review of two stage control
|
||||||
|
|
||||||
|
*Articles*:
|
||||||
|
- [X] cite:&xu12_desig_devel_flexur_based_dual
|
||||||
|
- [X] cite:&pahk01_ultra_precis_posit_system_servo_motor
|
||||||
|
- [X] cite:&kobayashi03_phase_stabil_servo_contr_dual
|
||||||
|
disk drive
|
||||||
|
- [X] cite:&michellod06_strat_contr_dual_nano_system_singl_metrol
|
||||||
|
- [X] cite:&woody06_desig_perfor_dual_drive_system
|
||||||
|
- [X] cite:&chassagne07_nano_posit_system_with_sub
|
||||||
|
- [X] cite:&schitter08_dual
|
||||||
|
- [X] cite:&buice09_desig_evaluat_singl_axis_precis
|
||||||
|
- [X] cite:&liu10_desig_contr_long_travel_nano_posit_stage
|
||||||
|
- [X] cite:&ting11_contr_desig_high_frequen_cuttin
|
||||||
|
- [X] cite:&okazaki12_dual_servo_mechan_stage_contin_posit
|
||||||
|
- [X] cite:&ito13_high_precis_posit_system_using
|
||||||
|
- [X] cite:&kim13_desig_contr_singl_stage_dual
|
||||||
|
- [X] cite:&wu13_desig
|
||||||
|
- [X] cite:&ito15_low_stiff_dual_stage_actuat
|
||||||
|
- [X] cite:&zhu17_flexur_based_paral_actuat_dual
|
||||||
|
- [X] cite:&wang17_devel_contr_long_strok_precis_stage
|
||||||
|
- [X] cite:&yun20_inves_two_stage_vibrat_suppr
|
||||||
|
Stewart platform used as vibration isolation
|
||||||
|
|
||||||
|
*Books*:
|
||||||
|
- [ ] cite:&yamaguchi13_advan_high_perfor_motion_contr_mechat_system
|
||||||
|
- [ ] cite:&qingsong16_desig_implem_large_range_compl_microp_system
|
||||||
|
- [ ] cite:&du19_multi_actuat_system_contr
|
||||||
|
|
||||||
|
*To read in details*:
|
||||||
|
- [X] cite:&choi08_desig_contr_nanop_xy_theta_scann
|
||||||
|
*top*
|
||||||
|
- [X] [[cite:&buice09_desig_evaluat_singl_axis_precis]]
|
||||||
|
- [X] cite:&shinno11_newly_devel_long_range_posit
|
||||||
|
- [X] cite:&okazaki12_dual_servo_mechan_stage_contin_posit
|
||||||
|
- [X] cite:&shan15_contr_review
|
||||||
|
*Good review*
|
||||||
|
#+begin_quote
|
||||||
|
Since the proposal of the first dual-actuation stage composed of a combination of ball screw drives and a rotary motor for the long-stroke stage and piezoelectric actuators for the fine stage in 1988, many studies have been performed.
|
||||||
|
When the coarse actuator and fine actuator are combined, some problems are solved and some other problems develop, such as stability, response speed, and friction.
|
||||||
|
#+end_quote
|
||||||
|
#+begin_quote
|
||||||
|
The motion range of the piezoelectric actuator (short stroke) will at least compensate the motion error of the VCM (long-stroke) and the bandwidth of the piezoelectric actuator is higher than that of the VCM to compensate the system error.
|
||||||
|
#+end_quote
|
||||||
|
- [X] cite:&okyay16_mechat_desig_dynam_contr_metrol
|
||||||
|
*Good review*
|
||||||
|
#+begin_quote
|
||||||
|
The alternative, sliding contact bearings are limited to 2-10 [μm] motion resolution, due to stick-slip motion [[cite:&slocum92_precis_machin_desig]], hence they are not preferred.
|
||||||
|
Stick-slip occurs due to the difference between static and dynamic coefficients of friction in such bearings, which results in an impact-like disturbance in the control system during motion reversal.
|
||||||
|
#+end_quote
|
||||||
|
- [X] cite:&kong18_vibrat_isolat_dual_stage_actuat
|
||||||
|
*Only found example of dual stage with hexapod*. But only for vibration isolation
|
||||||
|
#+begin_quote
|
||||||
|
The coarse stage is usually actuated by VCMs or other linear motors, and the fine stage is usually actuated by piezoelectric actuators or VCMs.
|
||||||
|
#+end_quote
|
||||||
|
|
||||||
|
|
||||||
|
#+name: tab:introduction_dual_stages
|
||||||
|
#+caption: For each example, interferometers are used as the measured stage position (and signal feedback for the short stroke actuator).
|
||||||
|
#+attr_latex: :environment tabularx :width \linewidth :align ccccc
|
||||||
|
#+attr_latex: :center t :booktabs t :font \scriptsize
|
||||||
|
| *DoF* | *Long Stroke* | *Short Stroke* | *Bandwidth* | *Metrology* | *References* |
|
||||||
|
|--------+-----------------------------------------------------+----------------------------+------------------------+-----------------------+-------------------------------------------------------------------------------|
|
||||||
|
| X | Servo motor, leadscrew, rotary encoder | PZT, flexure (10um) | n/a | Interferometer, X | cite:&pahk01_ultra_precis_posit_system_servo_motor |
|
||||||
|
| X,Y | 2 axis, linear motor | 2 PZT, flexures | n/a | Interferometers, XY | cite:&chassagne07_nano_posit_system_with_sub |
|
||||||
|
| X,Y,Rz | X, linear motor, linear guides | 4 VCM (1mm), air bearing | 85Hz | Interferometers, XYRz | cite:&choi08_desig_contr_nanop_xy_theta_scann |
|
||||||
|
| X | 1 axis, DC motor, feedscrew, rotary encoder (25mm) | 1 PZT (17um), flexures | 2000Hz | Interferometer, X | cite:&buice09_desig_evaluat_singl_axis_precis |
|
||||||
|
| X,Y,Rz | 1 axis, ballscrew, rotary motor | 3 piezo, flexure | 3 PID, $\approx 1\,Hz$ | Interferometers, XYRz | cite:&liu10_desig_contr_long_travel_nano_posit_stage |
|
||||||
|
| X | 1 axis, Servo motor, ball screw (300mm) | 1 VCM, air bearing (5mm) | n/a | Interferometer, X | cite:&shinno11_newly_devel_long_range_posit |
|
||||||
|
| X | 1 axis, VCM, flexure (10mm) | APA, flexure (15um) | PID, $\approx 1\,Hz$ | Interferometer, X | cite:&xu12_desig_devel_flexur_based_dual |
|
||||||
|
| X | 1 axis X, ballscrew, stepper | 1 piezo stack Y | n/a | Capacitive, Y | cite:&ting11_contr_desig_high_frequen_cuttin |
|
||||||
|
| X,Y | 2 axis, air bearing, linear motors (500mm), encoder | 4 VCM XYRz (3mm) | n/a | Interferometer, XYRz | cite:&okazaki12_dual_servo_mechan_stage_contin_posit |
|
||||||
|
| X | 1 axis, linear motor | 1 VCM | 800Hz | Interferometer, X | cite:&ito13_high_precis_posit_system_using;&ito15_low_stiff_dual_stage_actuat |
|
||||||
|
| X | stepper motor, ballscrew (300mm) | PZT (16um) | 70Hz | Linear Encoder, X | cite:&kim13_desig_contr_singl_stage_dual |
|
||||||
|
| X,Y | 2 axis stepper (100mm), encoder | 4 PZT (130um) | $\approx 10\,Hz$ | Interferometers, XY | cite:&wu13_desig |
|
||||||
|
| X | 1 axis, linear motor (10mm), encoder | 1 VCM | 130 Hz | Interferometer, X | cite:&zhu17_flexur_based_paral_actuat_dual |
|
||||||
|
| X,Y | XY stepper motor (100mm), ballscrew, encoder | 2 PZT (100um) + capacitive | $\approx 10\,Hz$ | Combine both | cite:&wang17_devel_contr_long_strok_precis_stage |
|
||||||
|
|
||||||
|
** TODO [#A] Modifications based on discussion with Christophe
|
||||||
|
|
||||||
|
- [ ] Evolution of precision of instrument over time?
|
||||||
|
- [ ] Tables can be put in annex if necessary
|
||||||
|
- [-] Review of literature should not be in introduction:
|
||||||
|
- [X] Stewart platform in chapter 2
|
||||||
|
- [X] Control architecture for Stewart platforms: maybe in chapter 1 when talking about control? *yes*
|
||||||
|
- [ ] Mechatronics approach just before/in the outline
|
||||||
|
|
||||||
|
** TODO [#A] Important point of payload mass
|
||||||
|
|
||||||
|
Because the payload's mass can be higher than the mass of the micro-hexapod mass, the coupling becomes very high.
|
||||||
|
|
||||||
|
For most of end-stations, the top stages (for small stroke scans) is quite light, and the sample as well.
|
||||||
|
This way, the short stroke stage dynamics is not coupled to the dynamics of the stages bellow.
|
||||||
|
|
||||||
|
In the NASS case, the payload's mass may be one order of magnitude heavier than the mass of the long stroke top platform.
|
||||||
|
This induce large coupling between stages and is a challenge.
|
||||||
|
|
||||||
* Context of this thesis
|
* Context of this thesis
|
||||||
** Synchrotron Radiation Facilities
|
** Synchrotron Radiation Facilities
|
||||||
@ -1413,6 +1443,209 @@ The trigger signals are used to control detector exposure.
|
|||||||
|
|
||||||
Subject of this thesis: design of high performance positioning station with high dynamics and nanometer accuracy
|
Subject of this thesis: design of high performance positioning station with high dynamics and nanometer accuracy
|
||||||
|
|
||||||
|
** Nano Positioning End-Stations
|
||||||
|
**** End-Station with Stacked Stages
|
||||||
|
|
||||||
|
Stacked stages:
|
||||||
|
- errors are combined
|
||||||
|
|
||||||
|
To have acceptable performances / stability:
|
||||||
|
- limited number of stages
|
||||||
|
- high performances stages (air bearing etc...)
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
- ID01 [[cite:&leake19_nanod_beaml_id01]]
|
||||||
|
- ID11 [[cite:&wright20_new_oppor_at_mater_scien]]
|
||||||
|
- ID13 [[cite:&riekel10_progr_micro_nano_diffr_at]]
|
||||||
|
|
||||||
|
#+name: fig:introduction_passive_stations
|
||||||
|
#+caption: Example of two nano end-stations without online metrology: (\subref{fig:introduction_endstation_id16b}) cite:&martinez-criado16_id16b and (\subref{fig:introduction_endstation_id11}) cite:wright20_new_oppor_at_mater_scien
|
||||||
|
#+attr_latex: :options [htbp]
|
||||||
|
#+begin_figure
|
||||||
|
#+attr_latex: :caption \subcaption{\label{fig:introduction_endstation_id16b}ID16b}
|
||||||
|
#+attr_latex: :options {0.49\textwidth}
|
||||||
|
#+begin_subfigure
|
||||||
|
#+attr_latex: :scale 1
|
||||||
|
[[file:figs/introduction_endstation_id16b.png]]
|
||||||
|
#+end_subfigure
|
||||||
|
#+attr_latex: :caption \subcaption{\label{fig:introduction_endstation_id11}ID11}
|
||||||
|
#+attr_latex: :options {0.49\textwidth}
|
||||||
|
#+begin_subfigure
|
||||||
|
#+attr_latex: :scale 1
|
||||||
|
[[file:figs/introduction_endstation_id11.png]]
|
||||||
|
#+end_subfigure
|
||||||
|
#+end_figure
|
||||||
|
|
||||||
|
Explain limitations => Thermal drifts, run-out errors of spindles (improved by using air bearing), straightness of translation stages, ...
|
||||||
|
|
||||||
|
**** Online Metrology
|
||||||
|
|
||||||
|
The idea of having an external metrology to correct for errors is not new.
|
||||||
|
|
||||||
|
Several strategies:
|
||||||
|
- only used for measurements (post processing)
|
||||||
|
- for calibration
|
||||||
|
- for triggering detectors
|
||||||
|
- for real time positioning control (Figure ref:fig:introduction_active_stations)
|
||||||
|
|
||||||
|
Sensors:
|
||||||
|
- Capacitive: [[cite:&schroer17_ptynam;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&schropp20_ptynam]]
|
||||||
|
- Fiber Interferometers Interferometers:
|
||||||
|
- Attocube FPS3010 Fabry-Pérot interferometers: [[cite:&nazaretski15_pushin_limit;&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul;&nazaretski22_new_kirkp_baez_based_scann]]
|
||||||
|
- Attocube IDS3010 Fabry-Pérot interferometers: [[cite:&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&kelly22_delta_robot_long_travel_nano]]
|
||||||
|
- PicoScale SmarAct Michelson interferometers: [[cite:&schroer17_ptynam;&schropp20_ptynam;&xu23_high_nsls_ii;&geraldes23_sapot_carnaub_sirius_lnls]]
|
||||||
|
|
||||||
|
#+name: fig:introduction_metrology_stations
|
||||||
|
#+caption: Two examples of end-station with integrated online metrology. (\subref{fig:introduction_stages_wang}) [[cite:&wang12_autom_marker_full_field_hard]] and (\subref{fig:introduction_stages_schroer}) [[cite:&schroer17_ptynam]]
|
||||||
|
#+attr_latex: :options [htbp]
|
||||||
|
#+begin_figure
|
||||||
|
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_wang} Wang}
|
||||||
|
#+attr_latex: :options {0.49\textwidth}
|
||||||
|
#+begin_subfigure
|
||||||
|
#+attr_latex: :scale 1
|
||||||
|
[[file:figs/introduction_stages_wang.png]]
|
||||||
|
#+end_subfigure
|
||||||
|
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_schroer} Schroer}
|
||||||
|
#+attr_latex: :options {0.49\textwidth}
|
||||||
|
#+begin_subfigure
|
||||||
|
#+attr_latex: :scale 1
|
||||||
|
[[file:figs/introduction_stages_schroer.png]]
|
||||||
|
#+end_subfigure
|
||||||
|
#+end_figure
|
||||||
|
|
||||||
|
#+name: tab:introduction_online_metrology
|
||||||
|
#+caption: End-Station integrating accurate online metrology systems. For all the examples, the sample used are in the micron scale.
|
||||||
|
#+attr_latex: :environment tabularx :width 1.0\linewidth :align cccccc
|
||||||
|
#+attr_latex: :center t :booktabs t :font \scriptsize
|
||||||
|
| *Architecture* | *Metrology* | *Usage* | *Institute* | *References* |
|
||||||
|
|-------------------------------------+-------------------+------------------+-------------+--------------------------------------------|
|
||||||
|
| Sample | 3 Capacitive | Post processing | NSLS | cite:&wang12_autom_marker_full_field_hard |
|
||||||
|
| XYZ Stage | $D_yD_zR_x$ | | (X8C) | Figure ref:fig:introduction_stages_wang |
|
||||||
|
| *Metrology Ring* | | | | |
|
||||||
|
| Spindle | | | | |
|
||||||
|
|-------------------------------------+-------------------+------------------+-------------+--------------------------------------------|
|
||||||
|
| *Ball-lens retroreflector* / Sample | 3 interferometers | Characterization | PETRA III | [[cite:&schroer17_ptynam;&schropp20_ptynam]] |
|
||||||
|
| XYZ piezo stage ($100\,\mu m$) | $D_yD_z$ | | (P06) | Figure ref:fig:introduction_stages_schroer |
|
||||||
|
| Spindle ($180\,\text{deg}$) | | | | |
|
||||||
|
|-------------------------------------+-------------------+------------------+-------------+--------------------------------------------|
|
||||||
|
| *Metrology Ring* / Sample | 2 interferometers | Detector | NSLS | [[cite:&xu23_high_nsls_ii]] |
|
||||||
|
| Spindle | $D_yD_z$ | triggering | (HRX) | |
|
||||||
|
| XYZ piezo stage | | | | |
|
||||||
|
|
||||||
|
**** Active Control of Positioning Errors
|
||||||
|
For some applications (especially when using a nano-beam), the position has not only to be measured, but to be controlled.
|
||||||
|
|
||||||
|
*Actuators*:
|
||||||
|
- Piezoelectric: [[cite:&nazaretski15_pushin_limit;&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&nazaretski22_new_kirkp_baez_based_scann]]
|
||||||
|
- 3-phase linear motor: [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul]]
|
||||||
|
- Voice Coil: [[cite:&kelly22_delta_robot_long_travel_nano;&geraldes23_sapot_carnaub_sirius_lnls]]
|
||||||
|
|
||||||
|
|
||||||
|
Bandwidth: rarely specificity.
|
||||||
|
Usually slow, so that only drifts are compensated.
|
||||||
|
Only recently, high bandwidth (100Hz) have been reported with the use of voice coil actuators [[cite:&kelly22_delta_robot_long_travel_nano;&geraldes23_sapot_carnaub_sirius_lnls]].
|
||||||
|
|
||||||
|
Full rotation for tomography:
|
||||||
|
- Spindle above XYZ stage: [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&engblom18_nanop_resul;&nazaretski22_new_kirkp_baez_based_scann;&xu23_high_nsls_ii]]
|
||||||
|
- Spindle bellow XYZ stage: [[cite:&wang12_autom_marker_full_field_hard;&schroer17_ptynam;&schropp20_ptynam;&geraldes23_sapot_carnaub_sirius_lnls]]
|
||||||
|
Only for mapping: [[cite:&nazaretski15_pushin_limit;&kelly22_delta_robot_long_travel_nano]]
|
||||||
|
|
||||||
|
#+name: fig:introduction_active_stations
|
||||||
|
#+caption: Example of two end-stations with real-time position feedback based on an online metrology. (\subref{fig:introduction_stages_villar}) [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]]. (\subref{fig:introduction_stages_nazaretski}) [[cite:&nazaretski17_desig_perfor_x_ray_scann;&nazaretski15_pushin_limit]]
|
||||||
|
#+attr_latex: :options [htbp]
|
||||||
|
#+begin_figure
|
||||||
|
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_villar} ID16a}
|
||||||
|
#+attr_latex: :options {0.49\textwidth}
|
||||||
|
#+begin_subfigure
|
||||||
|
#+attr_latex: :width 0.95\linewidth
|
||||||
|
[[file:figs/introduction_stages_villar.png]]
|
||||||
|
#+end_subfigure
|
||||||
|
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_nazaretski} 1 and 2 are stage to position the focusing optics. 3 is the sample location, 4 the sample stage and 5 the interferometers}
|
||||||
|
#+attr_latex: :options {0.49\textwidth}
|
||||||
|
#+begin_subfigure
|
||||||
|
#+attr_latex: :scale 1
|
||||||
|
[[file:figs/introduction_stages_nazaretski.png]]
|
||||||
|
#+end_subfigure
|
||||||
|
#+end_figure
|
||||||
|
|
||||||
|
Payload capabilities:
|
||||||
|
- All are only supported calibrated, micron scale samples
|
||||||
|
- Higher sample masses to up to 500g have been reported in [[cite:&nazaretski22_new_kirkp_baez_based_scann;&kelly22_delta_robot_long_travel_nano]]
|
||||||
|
|
||||||
|
100 times heavier payload capabilities than previous stations with similar performances.
|
||||||
|
|
||||||
|
# #+attr_latex: :environment tabularx :width \linewidth :align lllll
|
||||||
|
# #+attr_latex: :center t :booktabs t :font \scriptsize
|
||||||
|
|
||||||
|
#+name: tab:introduction_active_stations
|
||||||
|
#+caption: End-Stations with integrated feedback loops based on online metrology. Stages used for static positioning are ommited for readability. Stages used for feedback are indicated in bold font.
|
||||||
|
#+attr_latex: :environment tabularx :width 1.0\linewidth :align cccccc
|
||||||
|
#+attr_latex: :center t :booktabs t :font \scriptsize
|
||||||
|
| *Architecture* | *Metrology* | *Stroke* | *Bandwidth* | *Institute* | *References* |
|
||||||
|
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
|
||||||
|
| Mirror / Sample | 3 Interferometers | | n/a | APS | [[cite:&nazaretski15_pushin_limit]] |
|
||||||
|
| *XYZ piezo motors* | $D_xD_yD_z$ | $D_xD_yD_z: 3\,\text{mm}$ | | | Figure ref:fig:introduction_stages_nazaretski |
|
||||||
|
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
|
||||||
|
| Metrology Ring / Sample | 12 Capacitive | light | 10 Hz | ESRF | [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]] |
|
||||||
|
| Spindle | $D_xD_yD_zR_xR_y$ | $R_z: 180\,\text{deg}$ | | (ID16a) | Figure ref:fig:introduction_stages_villar |
|
||||||
|
| *Piezo Hexapod* | | $D_xD_yD_z: 50\,\mu m$ | | | |
|
||||||
|
| | | $R_x R_y: 500\,\mu \text{rad}$ | | | |
|
||||||
|
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
|
||||||
|
| Spherical Reference / Sample | 5 Interferometers | light | n/a | PSI | [[cite:&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage]] |
|
||||||
|
| Spindle | $D_yD_zR_x$ | $R_z: 365\,\text{deg}$ | | (OMNY) | |
|
||||||
|
| *Piezo Tripod* | | $D_xD_yD_z: 400\,\mu m$ | | | |
|
||||||
|
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
|
||||||
|
| Cylindrical Reference / Sample | 5 Interferometers | light | n/a | Soleil | [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul]] |
|
||||||
|
| Spindle | $D_xD_yD_zR_xR_y$ | $R_z: 360\,\text{deg}$ | | | |
|
||||||
|
| *Stacked XYZ linear motors* | | $D_xD_yD_z: 400\,\mu m$ | | | |
|
||||||
|
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
|
||||||
|
| Metrology Ring / Sample | 3 Interferometers | up to 500g | n/a | NSLS | [[cite:&nazaretski22_new_kirkp_baez_based_scann]] |
|
||||||
|
| Spindle | $D_xD_yD_z$ | $R_z: 360\,\text{deg}$ | | (SRX) | |
|
||||||
|
| *XYZ piezo* | | $D_xD_yD_z: 100\,\mu m$ | | | |
|
||||||
|
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
|
||||||
|
| Mirrors / Sample | 3 Interferometers | up to 350g | 100 Hz | Diamond | [[cite:&kelly22_delta_robot_long_travel_nano]] |
|
||||||
|
| *Parallel XYZ voice coil* | $D_xD_yD_z$ | $D_xD_yD_z: 3\,\text{mm}$ | | (I14) | |
|
||||||
|
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
|
||||||
|
| Retroreflectors / Samples | 3 Interferometers | light | 100 Hz | LNLS | [[cite:&geraldes23_sapot_carnaub_sirius_lnls]] |
|
||||||
|
| *Parallel XYZ voice coil* | $D_xD_yD_z$ | $D_yD_z: 3\,\text{mm}$ | | (Carnauba) | |
|
||||||
|
| Spindle | | $R_z: \pm 110\,\text{deg}$ | | | |
|
||||||
|
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
|
||||||
|
| Sample | 6 Interferometers | *up to 50kg* | | ESRF | [[cite:&dehaeze18_sampl_stabil_for_tomog_exper;&dehaeze21_mechat_approac_devel_nano_activ_stabil_system]] |
|
||||||
|
| *Hexapod* | $D_xD_yD_zR_xR_y$ | | | (ID31) | Figure ref:fig:introduction_nass_concept_schematic |
|
||||||
|
| Spindle | | $R_z : 360\,\text{deg}$ | | | |
|
||||||
|
| Ry | | $R_y : \pm 3\,\text{deg}$ | | | |
|
||||||
|
| Ty | | $D_y : \pm 5\,\text{mm}$ | | | |
|
||||||
|
|
||||||
|
**** Long Stroke - Short Stroke architecture
|
||||||
|
|
||||||
|
Speak about two stage control?
|
||||||
|
- Long stroke + short stroke
|
||||||
|
- Usually applied to 1dof, 3dof (show some examples: disk drive, wafer scanner)
|
||||||
|
- Any application in 6DoF? Maybe new!
|
||||||
|
- In the table, say which ones are long stroke / short stroke. Some new stages are just long stroke (voice coil)
|
||||||
|
|
||||||
|
#+name: fig:introduction_two_stage_schematic
|
||||||
|
#+caption: Typical Long Stroke - Short Stroke architecture. The long stroke stage is ...
|
||||||
|
[[file:figs/introduction_two_stage_schematic.png]]
|
||||||
|
|
||||||
|
#+name: fig:introduction_two_stage_example
|
||||||
|
#+caption: (\subref{fig:introduction_two_stage_control_example}) [[cite:&shinno11_newly_devel_long_range_posit]], (\subref{fig:introduction_two_stage_control_h_bridge}) [[cite:&schmidt20_desig_high_perfor_mechat_third_revis_edition]]
|
||||||
|
#+attr_latex: :options [htbp]
|
||||||
|
#+begin_figure
|
||||||
|
#+attr_latex: :caption \subcaption{\label{fig:introduction_two_stage_control_example} Two stage control with classical stage and voice coil}
|
||||||
|
#+attr_latex: :options {0.59\textwidth}
|
||||||
|
#+begin_subfigure
|
||||||
|
#+attr_latex: :width 0.95\linewidth
|
||||||
|
[[file:figs/introduction_two_stage_control_example.png]]
|
||||||
|
#+end_subfigure
|
||||||
|
#+attr_latex: :caption \subcaption{\label{fig:introduction_two_stage_control_h_bridge} H-bridge. $y_1$, $y_2$ and $x$ are 3-phase linear motors. Short stroke actuators are voice coils.}
|
||||||
|
#+attr_latex: :options {0.39\textwidth}
|
||||||
|
#+begin_subfigure
|
||||||
|
#+attr_latex: :width 0.95\linewidth
|
||||||
|
[[file:figs/introduction_two_stage_control_h_bridge.png]]
|
||||||
|
#+end_subfigure
|
||||||
|
#+end_figure
|
||||||
|
|
||||||
* Challenge definition
|
* Challenge definition
|
||||||
** Multi degrees of freedom, long stroke and highly accurate positioning end station
|
** Multi degrees of freedom, long stroke and highly accurate positioning end station
|
||||||
**** Performance limitation of "stacked-stages" end-stations
|
**** Performance limitation of "stacked-stages" end-stations
|
||||||
@ -1550,191 +1783,8 @@ High bandwidth, 6 DoF system for vibration control, fixed on top of a complex mu
|
|||||||
Say that high performance systems (lithography machines, etc...) works with calibrated payloads.
|
Say that high performance systems (lithography machines, etc...) works with calibrated payloads.
|
||||||
Being robust to change of payload inertia means large stability margins and therefore less performance.
|
Being robust to change of payload inertia means large stability margins and therefore less performance.
|
||||||
|
|
||||||
* Literature Review
|
* [#A] Literature Review
|
||||||
** Nano Positioning End-Stations
|
*Maybe remove this section has it seems it is discussed elsewhere?*
|
||||||
**** End-Station with Stacked Stages
|
|
||||||
|
|
||||||
Stacked stages:
|
|
||||||
- errors are combined
|
|
||||||
|
|
||||||
To have acceptable performances / stability:
|
|
||||||
- limited number of stages
|
|
||||||
- high performances stages (air bearing etc...)
|
|
||||||
|
|
||||||
Examples:
|
|
||||||
- ID01 [[cite:&leake19_nanod_beaml_id01]]
|
|
||||||
- ID11 [[cite:&wright20_new_oppor_at_mater_scien]]
|
|
||||||
- ID13 [[cite:&riekel10_progr_micro_nano_diffr_at]]
|
|
||||||
|
|
||||||
#+name: fig:introduction_passive_stations
|
|
||||||
#+caption: Example of two nano end-stations without online metrology: (\subref{fig:introduction_endstation_id16b}) cite:&martinez-criado16_id16b and (\subref{fig:introduction_endstation_id11}) cite:wright20_new_oppor_at_mater_scien
|
|
||||||
#+attr_latex: :options [htbp]
|
|
||||||
#+begin_figure
|
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:introduction_endstation_id16b}ID16b}
|
|
||||||
#+attr_latex: :options {0.49\textwidth}
|
|
||||||
#+begin_subfigure
|
|
||||||
#+attr_latex: :scale 1
|
|
||||||
[[file:figs/introduction_endstation_id16b.png]]
|
|
||||||
#+end_subfigure
|
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:introduction_endstation_id11}ID11}
|
|
||||||
#+attr_latex: :options {0.49\textwidth}
|
|
||||||
#+begin_subfigure
|
|
||||||
#+attr_latex: :scale 1
|
|
||||||
[[file:figs/introduction_endstation_id11.png]]
|
|
||||||
#+end_subfigure
|
|
||||||
#+end_figure
|
|
||||||
|
|
||||||
Explain limitations => Thermal drifts, run-out errors of spindles (improved by using air bearing), straightness of translation stages, ...
|
|
||||||
|
|
||||||
**** Online Metrology and Active Control of Positioning Errors
|
|
||||||
|
|
||||||
The idea of having an external metrology to correct for errors is not new.
|
|
||||||
|
|
||||||
Several strategies:
|
|
||||||
- only used for measurements (post processing)
|
|
||||||
- for calibration
|
|
||||||
- for triggering detectors
|
|
||||||
- for real time positioning control (Figure ref:fig:introduction_active_stations)
|
|
||||||
|
|
||||||
Sensors:
|
|
||||||
- Capacitive: [[cite:&schroer17_ptynam;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&schropp20_ptynam]]
|
|
||||||
- Fiber Interferometers Interferometers:
|
|
||||||
- Attocube FPS3010 Fabry-Pérot interferometers: [[cite:&nazaretski15_pushin_limit;&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul;&nazaretski22_new_kirkp_baez_based_scann]]
|
|
||||||
- Attocube IDS3010 Fabry-Pérot interferometers: [[cite:&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&kelly22_delta_robot_long_travel_nano]]
|
|
||||||
- PicoScale SmarAct Michelson interferometers: [[cite:&schroer17_ptynam;&schropp20_ptynam;&xu23_high_nsls_ii;&geraldes23_sapot_carnaub_sirius_lnls]]
|
|
||||||
|
|
||||||
#+name: fig:introduction_metrology_stations
|
|
||||||
#+caption: Two examples of end-station with integrated online metrology. (\subref{fig:introduction_stages_wang}) [[cite:&wang12_autom_marker_full_field_hard]] and (\subref{fig:introduction_stages_schroer}) [[cite:&schroer17_ptynam]]
|
|
||||||
#+attr_latex: :options [htbp]
|
|
||||||
#+begin_figure
|
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_wang} Wang}
|
|
||||||
#+attr_latex: :options {0.49\textwidth}
|
|
||||||
#+begin_subfigure
|
|
||||||
#+attr_latex: :scale 1
|
|
||||||
[[file:figs/introduction_stages_wang.png]]
|
|
||||||
#+end_subfigure
|
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_schroer} Schroer}
|
|
||||||
#+attr_latex: :options {0.49\textwidth}
|
|
||||||
#+begin_subfigure
|
|
||||||
#+attr_latex: :scale 1
|
|
||||||
[[file:figs/introduction_stages_schroer.png]]
|
|
||||||
#+end_subfigure
|
|
||||||
#+end_figure
|
|
||||||
|
|
||||||
For some applications (especially when using a nano-beam), the position has not only to be measured, but to be controlled.
|
|
||||||
|
|
||||||
*Actuators*:
|
|
||||||
- Piezoelectric: [[cite:&nazaretski15_pushin_limit;&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&nazaretski22_new_kirkp_baez_based_scann]]
|
|
||||||
- 3-phase linear motor: [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul]]
|
|
||||||
- Voice Coil: [[cite:&kelly22_delta_robot_long_travel_nano;&geraldes23_sapot_carnaub_sirius_lnls]]
|
|
||||||
|
|
||||||
|
|
||||||
Bandwidth: rarely specificity.
|
|
||||||
Usually slow, so that only drifts are compensated.
|
|
||||||
Only recently, high bandwidth (100Hz) have been reported with the use of voice coil actuators [[cite:&kelly22_delta_robot_long_travel_nano;&geraldes23_sapot_carnaub_sirius_lnls]].
|
|
||||||
|
|
||||||
Full rotation for tomography:
|
|
||||||
- Spindle above XYZ stage: [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&engblom18_nanop_resul;&nazaretski22_new_kirkp_baez_based_scann;&xu23_high_nsls_ii]]
|
|
||||||
- Spindle bellow XYZ stage: [[cite:&wang12_autom_marker_full_field_hard;&schroer17_ptynam;&schropp20_ptynam;&geraldes23_sapot_carnaub_sirius_lnls]]
|
|
||||||
Only for mapping: [[cite:&nazaretski15_pushin_limit;&kelly22_delta_robot_long_travel_nano]]
|
|
||||||
|
|
||||||
#+name: fig:introduction_active_stations
|
|
||||||
#+caption: Example of two end-stations with real-time position feedback based on an online metrology. (\subref{fig:introduction_stages_villar}) [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]]. (\subref{fig:introduction_stages_nazaretski}) [[cite:&nazaretski17_desig_perfor_x_ray_scann;&nazaretski15_pushin_limit]]
|
|
||||||
#+attr_latex: :options [htbp]
|
|
||||||
#+begin_figure
|
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_villar} ID16a}
|
|
||||||
#+attr_latex: :options {0.49\textwidth}
|
|
||||||
#+begin_subfigure
|
|
||||||
#+attr_latex: :width 0.95\linewidth
|
|
||||||
[[file:figs/introduction_stages_villar.png]]
|
|
||||||
#+end_subfigure
|
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_nazaretski} 1 and 2 are stage to position the focusing optics. 3 is the sample location, 4 the sample stage and 5 the interferometers}
|
|
||||||
#+attr_latex: :options {0.49\textwidth}
|
|
||||||
#+begin_subfigure
|
|
||||||
#+attr_latex: :scale 1
|
|
||||||
[[file:figs/introduction_stages_nazaretski.png]]
|
|
||||||
#+end_subfigure
|
|
||||||
#+end_figure
|
|
||||||
|
|
||||||
Payload capabilities:
|
|
||||||
- All are only supported calibrated, micron scale samples
|
|
||||||
- Higher sample masses to up to 500g have been reported in [[cite:&nazaretski22_new_kirkp_baez_based_scann;&kelly22_delta_robot_long_travel_nano]]
|
|
||||||
|
|
||||||
100 times heavier payload capabilities than previous stations with similar performances.
|
|
||||||
|
|
||||||
# #+attr_latex: :environment tabularx :width \linewidth :align lllll
|
|
||||||
# #+attr_latex: :center t :booktabs t :font \scriptsize
|
|
||||||
|
|
||||||
#+name: tab:introduction_active_stations
|
|
||||||
#+caption: End-Stations with integrated feedback loops based on online metrology. Stages used for static positioning are ommited for readability. Stages used for feedback are indicated in bold font.
|
|
||||||
#+attr_latex: :environment tabularx :width 1.0\linewidth :align cccccc
|
|
||||||
#+attr_latex: :center t :booktabs t :font \scriptsize
|
|
||||||
| *Architecture* | *Metrology* | *Stroke* | *Bandwidth* | *Institute* | *References* |
|
|
||||||
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
|
|
||||||
| Mirror / Sample | 3 Interferometers | | | APS | [[cite:&nazaretski15_pushin_limit]] |
|
|
||||||
| *XYZ piezo motors* | $D_xD_yD_z$ | $D_xD_yD_z: 3\,\text{mm}$ | | | Figure ref:fig:introduction_stages_nazaretski |
|
|
||||||
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
|
|
||||||
| Metrology Ring / Sample | 12 Capacitive | light | 10 Hz | ESRF | [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]] |
|
|
||||||
| Spindle | $D_xD_yD_zR_xR_y$ | $R_z: 180\,\text{deg}$ | | (ID16a) | Figure ref:fig:introduction_stages_villar |
|
|
||||||
| *Piezo Hexapod* | | $D_xD_yD_z: 50\,\mu m$ | | | |
|
|
||||||
| | | $R_x R_y: 500\,\mu \text{rad}$ | | | |
|
|
||||||
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
|
|
||||||
| Spherical Reference / Sample | 5 Interferometers | light | | PSI | [[cite:&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage]] |
|
|
||||||
| Spindle | $D_yD_zR_x$ | $R_z: 365\,\text{deg}$ | | (OMNY) | |
|
|
||||||
| *Piezo Tripod* | | $D_xD_yD_z: 400\,\mu m$ | | | |
|
|
||||||
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
|
|
||||||
| Cylindrical Reference / Sample | 5 Interferometers | light | | Soleil | [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul]] |
|
|
||||||
| Spindle | $D_xD_yD_zR_xR_y$ | $R_z: 360\,\text{deg}$ | | | |
|
|
||||||
| *Stacked XYZ linear motors* | | $D_xD_yD_z: 400\,\mu m$ | | | |
|
|
||||||
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
|
|
||||||
| Metrology Ring / Sample | 3 Interferometers | up to 500g | | NSLS | [[cite:&nazaretski22_new_kirkp_baez_based_scann]] |
|
|
||||||
| Spindle | $D_xD_yD_z$ | $R_z: 360\,\text{deg}$ | | (SRX) | |
|
|
||||||
| *XYZ piezo* | | $D_xD_yD_z: 100\,\mu m$ | | | |
|
|
||||||
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
|
|
||||||
| Mirrors / Sample | 3 Interferometers | up to 350g | 100 Hz | Diamond | [[cite:&kelly22_delta_robot_long_travel_nano]] |
|
|
||||||
| *Parallel XYZ voice coil* | $D_xD_yD_z$ | $D_xD_yD_z: 3\,\text{mm}$ | | (I14) | |
|
|
||||||
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
|
|
||||||
| Retroreflectors / Samples | 3 Interferometers | light | 100 Hz | LNLS | [[cite:&geraldes23_sapot_carnaub_sirius_lnls]] |
|
|
||||||
| *Parallel XYZ voice coil* | $D_xD_yD_z$ | $D_yD_z: 3\,\text{mm}$ | | (Carnauba) | |
|
|
||||||
| Spindle | | $R_z: \pm 110\,\text{deg}$ | | | |
|
|
||||||
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
|
|
||||||
| Sample | 6 Interferometers | *up to 50kg* | | ESRF | [[cite:&dehaeze18_sampl_stabil_for_tomog_exper;&dehaeze21_mechat_approac_devel_nano_activ_stabil_system]] |
|
|
||||||
| *Hexapod* | $D_xD_yD_zR_xR_y$ | | | (ID31) | Figure ref:fig:introduction_nass_concept_schematic |
|
|
||||||
| Spindle | | $R_z : 360\,\text{deg}$ | | | |
|
|
||||||
| Ry | | $R_y : \pm 3\,\text{deg}$ | | | |
|
|
||||||
| Ty | | $D_y : \pm 5\,\text{mm}$ | | | |
|
|
||||||
|
|
||||||
|
|
||||||
**** Long Stroke - Short Stroke architecture
|
|
||||||
|
|
||||||
Speak about two stage control?
|
|
||||||
- Long stroke + short stroke
|
|
||||||
- Usually applied to 1dof, 3dof (show some examples: disk drive, wafer scanner)
|
|
||||||
- Any application in 6DoF? Maybe new!
|
|
||||||
- In the table, say which ones are long stroke / short stroke. Some new stages are just long stroke (voice coil)
|
|
||||||
|
|
||||||
#+name: fig:introduction_two_stage_schematic
|
|
||||||
#+caption: Typical Long Stroke - Short Stroke architecture. The long stroke stage is ...
|
|
||||||
[[file:figs/introduction_two_stage_schematic.png]]
|
|
||||||
|
|
||||||
#+name: fig:introduction_two_stage_example
|
|
||||||
#+caption: (\subref{fig:introduction_two_stage_control_example}) [[cite:&shinno11_newly_devel_long_range_posit]], (\subref{fig:introduction_two_stage_control_h_bridge}) [[cite:&schmidt20_desig_high_perfor_mechat_third_revis_edition]]
|
|
||||||
#+attr_latex: :options [htbp]
|
|
||||||
#+begin_figure
|
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:introduction_two_stage_control_example} Two stage control with classical stage and voice coil}
|
|
||||||
#+attr_latex: :options {0.59\textwidth}
|
|
||||||
#+begin_subfigure
|
|
||||||
#+attr_latex: :width 0.95\linewidth
|
|
||||||
[[file:figs/introduction_two_stage_control_example.png]]
|
|
||||||
#+end_subfigure
|
|
||||||
#+attr_latex: :caption \subcaption{\label{fig:introduction_two_stage_control_h_bridge} H-bridge. $y_1$, $y_2$ and $x$ are 3-phase linear motors. Short stroke actuators are voice coils.}
|
|
||||||
#+attr_latex: :options {0.39\textwidth}
|
|
||||||
#+begin_subfigure
|
|
||||||
#+attr_latex: :width 0.95\linewidth
|
|
||||||
[[file:figs/introduction_two_stage_control_h_bridge.png]]
|
|
||||||
#+end_subfigure
|
|
||||||
#+end_figure
|
|
||||||
|
|
||||||
** Multi-DoF dynamical positioning stations
|
** Multi-DoF dynamical positioning stations
|
||||||
**** Serial and Parallel Kinematics
|
**** Serial and Parallel Kinematics
|
||||||
|
|
||||||
@ -2231,7 +2281,7 @@ The results reveal that, despite their different implementations, both modified
|
|||||||
- Several uses (link to some papers).
|
- Several uses (link to some papers).
|
||||||
- For the NASS, they could be use to further improve the robustness of the system.
|
- For the NASS, they could be use to further improve the robustness of the system.
|
||||||
|
|
||||||
**** Multi-body simulations with reduced order flexible bodies obtained by FEA
|
**** [#A] Multi-body simulations with reduced order flexible bodies obtained by FEA
|
||||||
|
|
||||||
[[cite:&brumund21_multib_simul_reduc_order_flexib_bodies_fea]]
|
[[cite:&brumund21_multib_simul_reduc_order_flexib_bodies_fea]]
|
||||||
|
|
||||||
@ -2253,7 +2303,7 @@ We validated the technique with a test bench that confirmed the good modelling c
|
|||||||
- Example: collocated actuator/sensor pair => controller can easily be made robust
|
- Example: collocated actuator/sensor pair => controller can easily be made robust
|
||||||
- This is done by using models and using HAC-LAC architecture
|
- This is done by using models and using HAC-LAC architecture
|
||||||
|
|
||||||
**** Mechatronics design
|
**** [#A] Mechatronics design
|
||||||
|
|
||||||
Conduct a rigorous mechatronics design approach for a nano active stabilization system
|
Conduct a rigorous mechatronics design approach for a nano active stabilization system
|
||||||
[[cite:&dehaeze18_sampl_stabil_for_tomog_exper;&dehaeze21_mechat_approac_devel_nano_activ_stabil_system]]
|
[[cite:&dehaeze18_sampl_stabil_for_tomog_exper;&dehaeze21_mechat_approac_devel_nano_activ_stabil_system]]
|
||||||
@ -2267,7 +2317,7 @@ Complete design with clear choices based on models.
|
|||||||
Such approach, while not new, is here applied
|
Such approach, while not new, is here applied
|
||||||
This can be used for the design of future end-stations.
|
This can be used for the design of future end-stations.
|
||||||
|
|
||||||
#+begin_src latex :file nass_mechatronics_approach.pdf
|
#+begin_src latex :file nass_introduction_mechatronics_approach.pdf
|
||||||
% \graphicspath{ {/home/thomas/Cloud/thesis/papers/dehaeze21_mechatronics_approach_nass/tikz/figs-tikz} }
|
% \graphicspath{ {/home/thomas/Cloud/thesis/papers/dehaeze21_mechatronics_approach_nass/tikz/figs-tikz} }
|
||||||
|
|
||||||
\begin{tikzpicture}
|
\begin{tikzpicture}
|
||||||
@ -2368,7 +2418,7 @@ This can be used for the design of future end-stations.
|
|||||||
#+caption: Overview of the mechatronic approach used for the Nano-Active-Stabilization-System
|
#+caption: Overview of the mechatronic approach used for the Nano-Active-Stabilization-System
|
||||||
#+attr_latex: :width \linewidth
|
#+attr_latex: :width \linewidth
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
[[file:figs/nass_mechatronics_approach.png]]
|
[[file:figs/introduction_nass_mechatronics_approach.png]]
|
||||||
|
|
||||||
**** 6DoF vibration control of a rotating platform
|
**** 6DoF vibration control of a rotating platform
|
||||||
|
|
||||||
|
Binary file not shown.
@ -1,4 +1,4 @@
|
|||||||
% Created 2024-05-30 Thu 15:40
|
% Created 2024-05-30 Thu 15:51
|
||||||
% Intended LaTeX compiler: pdflatex
|
% Intended LaTeX compiler: pdflatex
|
||||||
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
||||||
|
|
||||||
@ -504,7 +504,7 @@ Examples:
|
|||||||
|
|
||||||
Explain limitations => Thermal drifts, run-out errors of spindles (improved by using air bearing), straightness of translation stages, \ldots{}
|
Explain limitations => Thermal drifts, run-out errors of spindles (improved by using air bearing), straightness of translation stages, \ldots{}
|
||||||
|
|
||||||
\paragraph{Online Metrology and Active Control of Positioning Errors}
|
\paragraph{Online Metrology}
|
||||||
|
|
||||||
The idea of having an external metrology to correct for errors is not new.
|
The idea of having an external metrology to correct for errors is not new.
|
||||||
|
|
||||||
@ -543,6 +543,31 @@ Sensors:
|
|||||||
\caption{\label{fig:introduction_metrology_stations}Two examples of end-station with integrated online metrology. (\subref{fig:introduction_stages_wang}) \cite{wang12_autom_marker_full_field_hard} and (\subref{fig:introduction_stages_schroer}) \cite{schroer17_ptynam}}
|
\caption{\label{fig:introduction_metrology_stations}Two examples of end-station with integrated online metrology. (\subref{fig:introduction_stages_wang}) \cite{wang12_autom_marker_full_field_hard} and (\subref{fig:introduction_stages_schroer}) \cite{schroer17_ptynam}}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{table}[htbp]
|
||||||
|
\caption{\label{tab:introduction_online_metrology}End-Station integrating accurate online metrology systems}
|
||||||
|
\centering
|
||||||
|
\scriptsize
|
||||||
|
\begin{tabularx}{1.0\linewidth}{ccccccc}
|
||||||
|
\toprule
|
||||||
|
\textbf{Architecture} & \textbf{Metrology} & \textbf{Usage} & \textbf{Stroke} & \textbf{Institute} & \textbf{References}\\
|
||||||
|
\midrule
|
||||||
|
Sample & 3 Capacitive & Post processing & micron scale & NSLS & \cite{wang12_autom_marker_full_field_hard}\\
|
||||||
|
XYZ Stage & \(D_yD_zR_x\) & & & (X8C) & Figure \ref{fig:introduction_stages_wang}\\
|
||||||
|
\textbf{Metrology Ring} & & & & & \\
|
||||||
|
Spindle & & & & & \\
|
||||||
|
\midrule
|
||||||
|
\textbf{Ball-lens retroreflector} / Sample & 3 interferometers & Characterization & micron scale & PETRA III & \cite{schroer17_ptynam,schropp20_ptynam}\\
|
||||||
|
XYZ piezo stage & \(D_yD_z\) & & XYZ: 100um & (P06) & Figure \ref{fig:introduction_stages_schroer}\\
|
||||||
|
Spindle & & & Rz: 180 deg & & \\
|
||||||
|
\midrule
|
||||||
|
\textbf{Metrology Ring} / Sample & 2 interferometers & Detector & micron scale & NSLS & \cite{xu23_high_nsls_ii}\\
|
||||||
|
Spindle & \(D_yD_z\) & triggering & & (HRX) & \\
|
||||||
|
XYZ piezo stage & & & & & \\
|
||||||
|
\bottomrule
|
||||||
|
\end{tabularx}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
\paragraph{Active Control of Positioning Errors}
|
||||||
For some applications (especially when using a nano-beam), the position has not only to be measured, but to be controlled.
|
For some applications (especially when using a nano-beam), the position has not only to be measured, but to be controlled.
|
||||||
|
|
||||||
\textbf{Actuators}:
|
\textbf{Actuators}:
|
||||||
@ -592,7 +617,7 @@ Payload capabilities:
|
|||||||
\caption{\label{tab:introduction_active_stations}End-Stations with integrated feedback loops based on online metrology. Stages used for static positioning are ommited for readability. Stages used for feedback are indicated in bold font.}
|
\caption{\label{tab:introduction_active_stations}End-Stations with integrated feedback loops based on online metrology. Stages used for static positioning are ommited for readability. Stages used for feedback are indicated in bold font.}
|
||||||
\centering
|
\centering
|
||||||
\scriptsize
|
\scriptsize
|
||||||
\begin{tabularx}{0.95\linewidth}{cccccc}
|
\begin{tabularx}{1.0\linewidth}{cccccc}
|
||||||
\toprule
|
\toprule
|
||||||
\textbf{Architecture} & \textbf{Metrology} & \textbf{Stroke} & \textbf{Bandwidth} & \textbf{Institute} & \textbf{References}\\
|
\textbf{Architecture} & \textbf{Metrology} & \textbf{Stroke} & \textbf{Bandwidth} & \textbf{Institute} & \textbf{References}\\
|
||||||
\midrule
|
\midrule
|
||||||
@ -624,7 +649,7 @@ Retroreflectors / Samples & 3 Interferometers & light & 100 Hz & LNLS & \cite{ge
|
|||||||
Spindle & & \(R_z: \pm 110\,\text{deg}\) & & & \\
|
Spindle & & \(R_z: \pm 110\,\text{deg}\) & & & \\
|
||||||
\midrule
|
\midrule
|
||||||
Sample & 6 Interferometers & \textbf{up to 50kg} & & ESRF & \cite{dehaeze18_sampl_stabil_for_tomog_exper,dehaeze21_mechat_approac_devel_nano_activ_stabil_system}\\
|
Sample & 6 Interferometers & \textbf{up to 50kg} & & ESRF & \cite{dehaeze18_sampl_stabil_for_tomog_exper,dehaeze21_mechat_approac_devel_nano_activ_stabil_system}\\
|
||||||
\textbf{Hexapod} & \(D_xD_yD_zR_xR_y\) & & & (ID31) & \\
|
\textbf{Hexapod} & \(D_xD_yD_zR_xR_y\) & & & (ID31) & Figure \ref{fig:introduction_nass_concept_schematic}\\
|
||||||
Spindle & & \(R_z : 360\,\text{deg}\) & & & \\
|
Spindle & & \(R_z : 360\,\text{deg}\) & & & \\
|
||||||
Ry & & \(R_y : \pm 3\,\text{deg}\) & & & \\
|
Ry & & \(R_y : \pm 3\,\text{deg}\) & & & \\
|
||||||
Ty & & \(D_y : \pm 5\,\text{mm}\) & & & \\
|
Ty & & \(D_y : \pm 5\,\text{mm}\) & & & \\
|
||||||
@ -632,7 +657,6 @@ Ty & & \(D_y : \pm 5\,\text{mm}\) & & & \\
|
|||||||
\end{tabularx}
|
\end{tabularx}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
|
|
||||||
\paragraph{Long Stroke - Short Stroke architecture}
|
\paragraph{Long Stroke - Short Stroke architecture}
|
||||||
|
|
||||||
Speak about two stage control?
|
Speak about two stage control?
|
||||||
|
Reference in New Issue
Block a user