Version before large rework

This commit is contained in:
Thomas Dehaeze 2025-04-16 14:21:20 +02:00
parent 139dcc3adc
commit d5fdeb1be8
3 changed files with 350 additions and 276 deletions

View File

@ -552,7 +552,7 @@ CLOSED: [2024-05-29 Wed 18:58]
% ====================
% IFF Control
\node[block={2em}{2em}, right=0.6 of f, color=colorblue, fill=colorblue!10!white] (iff) {$g/s$};
\draw[->, draw=colorblue] (fsensn.east)node[above right, color=colorblue]{$f_m$} -- ++(1.6, 0) |- (iff.east);
\draw[->, draw=colorblue] (fsensn.east)node[above right, color=colorblue]{$f_n$} -- ++(1.6, 0) |- (iff.east);
\draw[->, draw=colorblue] (iff.west) -- (f.east) node[above right, color=colorblue]{$f$};
% ====================
\end{scope}
@ -701,7 +701,7 @@ CLOSED: [2024-05-29 Wed 17:09]
\coordinate[] (outputX) at ($(P.south east)!0.5!(P.north east)$);
\node[block, left=0.8 of inputF] (J) {$\bm{J}^{-T}$};
\node[block={2.0cm}{2.0cm}, left=0.8 of J] (K) {\begin{matrix}K_x & & 0 \\ & \ddots & \\ 0 & & K_z\end{matrix}};
\node[block={2.0cm}{2.0cm}, left=0.8 of J] (K) {\begin{matrix}K_x & & 0 \\ & \ddots & \\ 0 & & K_{R_z}\end{matrix}};
\node[addb={+}{}{}{}{-}, left=0.8 of K] (subr) {};
% Connections and labels
@ -909,6 +909,7 @@ Only recently, high bandwidth (100Hz) have been reported with the use of voice c
| Architecture | Sensors and measured DoFs | Metrology Use | Stroke, DoF | Samples | Institute, BL | Ref |
|-----------------------------------------------------------------+--------------------------------+---------------------+-------------------------+--------------+----------------+-------------------------------------------|
| Spindle / *XYZ piezo stage* / Spherical retroreflector / Sample | 3 interferometers[fn:1]: $YZ$ | Characterization | XYZ: 100um, Rz: 180 deg | micron scale | PETRA III, P06 | [[cite:&schroer17_ptynam;&schropp20_ptynam]] |
| | | | | | | |
| Spindle / Metrology Ring / *XYZ* Stage / Sample | 3 Capacitive: $YZR_x$ | Post processing | | micron scale | NSLS, X8C | cite:&wang12_autom_marker_full_field_hard |
| *XYZ piezo stage* / Spindle / Metrology Ring / Sample | 2 interferometers [fn:1]: $YZ$ | Detector triggering | | micron scale | NSLS, HRX | [[cite:&xu23_high_nsls_ii]] |
@ -917,7 +918,7 @@ Only recently, high bandwidth (100Hz) have been reported with the use of voice c
#+caption: End-Station with integrated feedback loops based on online metrology. Stages used for feedback are indicated in bold font.
#+attr_latex: :environment tabularx :width \linewidth :align lllllllX
#+attr_latex: :center t :booktabs t :font \scriptsize
| Architecture | Sensors and measured DoFs | Bandwidth | Stroke, DoF | Samples | Institute, BL | Ref |
| Stacked Stages | Sensors and measured DoFs | Bandwidth | Stroke, DoF | Samples | Institute, BL | Ref |
|--------------------------------------------------------------------+--------------------------------------+-----------+--------------------------------------+------------+-------------------+----------------------------------------------------------------------------------|
| *XYZ piezo motors* / Mirrors / Sample | 3 interferometers[fn:3]: $XYZ$ | 3 PID | XYZ: 3mm | light | APS | [[cite:&nazaretski15_pushin_limit]] |
| *Piezo Hexapod* / Spindle / Metrology Ring / Sample | 12 Capacitive[fn:4]: $XYZR_xR_y$ | 10Hz | XYZ: 50um, Rx/Ry:500urad, Rz: 180deg | light | ESRF, ID16a | [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]] |
@ -927,72 +928,6 @@ Only recently, high bandwidth (100Hz) have been reported with the use of voice c
| *Parallel XYZ voice coil stage* / Sample | 3 interferometers[fn:2]: $XYZ$ | 100Hz | XYZ: 3mm | up to 350g | Diamond, I14 | [[cite:&kelly22_delta_robot_long_travel_nano]] |
| Rz / *Parallel XYZ voice coil stage* / Sample | 3 interferometers[fn:1]: $XYZ$ | 100Hz | YZ: 3mm, Rz: +-110deg | light | LNLS, CARNAUBA | [[cite:&geraldes23_sapot_carnaub_sirius_lnls]] |
** TODO [#C] Review of two stage control
[[elisp:(helm-bibtex nil nil "Two Stage Actuator ")][Two Stage Actuator]]:
- [X] cite:&xu12_desig_devel_flexur_based_dual
- [ ] cite:&pahk01_ultra_precis_posit_system_servo_motor
- [ ] cite:&kobayashi03_phase_stabil_servo_contr_dual
disk drive
- [ ] cite:&michellod06_strat_contr_dual_nano_system_singl_metrol
- [ ] cite:&woody06_desig_perfor_dual_drive_system
- [ ] cite:&chassagne07_nano_posit_system_with_sub
- [ ] cite:&schitter08_dual
- [X] cite:&buice09_desig_evaluat_singl_axis_precis
- [X] cite:&liu10_desig_contr_long_travel_nano_posit_stage
- [ ] cite:&ting11_contr_desig_high_frequen_cuttin
- [ ] cite:&okazaki12_dual_servo_mechan_stage_contin_posit
- [ ] cite:&ito13_high_precis_posit_system_using
- [ ] cite:&yamaguchi13_advan_high_perfor_motion_contr_mechat_system
- [ ] cite:&kim13_desig_contr_singl_stage_dual
- [ ] cite:&wu13_desig
- [ ] cite:&parmar14_large_dynam_range_nanop_using
- [ ] cite:&ito15_low_stiff_dual_stage_actuat
- [ ] cite:&qingsong16_desig_implem_large_range_compl_microp_system
- [ ] cite:&zhu17_flexur_based_paral_actuat_dual
- [ ] cite:&wang17_devel_contr_long_strok_precis_stage
- [ ] cite:&okyay18_modal_analy_metrol_error_budget
- [ ] cite:&csencsics18_system_contr_desig_voice_coil
- [ ] cite:&okyay18_mechat_desig_actuat_optim_contr
- [ ] cite:&kong18_vibrat_isolat_dual_stage_actuat
- [ ] cite:&du19_multi_actuat_system_contr
- [ ] cite:&yun20_inves_two_stage_vibrat_suppr
- [ ] cite:&mukherjee20_hybrid_contr_precis_posit_applic
- [ ] cite:&barros21_feedf_contr_piezoel_dual_actuat_system
*To read in details*:
- [X] cite:&choi08_desig_contr_nanop_xy_theta_scann
*top*
- [X] [[cite:&buice09_desig_evaluat_singl_axis_precis]]
- [X] cite:&shinno11_newly_devel_long_range_posit
- [ ] cite:&okazaki12_dual_servo_mechan_stage_contin_posit
- [ ] cite:&shan15_contr_review
*good review*
- [X] cite:&okyay16_mechat_desig_dynam_contr_metrol
*Good review*
#+begin_quote
The alternative, sliding contact bearings are limited to 2-10 [μm] motion resolution, due to stick-slip motion [[cite:&slocum92_precis_machin_desig]], hence they are not preferred.
Stick-slip occurs due to the difference between static and dynamic coefficients of friction in such bearings, which results in an impact-like disturbance in the control system during motion reversal.
#+end_quote
- [X] cite:&kong18_vibrat_isolat_dual_stage_actuat
*only found example of dual stage with hexapod*
#+begin_quote
The coarse stage is usually actuated by VCMs or other linear motors, and the fine stage is usually actuated by piezoelectric actuators or VCMs.
#+end_quote
#+name: tab:introduction_dual_stages
#+caption: for each example, interferometers are used as the measured stage position (and signal feedback for the short stroke actuator).
#+attr_latex: :environment tabularx :width \linewidth :align lXX
#+attr_latex: :center t :booktabs t
| DoF | Long Stroke | Short Stroke | Bandwidth | |
|--------+---------------------------------+---------------+---------------+------------------------------------------------------|
| X,Y | 2 axis, linear motor | 2 piezo | | cite:&chassagne07_nano_posit_system_with_sub |
| X,Y,Rz | 1 axis, iron core linear motor | 4 VCM | 85Hz | cite:&choi08_desig_contr_nanop_xy_theta_scann |
| X | 1 axis, DC motor, feedscrew | 1 PZT | | cite:&buice09_desig_evaluat_singl_axis_precis |
| X,Y,Rz | 1 axis, ballscrew, rotary motor | 3 piezo | 3 PID, few Hz | cite:&liu10_desig_contr_long_travel_nano_posit_stage |
| X | 1 axis, Servo motor, ball screw | 1 VCM | | cite:&shinno11_newly_devel_long_range_posit |
| X | 1 axis, VCM | 1 piezo stack | | cite:&xu12_desig_devel_flexur_based_dual |
** DONE [#C] Review about Stewart platform control
CLOSED: [2024-05-29 Wed 16:16]
@ -1112,20 +1047,115 @@ Bandwidth is rarely specified
Same table for nano positioning stages without integrated metrology?
** TODO [#C] Ask for permission to use figures
** TODO [#B] Talk about performance specifications
- [ ] Veijo (OH1, OH2)
- [ ] Cloetens (tomo + mapping)
- [ ] Focus size (Ray Barret)
- [ ] ID16b
- [ ] ID11
- [ ] Wang
- [ ] Chroer
- [ ] Villar
- [ ] Nazaretski
- [ ] Shinno
- [ ] Schmidth
- [ ]
Smallest beamsize: 200nm x 100nm
- Goal: Keep the PoI in the beam: peak to peak errors of 200nm in Dy and 100nm in Dz
- RMS errors (/ by 6.6) gives 30nmRMS in Dy and 15nmRMS in Dz.
- Ry error <1.7urad, 250nrad RMS
What is the filtering?
** TODO [#B] Add table to compare Stewart platforms
[[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org]]
** TODO [#C] Review of two stage control
*Articles*:
- [X] cite:&xu12_desig_devel_flexur_based_dual
- [X] cite:&pahk01_ultra_precis_posit_system_servo_motor
- [X] cite:&kobayashi03_phase_stabil_servo_contr_dual
disk drive
- [X] cite:&michellod06_strat_contr_dual_nano_system_singl_metrol
- [X] cite:&woody06_desig_perfor_dual_drive_system
- [X] cite:&chassagne07_nano_posit_system_with_sub
- [X] cite:&schitter08_dual
- [X] cite:&buice09_desig_evaluat_singl_axis_precis
- [X] cite:&liu10_desig_contr_long_travel_nano_posit_stage
- [X] cite:&ting11_contr_desig_high_frequen_cuttin
- [X] cite:&okazaki12_dual_servo_mechan_stage_contin_posit
- [X] cite:&ito13_high_precis_posit_system_using
- [X] cite:&kim13_desig_contr_singl_stage_dual
- [X] cite:&wu13_desig
- [X] cite:&ito15_low_stiff_dual_stage_actuat
- [X] cite:&zhu17_flexur_based_paral_actuat_dual
- [X] cite:&wang17_devel_contr_long_strok_precis_stage
- [X] cite:&yun20_inves_two_stage_vibrat_suppr
Stewart platform used as vibration isolation
*Books*:
- [ ] cite:&yamaguchi13_advan_high_perfor_motion_contr_mechat_system
- [ ] cite:&qingsong16_desig_implem_large_range_compl_microp_system
- [ ] cite:&du19_multi_actuat_system_contr
*To read in details*:
- [X] cite:&choi08_desig_contr_nanop_xy_theta_scann
*top*
- [X] [[cite:&buice09_desig_evaluat_singl_axis_precis]]
- [X] cite:&shinno11_newly_devel_long_range_posit
- [X] cite:&okazaki12_dual_servo_mechan_stage_contin_posit
- [X] cite:&shan15_contr_review
*Good review*
#+begin_quote
Since the proposal of the first dual-actuation stage composed of a combination of ball screw drives and a rotary motor for the long-stroke stage and piezoelectric actuators for the fine stage in 1988, many studies have been performed.
When the coarse actuator and fine actuator are combined, some problems are solved and some other problems develop, such as stability, response speed, and friction.
#+end_quote
#+begin_quote
The motion range of the piezoelectric actuator (short stroke) will at least compensate the motion error of the VCM (long-stroke) and the bandwidth of the piezoelectric actuator is higher than that of the VCM to compensate the system error.
#+end_quote
- [X] cite:&okyay16_mechat_desig_dynam_contr_metrol
*Good review*
#+begin_quote
The alternative, sliding contact bearings are limited to 2-10 [μm] motion resolution, due to stick-slip motion [[cite:&slocum92_precis_machin_desig]], hence they are not preferred.
Stick-slip occurs due to the difference between static and dynamic coefficients of friction in such bearings, which results in an impact-like disturbance in the control system during motion reversal.
#+end_quote
- [X] cite:&kong18_vibrat_isolat_dual_stage_actuat
*Only found example of dual stage with hexapod*. But only for vibration isolation
#+begin_quote
The coarse stage is usually actuated by VCMs or other linear motors, and the fine stage is usually actuated by piezoelectric actuators or VCMs.
#+end_quote
#+name: tab:introduction_dual_stages
#+caption: For each example, interferometers are used as the measured stage position (and signal feedback for the short stroke actuator).
#+attr_latex: :environment tabularx :width \linewidth :align ccccc
#+attr_latex: :center t :booktabs t :font \scriptsize
| *DoF* | *Long Stroke* | *Short Stroke* | *Bandwidth* | *Metrology* | *References* |
|--------+-----------------------------------------------------+----------------------------+------------------------+-----------------------+-------------------------------------------------------------------------------|
| X | Servo motor, leadscrew, rotary encoder | PZT, flexure (10um) | n/a | Interferometer, X | cite:&pahk01_ultra_precis_posit_system_servo_motor |
| X,Y | 2 axis, linear motor | 2 PZT, flexures | n/a | Interferometers, XY | cite:&chassagne07_nano_posit_system_with_sub |
| X,Y,Rz | X, linear motor, linear guides | 4 VCM (1mm), air bearing | 85Hz | Interferometers, XYRz | cite:&choi08_desig_contr_nanop_xy_theta_scann |
| X | 1 axis, DC motor, feedscrew, rotary encoder (25mm) | 1 PZT (17um), flexures | 2000Hz | Interferometer, X | cite:&buice09_desig_evaluat_singl_axis_precis |
| X,Y,Rz | 1 axis, ballscrew, rotary motor | 3 piezo, flexure | 3 PID, $\approx 1\,Hz$ | Interferometers, XYRz | cite:&liu10_desig_contr_long_travel_nano_posit_stage |
| X | 1 axis, Servo motor, ball screw (300mm) | 1 VCM, air bearing (5mm) | n/a | Interferometer, X | cite:&shinno11_newly_devel_long_range_posit |
| X | 1 axis, VCM, flexure (10mm) | APA, flexure (15um) | PID, $\approx 1\,Hz$ | Interferometer, X | cite:&xu12_desig_devel_flexur_based_dual |
| X | 1 axis X, ballscrew, stepper | 1 piezo stack Y | n/a | Capacitive, Y | cite:&ting11_contr_desig_high_frequen_cuttin |
| X,Y | 2 axis, air bearing, linear motors (500mm), encoder | 4 VCM XYRz (3mm) | n/a | Interferometer, XYRz | cite:&okazaki12_dual_servo_mechan_stage_contin_posit |
| X | 1 axis, linear motor | 1 VCM | 800Hz | Interferometer, X | cite:&ito13_high_precis_posit_system_using;&ito15_low_stiff_dual_stage_actuat |
| X | stepper motor, ballscrew (300mm) | PZT (16um) | 70Hz | Linear Encoder, X | cite:&kim13_desig_contr_singl_stage_dual |
| X,Y | 2 axis stepper (100mm), encoder | 4 PZT (130um) | $\approx 10\,Hz$ | Interferometers, XY | cite:&wu13_desig |
| X | 1 axis, linear motor (10mm), encoder | 1 VCM | 130 Hz | Interferometer, X | cite:&zhu17_flexur_based_paral_actuat_dual |
| X,Y | XY stepper motor (100mm), ballscrew, encoder | 2 PZT (100um) + capacitive | $\approx 10\,Hz$ | Combine both | cite:&wang17_devel_contr_long_strok_precis_stage |
** TODO [#A] Modifications based on discussion with Christophe
- [ ] Evolution of precision of instrument over time?
- [ ] Tables can be put in annex if necessary
- [-] Review of literature should not be in introduction:
- [X] Stewart platform in chapter 2
- [X] Control architecture for Stewart platforms: maybe in chapter 1 when talking about control? *yes*
- [ ] Mechatronics approach just before/in the outline
** TODO [#A] Important point of payload mass
Because the payload's mass can be higher than the mass of the micro-hexapod mass, the coupling becomes very high.
For most of end-stations, the top stages (for small stroke scans) is quite light, and the sample as well.
This way, the short stroke stage dynamics is not coupled to the dynamics of the stages bellow.
In the NASS case, the payload's mass may be one order of magnitude heavier than the mass of the long stroke top platform.
This induce large coupling between stages and is a challenge.
* Context of this thesis
** Synchrotron Radiation Facilities
@ -1413,6 +1443,209 @@ The trigger signals are used to control detector exposure.
Subject of this thesis: design of high performance positioning station with high dynamics and nanometer accuracy
** Nano Positioning End-Stations
**** End-Station with Stacked Stages
Stacked stages:
- errors are combined
To have acceptable performances / stability:
- limited number of stages
- high performances stages (air bearing etc...)
Examples:
- ID01 [[cite:&leake19_nanod_beaml_id01]]
- ID11 [[cite:&wright20_new_oppor_at_mater_scien]]
- ID13 [[cite:&riekel10_progr_micro_nano_diffr_at]]
#+name: fig:introduction_passive_stations
#+caption: Example of two nano end-stations without online metrology: (\subref{fig:introduction_endstation_id16b}) cite:&martinez-criado16_id16b and (\subref{fig:introduction_endstation_id11}) cite:wright20_new_oppor_at_mater_scien
#+attr_latex: :options [htbp]
#+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:introduction_endstation_id16b}ID16b}
#+attr_latex: :options {0.49\textwidth}
#+begin_subfigure
#+attr_latex: :scale 1
[[file:figs/introduction_endstation_id16b.png]]
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:introduction_endstation_id11}ID11}
#+attr_latex: :options {0.49\textwidth}
#+begin_subfigure
#+attr_latex: :scale 1
[[file:figs/introduction_endstation_id11.png]]
#+end_subfigure
#+end_figure
Explain limitations => Thermal drifts, run-out errors of spindles (improved by using air bearing), straightness of translation stages, ...
**** Online Metrology
The idea of having an external metrology to correct for errors is not new.
Several strategies:
- only used for measurements (post processing)
- for calibration
- for triggering detectors
- for real time positioning control (Figure ref:fig:introduction_active_stations)
Sensors:
- Capacitive: [[cite:&schroer17_ptynam;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&schropp20_ptynam]]
- Fiber Interferometers Interferometers:
- Attocube FPS3010 Fabry-Pérot interferometers: [[cite:&nazaretski15_pushin_limit;&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul;&nazaretski22_new_kirkp_baez_based_scann]]
- Attocube IDS3010 Fabry-Pérot interferometers: [[cite:&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&kelly22_delta_robot_long_travel_nano]]
- PicoScale SmarAct Michelson interferometers: [[cite:&schroer17_ptynam;&schropp20_ptynam;&xu23_high_nsls_ii;&geraldes23_sapot_carnaub_sirius_lnls]]
#+name: fig:introduction_metrology_stations
#+caption: Two examples of end-station with integrated online metrology. (\subref{fig:introduction_stages_wang}) [[cite:&wang12_autom_marker_full_field_hard]] and (\subref{fig:introduction_stages_schroer}) [[cite:&schroer17_ptynam]]
#+attr_latex: :options [htbp]
#+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_wang} Wang}
#+attr_latex: :options {0.49\textwidth}
#+begin_subfigure
#+attr_latex: :scale 1
[[file:figs/introduction_stages_wang.png]]
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_schroer} Schroer}
#+attr_latex: :options {0.49\textwidth}
#+begin_subfigure
#+attr_latex: :scale 1
[[file:figs/introduction_stages_schroer.png]]
#+end_subfigure
#+end_figure
#+name: tab:introduction_online_metrology
#+caption: End-Station integrating accurate online metrology systems. For all the examples, the sample used are in the micron scale.
#+attr_latex: :environment tabularx :width 1.0\linewidth :align cccccc
#+attr_latex: :center t :booktabs t :font \scriptsize
| *Architecture* | *Metrology* | *Usage* | *Institute* | *References* |
|-------------------------------------+-------------------+------------------+-------------+--------------------------------------------|
| Sample | 3 Capacitive | Post processing | NSLS | cite:&wang12_autom_marker_full_field_hard |
| XYZ Stage | $D_yD_zR_x$ | | (X8C) | Figure ref:fig:introduction_stages_wang |
| *Metrology Ring* | | | | |
| Spindle | | | | |
|-------------------------------------+-------------------+------------------+-------------+--------------------------------------------|
| *Ball-lens retroreflector* / Sample | 3 interferometers | Characterization | PETRA III | [[cite:&schroer17_ptynam;&schropp20_ptynam]] |
| XYZ piezo stage ($100\,\mu m$) | $D_yD_z$ | | (P06) | Figure ref:fig:introduction_stages_schroer |
| Spindle ($180\,\text{deg}$) | | | | |
|-------------------------------------+-------------------+------------------+-------------+--------------------------------------------|
| *Metrology Ring* / Sample | 2 interferometers | Detector | NSLS | [[cite:&xu23_high_nsls_ii]] |
| Spindle | $D_yD_z$ | triggering | (HRX) | |
| XYZ piezo stage | | | | |
**** Active Control of Positioning Errors
For some applications (especially when using a nano-beam), the position has not only to be measured, but to be controlled.
*Actuators*:
- Piezoelectric: [[cite:&nazaretski15_pushin_limit;&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&nazaretski22_new_kirkp_baez_based_scann]]
- 3-phase linear motor: [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul]]
- Voice Coil: [[cite:&kelly22_delta_robot_long_travel_nano;&geraldes23_sapot_carnaub_sirius_lnls]]
Bandwidth: rarely specificity.
Usually slow, so that only drifts are compensated.
Only recently, high bandwidth (100Hz) have been reported with the use of voice coil actuators [[cite:&kelly22_delta_robot_long_travel_nano;&geraldes23_sapot_carnaub_sirius_lnls]].
Full rotation for tomography:
- Spindle above XYZ stage: [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&engblom18_nanop_resul;&nazaretski22_new_kirkp_baez_based_scann;&xu23_high_nsls_ii]]
- Spindle bellow XYZ stage: [[cite:&wang12_autom_marker_full_field_hard;&schroer17_ptynam;&schropp20_ptynam;&geraldes23_sapot_carnaub_sirius_lnls]]
Only for mapping: [[cite:&nazaretski15_pushin_limit;&kelly22_delta_robot_long_travel_nano]]
#+name: fig:introduction_active_stations
#+caption: Example of two end-stations with real-time position feedback based on an online metrology. (\subref{fig:introduction_stages_villar}) [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]]. (\subref{fig:introduction_stages_nazaretski}) [[cite:&nazaretski17_desig_perfor_x_ray_scann;&nazaretski15_pushin_limit]]
#+attr_latex: :options [htbp]
#+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_villar} ID16a}
#+attr_latex: :options {0.49\textwidth}
#+begin_subfigure
#+attr_latex: :width 0.95\linewidth
[[file:figs/introduction_stages_villar.png]]
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_nazaretski} 1 and 2 are stage to position the focusing optics. 3 is the sample location, 4 the sample stage and 5 the interferometers}
#+attr_latex: :options {0.49\textwidth}
#+begin_subfigure
#+attr_latex: :scale 1
[[file:figs/introduction_stages_nazaretski.png]]
#+end_subfigure
#+end_figure
Payload capabilities:
- All are only supported calibrated, micron scale samples
- Higher sample masses to up to 500g have been reported in [[cite:&nazaretski22_new_kirkp_baez_based_scann;&kelly22_delta_robot_long_travel_nano]]
100 times heavier payload capabilities than previous stations with similar performances.
# #+attr_latex: :environment tabularx :width \linewidth :align lllll
# #+attr_latex: :center t :booktabs t :font \scriptsize
#+name: tab:introduction_active_stations
#+caption: End-Stations with integrated feedback loops based on online metrology. Stages used for static positioning are ommited for readability. Stages used for feedback are indicated in bold font.
#+attr_latex: :environment tabularx :width 1.0\linewidth :align cccccc
#+attr_latex: :center t :booktabs t :font \scriptsize
| *Architecture* | *Metrology* | *Stroke* | *Bandwidth* | *Institute* | *References* |
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
| Mirror / Sample | 3 Interferometers | | n/a | APS | [[cite:&nazaretski15_pushin_limit]] |
| *XYZ piezo motors* | $D_xD_yD_z$ | $D_xD_yD_z: 3\,\text{mm}$ | | | Figure ref:fig:introduction_stages_nazaretski |
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
| Metrology Ring / Sample | 12 Capacitive | light | 10 Hz | ESRF | [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]] |
| Spindle | $D_xD_yD_zR_xR_y$ | $R_z: 180\,\text{deg}$ | | (ID16a) | Figure ref:fig:introduction_stages_villar |
| *Piezo Hexapod* | | $D_xD_yD_z: 50\,\mu m$ | | | |
| | | $R_x R_y: 500\,\mu \text{rad}$ | | | |
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
| Spherical Reference / Sample | 5 Interferometers | light | n/a | PSI | [[cite:&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage]] |
| Spindle | $D_yD_zR_x$ | $R_z: 365\,\text{deg}$ | | (OMNY) | |
| *Piezo Tripod* | | $D_xD_yD_z: 400\,\mu m$ | | | |
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
| Cylindrical Reference / Sample | 5 Interferometers | light | n/a | Soleil | [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul]] |
| Spindle | $D_xD_yD_zR_xR_y$ | $R_z: 360\,\text{deg}$ | | | |
| *Stacked XYZ linear motors* | | $D_xD_yD_z: 400\,\mu m$ | | | |
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
| Metrology Ring / Sample | 3 Interferometers | up to 500g | n/a | NSLS | [[cite:&nazaretski22_new_kirkp_baez_based_scann]] |
| Spindle | $D_xD_yD_z$ | $R_z: 360\,\text{deg}$ | | (SRX) | |
| *XYZ piezo* | | $D_xD_yD_z: 100\,\mu m$ | | | |
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
| Mirrors / Sample | 3 Interferometers | up to 350g | 100 Hz | Diamond | [[cite:&kelly22_delta_robot_long_travel_nano]] |
| *Parallel XYZ voice coil* | $D_xD_yD_z$ | $D_xD_yD_z: 3\,\text{mm}$ | | (I14) | |
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
| Retroreflectors / Samples | 3 Interferometers | light | 100 Hz | LNLS | [[cite:&geraldes23_sapot_carnaub_sirius_lnls]] |
| *Parallel XYZ voice coil* | $D_xD_yD_z$ | $D_yD_z: 3\,\text{mm}$ | | (Carnauba) | |
| Spindle | | $R_z: \pm 110\,\text{deg}$ | | | |
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
| Sample | 6 Interferometers | *up to 50kg* | | ESRF | [[cite:&dehaeze18_sampl_stabil_for_tomog_exper;&dehaeze21_mechat_approac_devel_nano_activ_stabil_system]] |
| *Hexapod* | $D_xD_yD_zR_xR_y$ | | | (ID31) | Figure ref:fig:introduction_nass_concept_schematic |
| Spindle | | $R_z : 360\,\text{deg}$ | | | |
| Ry | | $R_y : \pm 3\,\text{deg}$ | | | |
| Ty | | $D_y : \pm 5\,\text{mm}$ | | | |
**** Long Stroke - Short Stroke architecture
Speak about two stage control?
- Long stroke + short stroke
- Usually applied to 1dof, 3dof (show some examples: disk drive, wafer scanner)
- Any application in 6DoF? Maybe new!
- In the table, say which ones are long stroke / short stroke. Some new stages are just long stroke (voice coil)
#+name: fig:introduction_two_stage_schematic
#+caption: Typical Long Stroke - Short Stroke architecture. The long stroke stage is ...
[[file:figs/introduction_two_stage_schematic.png]]
#+name: fig:introduction_two_stage_example
#+caption: (\subref{fig:introduction_two_stage_control_example}) [[cite:&shinno11_newly_devel_long_range_posit]], (\subref{fig:introduction_two_stage_control_h_bridge}) [[cite:&schmidt20_desig_high_perfor_mechat_third_revis_edition]]
#+attr_latex: :options [htbp]
#+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:introduction_two_stage_control_example} Two stage control with classical stage and voice coil}
#+attr_latex: :options {0.59\textwidth}
#+begin_subfigure
#+attr_latex: :width 0.95\linewidth
[[file:figs/introduction_two_stage_control_example.png]]
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:introduction_two_stage_control_h_bridge} H-bridge. $y_1$, $y_2$ and $x$ are 3-phase linear motors. Short stroke actuators are voice coils.}
#+attr_latex: :options {0.39\textwidth}
#+begin_subfigure
#+attr_latex: :width 0.95\linewidth
[[file:figs/introduction_two_stage_control_h_bridge.png]]
#+end_subfigure
#+end_figure
* Challenge definition
** Multi degrees of freedom, long stroke and highly accurate positioning end station
**** Performance limitation of "stacked-stages" end-stations
@ -1550,191 +1783,8 @@ High bandwidth, 6 DoF system for vibration control, fixed on top of a complex mu
Say that high performance systems (lithography machines, etc...) works with calibrated payloads.
Being robust to change of payload inertia means large stability margins and therefore less performance.
* Literature Review
** Nano Positioning End-Stations
**** End-Station with Stacked Stages
Stacked stages:
- errors are combined
To have acceptable performances / stability:
- limited number of stages
- high performances stages (air bearing etc...)
Examples:
- ID01 [[cite:&leake19_nanod_beaml_id01]]
- ID11 [[cite:&wright20_new_oppor_at_mater_scien]]
- ID13 [[cite:&riekel10_progr_micro_nano_diffr_at]]
#+name: fig:introduction_passive_stations
#+caption: Example of two nano end-stations without online metrology: (\subref{fig:introduction_endstation_id16b}) cite:&martinez-criado16_id16b and (\subref{fig:introduction_endstation_id11}) cite:wright20_new_oppor_at_mater_scien
#+attr_latex: :options [htbp]
#+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:introduction_endstation_id16b}ID16b}
#+attr_latex: :options {0.49\textwidth}
#+begin_subfigure
#+attr_latex: :scale 1
[[file:figs/introduction_endstation_id16b.png]]
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:introduction_endstation_id11}ID11}
#+attr_latex: :options {0.49\textwidth}
#+begin_subfigure
#+attr_latex: :scale 1
[[file:figs/introduction_endstation_id11.png]]
#+end_subfigure
#+end_figure
Explain limitations => Thermal drifts, run-out errors of spindles (improved by using air bearing), straightness of translation stages, ...
**** Online Metrology and Active Control of Positioning Errors
The idea of having an external metrology to correct for errors is not new.
Several strategies:
- only used for measurements (post processing)
- for calibration
- for triggering detectors
- for real time positioning control (Figure ref:fig:introduction_active_stations)
Sensors:
- Capacitive: [[cite:&schroer17_ptynam;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&schropp20_ptynam]]
- Fiber Interferometers Interferometers:
- Attocube FPS3010 Fabry-Pérot interferometers: [[cite:&nazaretski15_pushin_limit;&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul;&nazaretski22_new_kirkp_baez_based_scann]]
- Attocube IDS3010 Fabry-Pérot interferometers: [[cite:&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&kelly22_delta_robot_long_travel_nano]]
- PicoScale SmarAct Michelson interferometers: [[cite:&schroer17_ptynam;&schropp20_ptynam;&xu23_high_nsls_ii;&geraldes23_sapot_carnaub_sirius_lnls]]
#+name: fig:introduction_metrology_stations
#+caption: Two examples of end-station with integrated online metrology. (\subref{fig:introduction_stages_wang}) [[cite:&wang12_autom_marker_full_field_hard]] and (\subref{fig:introduction_stages_schroer}) [[cite:&schroer17_ptynam]]
#+attr_latex: :options [htbp]
#+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_wang} Wang}
#+attr_latex: :options {0.49\textwidth}
#+begin_subfigure
#+attr_latex: :scale 1
[[file:figs/introduction_stages_wang.png]]
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_schroer} Schroer}
#+attr_latex: :options {0.49\textwidth}
#+begin_subfigure
#+attr_latex: :scale 1
[[file:figs/introduction_stages_schroer.png]]
#+end_subfigure
#+end_figure
For some applications (especially when using a nano-beam), the position has not only to be measured, but to be controlled.
*Actuators*:
- Piezoelectric: [[cite:&nazaretski15_pushin_limit;&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&nazaretski22_new_kirkp_baez_based_scann]]
- 3-phase linear motor: [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul]]
- Voice Coil: [[cite:&kelly22_delta_robot_long_travel_nano;&geraldes23_sapot_carnaub_sirius_lnls]]
Bandwidth: rarely specificity.
Usually slow, so that only drifts are compensated.
Only recently, high bandwidth (100Hz) have been reported with the use of voice coil actuators [[cite:&kelly22_delta_robot_long_travel_nano;&geraldes23_sapot_carnaub_sirius_lnls]].
Full rotation for tomography:
- Spindle above XYZ stage: [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&engblom18_nanop_resul;&nazaretski22_new_kirkp_baez_based_scann;&xu23_high_nsls_ii]]
- Spindle bellow XYZ stage: [[cite:&wang12_autom_marker_full_field_hard;&schroer17_ptynam;&schropp20_ptynam;&geraldes23_sapot_carnaub_sirius_lnls]]
Only for mapping: [[cite:&nazaretski15_pushin_limit;&kelly22_delta_robot_long_travel_nano]]
#+name: fig:introduction_active_stations
#+caption: Example of two end-stations with real-time position feedback based on an online metrology. (\subref{fig:introduction_stages_villar}) [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]]. (\subref{fig:introduction_stages_nazaretski}) [[cite:&nazaretski17_desig_perfor_x_ray_scann;&nazaretski15_pushin_limit]]
#+attr_latex: :options [htbp]
#+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_villar} ID16a}
#+attr_latex: :options {0.49\textwidth}
#+begin_subfigure
#+attr_latex: :width 0.95\linewidth
[[file:figs/introduction_stages_villar.png]]
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_nazaretski} 1 and 2 are stage to position the focusing optics. 3 is the sample location, 4 the sample stage and 5 the interferometers}
#+attr_latex: :options {0.49\textwidth}
#+begin_subfigure
#+attr_latex: :scale 1
[[file:figs/introduction_stages_nazaretski.png]]
#+end_subfigure
#+end_figure
Payload capabilities:
- All are only supported calibrated, micron scale samples
- Higher sample masses to up to 500g have been reported in [[cite:&nazaretski22_new_kirkp_baez_based_scann;&kelly22_delta_robot_long_travel_nano]]
100 times heavier payload capabilities than previous stations with similar performances.
# #+attr_latex: :environment tabularx :width \linewidth :align lllll
# #+attr_latex: :center t :booktabs t :font \scriptsize
#+name: tab:introduction_active_stations
#+caption: End-Stations with integrated feedback loops based on online metrology. Stages used for static positioning are ommited for readability. Stages used for feedback are indicated in bold font.
#+attr_latex: :environment tabularx :width 1.0\linewidth :align cccccc
#+attr_latex: :center t :booktabs t :font \scriptsize
| *Architecture* | *Metrology* | *Stroke* | *Bandwidth* | *Institute* | *References* |
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
| Mirror / Sample | 3 Interferometers | | | APS | [[cite:&nazaretski15_pushin_limit]] |
| *XYZ piezo motors* | $D_xD_yD_z$ | $D_xD_yD_z: 3\,\text{mm}$ | | | Figure ref:fig:introduction_stages_nazaretski |
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
| Metrology Ring / Sample | 12 Capacitive | light | 10 Hz | ESRF | [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]] |
| Spindle | $D_xD_yD_zR_xR_y$ | $R_z: 180\,\text{deg}$ | | (ID16a) | Figure ref:fig:introduction_stages_villar |
| *Piezo Hexapod* | | $D_xD_yD_z: 50\,\mu m$ | | | |
| | | $R_x R_y: 500\,\mu \text{rad}$ | | | |
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
| Spherical Reference / Sample | 5 Interferometers | light | | PSI | [[cite:&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage]] |
| Spindle | $D_yD_zR_x$ | $R_z: 365\,\text{deg}$ | | (OMNY) | |
| *Piezo Tripod* | | $D_xD_yD_z: 400\,\mu m$ | | | |
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
| Cylindrical Reference / Sample | 5 Interferometers | light | | Soleil | [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul]] |
| Spindle | $D_xD_yD_zR_xR_y$ | $R_z: 360\,\text{deg}$ | | | |
| *Stacked XYZ linear motors* | | $D_xD_yD_z: 400\,\mu m$ | | | |
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
| Metrology Ring / Sample | 3 Interferometers | up to 500g | | NSLS | [[cite:&nazaretski22_new_kirkp_baez_based_scann]] |
| Spindle | $D_xD_yD_z$ | $R_z: 360\,\text{deg}$ | | (SRX) | |
| *XYZ piezo* | | $D_xD_yD_z: 100\,\mu m$ | | | |
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
| Mirrors / Sample | 3 Interferometers | up to 350g | 100 Hz | Diamond | [[cite:&kelly22_delta_robot_long_travel_nano]] |
| *Parallel XYZ voice coil* | $D_xD_yD_z$ | $D_xD_yD_z: 3\,\text{mm}$ | | (I14) | |
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
| Retroreflectors / Samples | 3 Interferometers | light | 100 Hz | LNLS | [[cite:&geraldes23_sapot_carnaub_sirius_lnls]] |
| *Parallel XYZ voice coil* | $D_xD_yD_z$ | $D_yD_z: 3\,\text{mm}$ | | (Carnauba) | |
| Spindle | | $R_z: \pm 110\,\text{deg}$ | | | |
|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------|
| Sample | 6 Interferometers | *up to 50kg* | | ESRF | [[cite:&dehaeze18_sampl_stabil_for_tomog_exper;&dehaeze21_mechat_approac_devel_nano_activ_stabil_system]] |
| *Hexapod* | $D_xD_yD_zR_xR_y$ | | | (ID31) | Figure ref:fig:introduction_nass_concept_schematic |
| Spindle | | $R_z : 360\,\text{deg}$ | | | |
| Ry | | $R_y : \pm 3\,\text{deg}$ | | | |
| Ty | | $D_y : \pm 5\,\text{mm}$ | | | |
**** Long Stroke - Short Stroke architecture
Speak about two stage control?
- Long stroke + short stroke
- Usually applied to 1dof, 3dof (show some examples: disk drive, wafer scanner)
- Any application in 6DoF? Maybe new!
- In the table, say which ones are long stroke / short stroke. Some new stages are just long stroke (voice coil)
#+name: fig:introduction_two_stage_schematic
#+caption: Typical Long Stroke - Short Stroke architecture. The long stroke stage is ...
[[file:figs/introduction_two_stage_schematic.png]]
#+name: fig:introduction_two_stage_example
#+caption: (\subref{fig:introduction_two_stage_control_example}) [[cite:&shinno11_newly_devel_long_range_posit]], (\subref{fig:introduction_two_stage_control_h_bridge}) [[cite:&schmidt20_desig_high_perfor_mechat_third_revis_edition]]
#+attr_latex: :options [htbp]
#+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:introduction_two_stage_control_example} Two stage control with classical stage and voice coil}
#+attr_latex: :options {0.59\textwidth}
#+begin_subfigure
#+attr_latex: :width 0.95\linewidth
[[file:figs/introduction_two_stage_control_example.png]]
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:introduction_two_stage_control_h_bridge} H-bridge. $y_1$, $y_2$ and $x$ are 3-phase linear motors. Short stroke actuators are voice coils.}
#+attr_latex: :options {0.39\textwidth}
#+begin_subfigure
#+attr_latex: :width 0.95\linewidth
[[file:figs/introduction_two_stage_control_h_bridge.png]]
#+end_subfigure
#+end_figure
* [#A] Literature Review
*Maybe remove this section has it seems it is discussed elsewhere?*
** Multi-DoF dynamical positioning stations
**** Serial and Parallel Kinematics
@ -2231,7 +2281,7 @@ The results reveal that, despite their different implementations, both modified
- Several uses (link to some papers).
- For the NASS, they could be use to further improve the robustness of the system.
**** Multi-body simulations with reduced order flexible bodies obtained by FEA
**** [#A] Multi-body simulations with reduced order flexible bodies obtained by FEA
[[cite:&brumund21_multib_simul_reduc_order_flexib_bodies_fea]]
@ -2253,7 +2303,7 @@ We validated the technique with a test bench that confirmed the good modelling c
- Example: collocated actuator/sensor pair => controller can easily be made robust
- This is done by using models and using HAC-LAC architecture
**** Mechatronics design
**** [#A] Mechatronics design
Conduct a rigorous mechatronics design approach for a nano active stabilization system
[[cite:&dehaeze18_sampl_stabil_for_tomog_exper;&dehaeze21_mechat_approac_devel_nano_activ_stabil_system]]
@ -2267,7 +2317,7 @@ Complete design with clear choices based on models.
Such approach, while not new, is here applied
This can be used for the design of future end-stations.
#+begin_src latex :file nass_mechatronics_approach.pdf
#+begin_src latex :file nass_introduction_mechatronics_approach.pdf
% \graphicspath{ {/home/thomas/Cloud/thesis/papers/dehaeze21_mechatronics_approach_nass/tikz/figs-tikz} }
\begin{tikzpicture}
@ -2368,7 +2418,7 @@ This can be used for the design of future end-stations.
#+caption: Overview of the mechatronic approach used for the Nano-Active-Stabilization-System
#+attr_latex: :width \linewidth
#+RESULTS:
[[file:figs/nass_mechatronics_approach.png]]
[[file:figs/introduction_nass_mechatronics_approach.png]]
**** 6DoF vibration control of a rotating platform

Binary file not shown.

View File

@ -1,4 +1,4 @@
% Created 2024-05-30 Thu 15:40
% Created 2024-05-30 Thu 15:51
% Intended LaTeX compiler: pdflatex
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
@ -504,7 +504,7 @@ Examples:
Explain limitations => Thermal drifts, run-out errors of spindles (improved by using air bearing), straightness of translation stages, \ldots{}
\paragraph{Online Metrology and Active Control of Positioning Errors}
\paragraph{Online Metrology}
The idea of having an external metrology to correct for errors is not new.
@ -543,6 +543,31 @@ Sensors:
\caption{\label{fig:introduction_metrology_stations}Two examples of end-station with integrated online metrology. (\subref{fig:introduction_stages_wang}) \cite{wang12_autom_marker_full_field_hard} and (\subref{fig:introduction_stages_schroer}) \cite{schroer17_ptynam}}
\end{figure}
\begin{table}[htbp]
\caption{\label{tab:introduction_online_metrology}End-Station integrating accurate online metrology systems}
\centering
\scriptsize
\begin{tabularx}{1.0\linewidth}{ccccccc}
\toprule
\textbf{Architecture} & \textbf{Metrology} & \textbf{Usage} & \textbf{Stroke} & \textbf{Institute} & \textbf{References}\\
\midrule
Sample & 3 Capacitive & Post processing & micron scale & NSLS & \cite{wang12_autom_marker_full_field_hard}\\
XYZ Stage & \(D_yD_zR_x\) & & & (X8C) & Figure \ref{fig:introduction_stages_wang}\\
\textbf{Metrology Ring} & & & & & \\
Spindle & & & & & \\
\midrule
\textbf{Ball-lens retroreflector} / Sample & 3 interferometers & Characterization & micron scale & PETRA III & \cite{schroer17_ptynam,schropp20_ptynam}\\
XYZ piezo stage & \(D_yD_z\) & & XYZ: 100um & (P06) & Figure \ref{fig:introduction_stages_schroer}\\
Spindle & & & Rz: 180 deg & & \\
\midrule
\textbf{Metrology Ring} / Sample & 2 interferometers & Detector & micron scale & NSLS & \cite{xu23_high_nsls_ii}\\
Spindle & \(D_yD_z\) & triggering & & (HRX) & \\
XYZ piezo stage & & & & & \\
\bottomrule
\end{tabularx}
\end{table}
\paragraph{Active Control of Positioning Errors}
For some applications (especially when using a nano-beam), the position has not only to be measured, but to be controlled.
\textbf{Actuators}:
@ -592,7 +617,7 @@ Payload capabilities:
\caption{\label{tab:introduction_active_stations}End-Stations with integrated feedback loops based on online metrology. Stages used for static positioning are ommited for readability. Stages used for feedback are indicated in bold font.}
\centering
\scriptsize
\begin{tabularx}{0.95\linewidth}{cccccc}
\begin{tabularx}{1.0\linewidth}{cccccc}
\toprule
\textbf{Architecture} & \textbf{Metrology} & \textbf{Stroke} & \textbf{Bandwidth} & \textbf{Institute} & \textbf{References}\\
\midrule
@ -624,7 +649,7 @@ Retroreflectors / Samples & 3 Interferometers & light & 100 Hz & LNLS & \cite{ge
Spindle & & \(R_z: \pm 110\,\text{deg}\) & & & \\
\midrule
Sample & 6 Interferometers & \textbf{up to 50kg} & & ESRF & \cite{dehaeze18_sampl_stabil_for_tomog_exper,dehaeze21_mechat_approac_devel_nano_activ_stabil_system}\\
\textbf{Hexapod} & \(D_xD_yD_zR_xR_y\) & & & (ID31) & \\
\textbf{Hexapod} & \(D_xD_yD_zR_xR_y\) & & & (ID31) & Figure \ref{fig:introduction_nass_concept_schematic}\\
Spindle & & \(R_z : 360\,\text{deg}\) & & & \\
Ry & & \(R_y : \pm 3\,\text{deg}\) & & & \\
Ty & & \(D_y : \pm 5\,\text{mm}\) & & & \\
@ -632,7 +657,6 @@ Ty & & \(D_y : \pm 5\,\text{mm}\) & & & \\
\end{tabularx}
\end{table}
\paragraph{Long Stroke - Short Stroke architecture}
Speak about two stage control?