diff --git a/nass-introduction.org b/nass-introduction.org index d34a6d2..d1e051a 100644 --- a/nass-introduction.org +++ b/nass-introduction.org @@ -552,7 +552,7 @@ CLOSED: [2024-05-29 Wed 18:58] % ==================== % IFF Control \node[block={2em}{2em}, right=0.6 of f, color=colorblue, fill=colorblue!10!white] (iff) {$g/s$}; - \draw[->, draw=colorblue] (fsensn.east)node[above right, color=colorblue]{$f_m$} -- ++(1.6, 0) |- (iff.east); + \draw[->, draw=colorblue] (fsensn.east)node[above right, color=colorblue]{$f_n$} -- ++(1.6, 0) |- (iff.east); \draw[->, draw=colorblue] (iff.west) -- (f.east) node[above right, color=colorblue]{$f$}; % ==================== \end{scope} @@ -701,7 +701,7 @@ CLOSED: [2024-05-29 Wed 17:09] \coordinate[] (outputX) at ($(P.south east)!0.5!(P.north east)$); \node[block, left=0.8 of inputF] (J) {$\bm{J}^{-T}$}; - \node[block={2.0cm}{2.0cm}, left=0.8 of J] (K) {\begin{matrix}K_x & & 0 \\ & \ddots & \\ 0 & & K_z\end{matrix}}; + \node[block={2.0cm}{2.0cm}, left=0.8 of J] (K) {\begin{matrix}K_x & & 0 \\ & \ddots & \\ 0 & & K_{R_z}\end{matrix}}; \node[addb={+}{}{}{}{-}, left=0.8 of K] (subr) {}; % Connections and labels @@ -909,6 +909,7 @@ Only recently, high bandwidth (100Hz) have been reported with the use of voice c | Architecture | Sensors and measured DoFs | Metrology Use | Stroke, DoF | Samples | Institute, BL | Ref | |-----------------------------------------------------------------+--------------------------------+---------------------+-------------------------+--------------+----------------+-------------------------------------------| | Spindle / *XYZ piezo stage* / Spherical retroreflector / Sample | 3 interferometers[fn:1]: $YZ$ | Characterization | XYZ: 100um, Rz: 180 deg | micron scale | PETRA III, P06 | [[cite:&schroer17_ptynam;&schropp20_ptynam]] | +| | | | | | | | | Spindle / Metrology Ring / *XYZ* Stage / Sample | 3 Capacitive: $YZR_x$ | Post processing | | micron scale | NSLS, X8C | cite:&wang12_autom_marker_full_field_hard | | *XYZ piezo stage* / Spindle / Metrology Ring / Sample | 2 interferometers [fn:1]: $YZ$ | Detector triggering | | micron scale | NSLS, HRX | [[cite:&xu23_high_nsls_ii]] | @@ -917,7 +918,7 @@ Only recently, high bandwidth (100Hz) have been reported with the use of voice c #+caption: End-Station with integrated feedback loops based on online metrology. Stages used for feedback are indicated in bold font. #+attr_latex: :environment tabularx :width \linewidth :align lllllllX #+attr_latex: :center t :booktabs t :font \scriptsize -| Architecture | Sensors and measured DoFs | Bandwidth | Stroke, DoF | Samples | Institute, BL | Ref | +| Stacked Stages | Sensors and measured DoFs | Bandwidth | Stroke, DoF | Samples | Institute, BL | Ref | |--------------------------------------------------------------------+--------------------------------------+-----------+--------------------------------------+------------+-------------------+----------------------------------------------------------------------------------| | *XYZ piezo motors* / Mirrors / Sample | 3 interferometers[fn:3]: $XYZ$ | 3 PID | XYZ: 3mm | light | APS | [[cite:&nazaretski15_pushin_limit]] | | *Piezo Hexapod* / Spindle / Metrology Ring / Sample | 12 Capacitive[fn:4]: $XYZR_xR_y$ | 10Hz | XYZ: 50um, Rx/Ry:500urad, Rz: 180deg | light | ESRF, ID16a | [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]] | @@ -927,72 +928,6 @@ Only recently, high bandwidth (100Hz) have been reported with the use of voice c | *Parallel XYZ voice coil stage* / Sample | 3 interferometers[fn:2]: $XYZ$ | 100Hz | XYZ: 3mm | up to 350g | Diamond, I14 | [[cite:&kelly22_delta_robot_long_travel_nano]] | | Rz / *Parallel XYZ voice coil stage* / Sample | 3 interferometers[fn:1]: $XYZ$ | 100Hz | YZ: 3mm, Rz: +-110deg | light | LNLS, CARNAUBA | [[cite:&geraldes23_sapot_carnaub_sirius_lnls]] | -** TODO [#C] Review of two stage control - -[[elisp:(helm-bibtex nil nil "Two Stage Actuator ")][Two Stage Actuator]]: -- [X] cite:&xu12_desig_devel_flexur_based_dual -- [ ] cite:&pahk01_ultra_precis_posit_system_servo_motor -- [ ] cite:&kobayashi03_phase_stabil_servo_contr_dual - disk drive -- [ ] cite:&michellod06_strat_contr_dual_nano_system_singl_metrol -- [ ] cite:&woody06_desig_perfor_dual_drive_system -- [ ] cite:&chassagne07_nano_posit_system_with_sub -- [ ] cite:&schitter08_dual -- [X] cite:&buice09_desig_evaluat_singl_axis_precis -- [X] cite:&liu10_desig_contr_long_travel_nano_posit_stage -- [ ] cite:&ting11_contr_desig_high_frequen_cuttin -- [ ] cite:&okazaki12_dual_servo_mechan_stage_contin_posit -- [ ] cite:&ito13_high_precis_posit_system_using -- [ ] cite:&yamaguchi13_advan_high_perfor_motion_contr_mechat_system -- [ ] cite:&kim13_desig_contr_singl_stage_dual -- [ ] cite:&wu13_desig -- [ ] cite:&parmar14_large_dynam_range_nanop_using -- [ ] cite:&ito15_low_stiff_dual_stage_actuat -- [ ] cite:&qingsong16_desig_implem_large_range_compl_microp_system -- [ ] cite:&zhu17_flexur_based_paral_actuat_dual -- [ ] cite:&wang17_devel_contr_long_strok_precis_stage -- [ ] cite:&okyay18_modal_analy_metrol_error_budget -- [ ] cite:&csencsics18_system_contr_desig_voice_coil -- [ ] cite:&okyay18_mechat_desig_actuat_optim_contr -- [ ] cite:&kong18_vibrat_isolat_dual_stage_actuat -- [ ] cite:&du19_multi_actuat_system_contr -- [ ] cite:&yun20_inves_two_stage_vibrat_suppr -- [ ] cite:&mukherjee20_hybrid_contr_precis_posit_applic -- [ ] cite:&barros21_feedf_contr_piezoel_dual_actuat_system - -*To read in details*: -- [X] cite:&choi08_desig_contr_nanop_xy_theta_scann - *top* -- [X] [[cite:&buice09_desig_evaluat_singl_axis_precis]] -- [X] cite:&shinno11_newly_devel_long_range_posit -- [ ] cite:&okazaki12_dual_servo_mechan_stage_contin_posit -- [ ] cite:&shan15_contr_review - *good review* -- [X] cite:&okyay16_mechat_desig_dynam_contr_metrol - *Good review* - #+begin_quote - The alternative, sliding contact bearings are limited to 2-10 [μm] motion resolution, due to stick-slip motion [[cite:&slocum92_precis_machin_desig]], hence they are not preferred. -Stick-slip occurs due to the difference between static and dynamic coefficients of friction in such bearings, which results in an impact-like disturbance in the control system during motion reversal. - #+end_quote -- [X] cite:&kong18_vibrat_isolat_dual_stage_actuat - *only found example of dual stage with hexapod* - #+begin_quote - The coarse stage is usually actuated by VCMs or other linear motors, and the fine stage is usually actuated by piezoelectric actuators or VCMs. - #+end_quote - -#+name: tab:introduction_dual_stages -#+caption: for each example, interferometers are used as the measured stage position (and signal feedback for the short stroke actuator). -#+attr_latex: :environment tabularx :width \linewidth :align lXX -#+attr_latex: :center t :booktabs t -| DoF | Long Stroke | Short Stroke | Bandwidth | | -|--------+---------------------------------+---------------+---------------+------------------------------------------------------| -| X,Y | 2 axis, linear motor | 2 piezo | | cite:&chassagne07_nano_posit_system_with_sub | -| X,Y,Rz | 1 axis, iron core linear motor | 4 VCM | 85Hz | cite:&choi08_desig_contr_nanop_xy_theta_scann | -| X | 1 axis, DC motor, feedscrew | 1 PZT | | cite:&buice09_desig_evaluat_singl_axis_precis | -| X,Y,Rz | 1 axis, ballscrew, rotary motor | 3 piezo | 3 PID, few Hz | cite:&liu10_desig_contr_long_travel_nano_posit_stage | -| X | 1 axis, Servo motor, ball screw | 1 VCM | | cite:&shinno11_newly_devel_long_range_posit | -| X | 1 axis, VCM | 1 piezo stack | | cite:&xu12_desig_devel_flexur_based_dual | - ** DONE [#C] Review about Stewart platform control CLOSED: [2024-05-29 Wed 16:16] @@ -1112,20 +1047,115 @@ Bandwidth is rarely specified Same table for nano positioning stages without integrated metrology? -** TODO [#C] Ask for permission to use figures +** TODO [#B] Talk about performance specifications -- [ ] Veijo (OH1, OH2) -- [ ] Cloetens (tomo + mapping) -- [ ] Focus size (Ray Barret) -- [ ] ID16b -- [ ] ID11 -- [ ] Wang -- [ ] Chroer -- [ ] Villar -- [ ] Nazaretski -- [ ] Shinno -- [ ] Schmidth -- [ ] +Smallest beamsize: 200nm x 100nm +- Goal: Keep the PoI in the beam: peak to peak errors of 200nm in Dy and 100nm in Dz +- RMS errors (/ by 6.6) gives 30nmRMS in Dy and 15nmRMS in Dz. +- Ry error <1.7urad, 250nrad RMS + +What is the filtering? + +** TODO [#B] Add table to compare Stewart platforms + +[[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org]] + +** TODO [#C] Review of two stage control + +*Articles*: +- [X] cite:&xu12_desig_devel_flexur_based_dual +- [X] cite:&pahk01_ultra_precis_posit_system_servo_motor +- [X] cite:&kobayashi03_phase_stabil_servo_contr_dual + disk drive +- [X] cite:&michellod06_strat_contr_dual_nano_system_singl_metrol +- [X] cite:&woody06_desig_perfor_dual_drive_system +- [X] cite:&chassagne07_nano_posit_system_with_sub +- [X] cite:&schitter08_dual +- [X] cite:&buice09_desig_evaluat_singl_axis_precis +- [X] cite:&liu10_desig_contr_long_travel_nano_posit_stage +- [X] cite:&ting11_contr_desig_high_frequen_cuttin +- [X] cite:&okazaki12_dual_servo_mechan_stage_contin_posit +- [X] cite:&ito13_high_precis_posit_system_using +- [X] cite:&kim13_desig_contr_singl_stage_dual +- [X] cite:&wu13_desig +- [X] cite:&ito15_low_stiff_dual_stage_actuat +- [X] cite:&zhu17_flexur_based_paral_actuat_dual +- [X] cite:&wang17_devel_contr_long_strok_precis_stage +- [X] cite:&yun20_inves_two_stage_vibrat_suppr + Stewart platform used as vibration isolation + +*Books*: +- [ ] cite:&yamaguchi13_advan_high_perfor_motion_contr_mechat_system +- [ ] cite:&qingsong16_desig_implem_large_range_compl_microp_system +- [ ] cite:&du19_multi_actuat_system_contr + +*To read in details*: +- [X] cite:&choi08_desig_contr_nanop_xy_theta_scann + *top* +- [X] [[cite:&buice09_desig_evaluat_singl_axis_precis]] +- [X] cite:&shinno11_newly_devel_long_range_posit +- [X] cite:&okazaki12_dual_servo_mechan_stage_contin_posit +- [X] cite:&shan15_contr_review + *Good review* + #+begin_quote + Since the proposal of the first dual-actuation stage composed of a combination of ball screw drives and a rotary motor for the long-stroke stage and piezoelectric actuators for the fine stage in 1988, many studies have been performed. +When the coarse actuator and fine actuator are combined, some problems are solved and some other problems develop, such as stability, response speed, and friction. + #+end_quote + #+begin_quote + The motion range of the piezoelectric actuator (short stroke) will at least compensate the motion error of the VCM (long-stroke) and the bandwidth of the piezoelectric actuator is higher than that of the VCM to compensate the system error. + #+end_quote +- [X] cite:&okyay16_mechat_desig_dynam_contr_metrol + *Good review* + #+begin_quote + The alternative, sliding contact bearings are limited to 2-10 [μm] motion resolution, due to stick-slip motion [[cite:&slocum92_precis_machin_desig]], hence they are not preferred. +Stick-slip occurs due to the difference between static and dynamic coefficients of friction in such bearings, which results in an impact-like disturbance in the control system during motion reversal. + #+end_quote +- [X] cite:&kong18_vibrat_isolat_dual_stage_actuat + *Only found example of dual stage with hexapod*. But only for vibration isolation + #+begin_quote + The coarse stage is usually actuated by VCMs or other linear motors, and the fine stage is usually actuated by piezoelectric actuators or VCMs. + #+end_quote + + +#+name: tab:introduction_dual_stages +#+caption: For each example, interferometers are used as the measured stage position (and signal feedback for the short stroke actuator). +#+attr_latex: :environment tabularx :width \linewidth :align ccccc +#+attr_latex: :center t :booktabs t :font \scriptsize +| *DoF* | *Long Stroke* | *Short Stroke* | *Bandwidth* | *Metrology* | *References* | +|--------+-----------------------------------------------------+----------------------------+------------------------+-----------------------+-------------------------------------------------------------------------------| +| X | Servo motor, leadscrew, rotary encoder | PZT, flexure (10um) | n/a | Interferometer, X | cite:&pahk01_ultra_precis_posit_system_servo_motor | +| X,Y | 2 axis, linear motor | 2 PZT, flexures | n/a | Interferometers, XY | cite:&chassagne07_nano_posit_system_with_sub | +| X,Y,Rz | X, linear motor, linear guides | 4 VCM (1mm), air bearing | 85Hz | Interferometers, XYRz | cite:&choi08_desig_contr_nanop_xy_theta_scann | +| X | 1 axis, DC motor, feedscrew, rotary encoder (25mm) | 1 PZT (17um), flexures | 2000Hz | Interferometer, X | cite:&buice09_desig_evaluat_singl_axis_precis | +| X,Y,Rz | 1 axis, ballscrew, rotary motor | 3 piezo, flexure | 3 PID, $\approx 1\,Hz$ | Interferometers, XYRz | cite:&liu10_desig_contr_long_travel_nano_posit_stage | +| X | 1 axis, Servo motor, ball screw (300mm) | 1 VCM, air bearing (5mm) | n/a | Interferometer, X | cite:&shinno11_newly_devel_long_range_posit | +| X | 1 axis, VCM, flexure (10mm) | APA, flexure (15um) | PID, $\approx 1\,Hz$ | Interferometer, X | cite:&xu12_desig_devel_flexur_based_dual | +| X | 1 axis X, ballscrew, stepper | 1 piezo stack Y | n/a | Capacitive, Y | cite:&ting11_contr_desig_high_frequen_cuttin | +| X,Y | 2 axis, air bearing, linear motors (500mm), encoder | 4 VCM XYRz (3mm) | n/a | Interferometer, XYRz | cite:&okazaki12_dual_servo_mechan_stage_contin_posit | +| X | 1 axis, linear motor | 1 VCM | 800Hz | Interferometer, X | cite:&ito13_high_precis_posit_system_using;&ito15_low_stiff_dual_stage_actuat | +| X | stepper motor, ballscrew (300mm) | PZT (16um) | 70Hz | Linear Encoder, X | cite:&kim13_desig_contr_singl_stage_dual | +| X,Y | 2 axis stepper (100mm), encoder | 4 PZT (130um) | $\approx 10\,Hz$ | Interferometers, XY | cite:&wu13_desig | +| X | 1 axis, linear motor (10mm), encoder | 1 VCM | 130 Hz | Interferometer, X | cite:&zhu17_flexur_based_paral_actuat_dual | +| X,Y | XY stepper motor (100mm), ballscrew, encoder | 2 PZT (100um) + capacitive | $\approx 10\,Hz$ | Combine both | cite:&wang17_devel_contr_long_strok_precis_stage | + +** TODO [#A] Modifications based on discussion with Christophe + +- [ ] Evolution of precision of instrument over time? +- [ ] Tables can be put in annex if necessary +- [-] Review of literature should not be in introduction: + - [X] Stewart platform in chapter 2 + - [X] Control architecture for Stewart platforms: maybe in chapter 1 when talking about control? *yes* + - [ ] Mechatronics approach just before/in the outline + +** TODO [#A] Important point of payload mass + +Because the payload's mass can be higher than the mass of the micro-hexapod mass, the coupling becomes very high. + +For most of end-stations, the top stages (for small stroke scans) is quite light, and the sample as well. +This way, the short stroke stage dynamics is not coupled to the dynamics of the stages bellow. + +In the NASS case, the payload's mass may be one order of magnitude heavier than the mass of the long stroke top platform. +This induce large coupling between stages and is a challenge. * Context of this thesis ** Synchrotron Radiation Facilities @@ -1413,6 +1443,209 @@ The trigger signals are used to control detector exposure. Subject of this thesis: design of high performance positioning station with high dynamics and nanometer accuracy +** Nano Positioning End-Stations +**** End-Station with Stacked Stages + +Stacked stages: +- errors are combined + +To have acceptable performances / stability: +- limited number of stages +- high performances stages (air bearing etc...) + +Examples: +- ID01 [[cite:&leake19_nanod_beaml_id01]] +- ID11 [[cite:&wright20_new_oppor_at_mater_scien]] +- ID13 [[cite:&riekel10_progr_micro_nano_diffr_at]] + +#+name: fig:introduction_passive_stations +#+caption: Example of two nano end-stations without online metrology: (\subref{fig:introduction_endstation_id16b}) cite:&martinez-criado16_id16b and (\subref{fig:introduction_endstation_id11}) cite:wright20_new_oppor_at_mater_scien +#+attr_latex: :options [htbp] +#+begin_figure +#+attr_latex: :caption \subcaption{\label{fig:introduction_endstation_id16b}ID16b} +#+attr_latex: :options {0.49\textwidth} +#+begin_subfigure +#+attr_latex: :scale 1 +[[file:figs/introduction_endstation_id16b.png]] +#+end_subfigure +#+attr_latex: :caption \subcaption{\label{fig:introduction_endstation_id11}ID11} +#+attr_latex: :options {0.49\textwidth} +#+begin_subfigure +#+attr_latex: :scale 1 +[[file:figs/introduction_endstation_id11.png]] +#+end_subfigure +#+end_figure + +Explain limitations => Thermal drifts, run-out errors of spindles (improved by using air bearing), straightness of translation stages, ... + +**** Online Metrology + +The idea of having an external metrology to correct for errors is not new. + +Several strategies: +- only used for measurements (post processing) +- for calibration +- for triggering detectors +- for real time positioning control (Figure ref:fig:introduction_active_stations) + +Sensors: +- Capacitive: [[cite:&schroer17_ptynam;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&schropp20_ptynam]] +- Fiber Interferometers Interferometers: + - Attocube FPS3010 Fabry-Pérot interferometers: [[cite:&nazaretski15_pushin_limit;&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul;&nazaretski22_new_kirkp_baez_based_scann]] + - Attocube IDS3010 Fabry-Pérot interferometers: [[cite:&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&kelly22_delta_robot_long_travel_nano]] + - PicoScale SmarAct Michelson interferometers: [[cite:&schroer17_ptynam;&schropp20_ptynam;&xu23_high_nsls_ii;&geraldes23_sapot_carnaub_sirius_lnls]] + +#+name: fig:introduction_metrology_stations +#+caption: Two examples of end-station with integrated online metrology. (\subref{fig:introduction_stages_wang}) [[cite:&wang12_autom_marker_full_field_hard]] and (\subref{fig:introduction_stages_schroer}) [[cite:&schroer17_ptynam]] +#+attr_latex: :options [htbp] +#+begin_figure +#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_wang} Wang} +#+attr_latex: :options {0.49\textwidth} +#+begin_subfigure +#+attr_latex: :scale 1 +[[file:figs/introduction_stages_wang.png]] +#+end_subfigure +#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_schroer} Schroer} +#+attr_latex: :options {0.49\textwidth} +#+begin_subfigure +#+attr_latex: :scale 1 +[[file:figs/introduction_stages_schroer.png]] +#+end_subfigure +#+end_figure + +#+name: tab:introduction_online_metrology +#+caption: End-Station integrating accurate online metrology systems. For all the examples, the sample used are in the micron scale. +#+attr_latex: :environment tabularx :width 1.0\linewidth :align cccccc +#+attr_latex: :center t :booktabs t :font \scriptsize +| *Architecture* | *Metrology* | *Usage* | *Institute* | *References* | +|-------------------------------------+-------------------+------------------+-------------+--------------------------------------------| +| Sample | 3 Capacitive | Post processing | NSLS | cite:&wang12_autom_marker_full_field_hard | +| XYZ Stage | $D_yD_zR_x$ | | (X8C) | Figure ref:fig:introduction_stages_wang | +| *Metrology Ring* | | | | | +| Spindle | | | | | +|-------------------------------------+-------------------+------------------+-------------+--------------------------------------------| +| *Ball-lens retroreflector* / Sample | 3 interferometers | Characterization | PETRA III | [[cite:&schroer17_ptynam;&schropp20_ptynam]] | +| XYZ piezo stage ($100\,\mu m$) | $D_yD_z$ | | (P06) | Figure ref:fig:introduction_stages_schroer | +| Spindle ($180\,\text{deg}$) | | | | | +|-------------------------------------+-------------------+------------------+-------------+--------------------------------------------| +| *Metrology Ring* / Sample | 2 interferometers | Detector | NSLS | [[cite:&xu23_high_nsls_ii]] | +| Spindle | $D_yD_z$ | triggering | (HRX) | | +| XYZ piezo stage | | | | | + +**** Active Control of Positioning Errors +For some applications (especially when using a nano-beam), the position has not only to be measured, but to be controlled. + +*Actuators*: +- Piezoelectric: [[cite:&nazaretski15_pushin_limit;&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&nazaretski22_new_kirkp_baez_based_scann]] +- 3-phase linear motor: [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul]] +- Voice Coil: [[cite:&kelly22_delta_robot_long_travel_nano;&geraldes23_sapot_carnaub_sirius_lnls]] + + +Bandwidth: rarely specificity. +Usually slow, so that only drifts are compensated. +Only recently, high bandwidth (100Hz) have been reported with the use of voice coil actuators [[cite:&kelly22_delta_robot_long_travel_nano;&geraldes23_sapot_carnaub_sirius_lnls]]. + +Full rotation for tomography: +- Spindle above XYZ stage: [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&engblom18_nanop_resul;&nazaretski22_new_kirkp_baez_based_scann;&xu23_high_nsls_ii]] +- Spindle bellow XYZ stage: [[cite:&wang12_autom_marker_full_field_hard;&schroer17_ptynam;&schropp20_ptynam;&geraldes23_sapot_carnaub_sirius_lnls]] +Only for mapping: [[cite:&nazaretski15_pushin_limit;&kelly22_delta_robot_long_travel_nano]] + +#+name: fig:introduction_active_stations +#+caption: Example of two end-stations with real-time position feedback based on an online metrology. (\subref{fig:introduction_stages_villar}) [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]]. (\subref{fig:introduction_stages_nazaretski}) [[cite:&nazaretski17_desig_perfor_x_ray_scann;&nazaretski15_pushin_limit]] +#+attr_latex: :options [htbp] +#+begin_figure +#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_villar} ID16a} +#+attr_latex: :options {0.49\textwidth} +#+begin_subfigure +#+attr_latex: :width 0.95\linewidth +[[file:figs/introduction_stages_villar.png]] +#+end_subfigure +#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_nazaretski} 1 and 2 are stage to position the focusing optics. 3 is the sample location, 4 the sample stage and 5 the interferometers} +#+attr_latex: :options {0.49\textwidth} +#+begin_subfigure +#+attr_latex: :scale 1 +[[file:figs/introduction_stages_nazaretski.png]] +#+end_subfigure +#+end_figure + +Payload capabilities: +- All are only supported calibrated, micron scale samples +- Higher sample masses to up to 500g have been reported in [[cite:&nazaretski22_new_kirkp_baez_based_scann;&kelly22_delta_robot_long_travel_nano]] + +100 times heavier payload capabilities than previous stations with similar performances. + +# #+attr_latex: :environment tabularx :width \linewidth :align lllll +# #+attr_latex: :center t :booktabs t :font \scriptsize + +#+name: tab:introduction_active_stations +#+caption: End-Stations with integrated feedback loops based on online metrology. Stages used for static positioning are ommited for readability. Stages used for feedback are indicated in bold font. +#+attr_latex: :environment tabularx :width 1.0\linewidth :align cccccc +#+attr_latex: :center t :booktabs t :font \scriptsize +| *Architecture* | *Metrology* | *Stroke* | *Bandwidth* | *Institute* | *References* | +|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------| +| Mirror / Sample | 3 Interferometers | | n/a | APS | [[cite:&nazaretski15_pushin_limit]] | +| *XYZ piezo motors* | $D_xD_yD_z$ | $D_xD_yD_z: 3\,\text{mm}$ | | | Figure ref:fig:introduction_stages_nazaretski | +|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------| +| Metrology Ring / Sample | 12 Capacitive | light | 10 Hz | ESRF | [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]] | +| Spindle | $D_xD_yD_zR_xR_y$ | $R_z: 180\,\text{deg}$ | | (ID16a) | Figure ref:fig:introduction_stages_villar | +| *Piezo Hexapod* | | $D_xD_yD_z: 50\,\mu m$ | | | | +| | | $R_x R_y: 500\,\mu \text{rad}$ | | | | +|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------| +| Spherical Reference / Sample | 5 Interferometers | light | n/a | PSI | [[cite:&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage]] | +| Spindle | $D_yD_zR_x$ | $R_z: 365\,\text{deg}$ | | (OMNY) | | +| *Piezo Tripod* | | $D_xD_yD_z: 400\,\mu m$ | | | | +|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------| +| Cylindrical Reference / Sample | 5 Interferometers | light | n/a | Soleil | [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul]] | +| Spindle | $D_xD_yD_zR_xR_y$ | $R_z: 360\,\text{deg}$ | | | | +| *Stacked XYZ linear motors* | | $D_xD_yD_z: 400\,\mu m$ | | | | +|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------| +| Metrology Ring / Sample | 3 Interferometers | up to 500g | n/a | NSLS | [[cite:&nazaretski22_new_kirkp_baez_based_scann]] | +| Spindle | $D_xD_yD_z$ | $R_z: 360\,\text{deg}$ | | (SRX) | | +| *XYZ piezo* | | $D_xD_yD_z: 100\,\mu m$ | | | | +|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------| +| Mirrors / Sample | 3 Interferometers | up to 350g | 100 Hz | Diamond | [[cite:&kelly22_delta_robot_long_travel_nano]] | +| *Parallel XYZ voice coil* | $D_xD_yD_z$ | $D_xD_yD_z: 3\,\text{mm}$ | | (I14) | | +|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------| +| Retroreflectors / Samples | 3 Interferometers | light | 100 Hz | LNLS | [[cite:&geraldes23_sapot_carnaub_sirius_lnls]] | +| *Parallel XYZ voice coil* | $D_xD_yD_z$ | $D_yD_z: 3\,\text{mm}$ | | (Carnauba) | | +| Spindle | | $R_z: \pm 110\,\text{deg}$ | | | | +|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------| +| Sample | 6 Interferometers | *up to 50kg* | | ESRF | [[cite:&dehaeze18_sampl_stabil_for_tomog_exper;&dehaeze21_mechat_approac_devel_nano_activ_stabil_system]] | +| *Hexapod* | $D_xD_yD_zR_xR_y$ | | | (ID31) | Figure ref:fig:introduction_nass_concept_schematic | +| Spindle | | $R_z : 360\,\text{deg}$ | | | | +| Ry | | $R_y : \pm 3\,\text{deg}$ | | | | +| Ty | | $D_y : \pm 5\,\text{mm}$ | | | | + +**** Long Stroke - Short Stroke architecture + +Speak about two stage control? +- Long stroke + short stroke +- Usually applied to 1dof, 3dof (show some examples: disk drive, wafer scanner) +- Any application in 6DoF? Maybe new! +- In the table, say which ones are long stroke / short stroke. Some new stages are just long stroke (voice coil) + +#+name: fig:introduction_two_stage_schematic +#+caption: Typical Long Stroke - Short Stroke architecture. The long stroke stage is ... +[[file:figs/introduction_two_stage_schematic.png]] + +#+name: fig:introduction_two_stage_example +#+caption: (\subref{fig:introduction_two_stage_control_example}) [[cite:&shinno11_newly_devel_long_range_posit]], (\subref{fig:introduction_two_stage_control_h_bridge}) [[cite:&schmidt20_desig_high_perfor_mechat_third_revis_edition]] +#+attr_latex: :options [htbp] +#+begin_figure +#+attr_latex: :caption \subcaption{\label{fig:introduction_two_stage_control_example} Two stage control with classical stage and voice coil} +#+attr_latex: :options {0.59\textwidth} +#+begin_subfigure +#+attr_latex: :width 0.95\linewidth +[[file:figs/introduction_two_stage_control_example.png]] +#+end_subfigure +#+attr_latex: :caption \subcaption{\label{fig:introduction_two_stage_control_h_bridge} H-bridge. $y_1$, $y_2$ and $x$ are 3-phase linear motors. Short stroke actuators are voice coils.} +#+attr_latex: :options {0.39\textwidth} +#+begin_subfigure +#+attr_latex: :width 0.95\linewidth +[[file:figs/introduction_two_stage_control_h_bridge.png]] +#+end_subfigure +#+end_figure + * Challenge definition ** Multi degrees of freedom, long stroke and highly accurate positioning end station **** Performance limitation of "stacked-stages" end-stations @@ -1550,191 +1783,8 @@ High bandwidth, 6 DoF system for vibration control, fixed on top of a complex mu Say that high performance systems (lithography machines, etc...) works with calibrated payloads. Being robust to change of payload inertia means large stability margins and therefore less performance. -* Literature Review -** Nano Positioning End-Stations -**** End-Station with Stacked Stages - -Stacked stages: -- errors are combined - -To have acceptable performances / stability: -- limited number of stages -- high performances stages (air bearing etc...) - -Examples: -- ID01 [[cite:&leake19_nanod_beaml_id01]] -- ID11 [[cite:&wright20_new_oppor_at_mater_scien]] -- ID13 [[cite:&riekel10_progr_micro_nano_diffr_at]] - -#+name: fig:introduction_passive_stations -#+caption: Example of two nano end-stations without online metrology: (\subref{fig:introduction_endstation_id16b}) cite:&martinez-criado16_id16b and (\subref{fig:introduction_endstation_id11}) cite:wright20_new_oppor_at_mater_scien -#+attr_latex: :options [htbp] -#+begin_figure -#+attr_latex: :caption \subcaption{\label{fig:introduction_endstation_id16b}ID16b} -#+attr_latex: :options {0.49\textwidth} -#+begin_subfigure -#+attr_latex: :scale 1 -[[file:figs/introduction_endstation_id16b.png]] -#+end_subfigure -#+attr_latex: :caption \subcaption{\label{fig:introduction_endstation_id11}ID11} -#+attr_latex: :options {0.49\textwidth} -#+begin_subfigure -#+attr_latex: :scale 1 -[[file:figs/introduction_endstation_id11.png]] -#+end_subfigure -#+end_figure - -Explain limitations => Thermal drifts, run-out errors of spindles (improved by using air bearing), straightness of translation stages, ... - -**** Online Metrology and Active Control of Positioning Errors - -The idea of having an external metrology to correct for errors is not new. - -Several strategies: -- only used for measurements (post processing) -- for calibration -- for triggering detectors -- for real time positioning control (Figure ref:fig:introduction_active_stations) - -Sensors: -- Capacitive: [[cite:&schroer17_ptynam;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&schropp20_ptynam]] -- Fiber Interferometers Interferometers: - - Attocube FPS3010 Fabry-Pérot interferometers: [[cite:&nazaretski15_pushin_limit;&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul;&nazaretski22_new_kirkp_baez_based_scann]] - - Attocube IDS3010 Fabry-Pérot interferometers: [[cite:&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&kelly22_delta_robot_long_travel_nano]] - - PicoScale SmarAct Michelson interferometers: [[cite:&schroer17_ptynam;&schropp20_ptynam;&xu23_high_nsls_ii;&geraldes23_sapot_carnaub_sirius_lnls]] - -#+name: fig:introduction_metrology_stations -#+caption: Two examples of end-station with integrated online metrology. (\subref{fig:introduction_stages_wang}) [[cite:&wang12_autom_marker_full_field_hard]] and (\subref{fig:introduction_stages_schroer}) [[cite:&schroer17_ptynam]] -#+attr_latex: :options [htbp] -#+begin_figure -#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_wang} Wang} -#+attr_latex: :options {0.49\textwidth} -#+begin_subfigure -#+attr_latex: :scale 1 -[[file:figs/introduction_stages_wang.png]] -#+end_subfigure -#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_schroer} Schroer} -#+attr_latex: :options {0.49\textwidth} -#+begin_subfigure -#+attr_latex: :scale 1 -[[file:figs/introduction_stages_schroer.png]] -#+end_subfigure -#+end_figure - -For some applications (especially when using a nano-beam), the position has not only to be measured, but to be controlled. - -*Actuators*: -- Piezoelectric: [[cite:&nazaretski15_pushin_limit;&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&nazaretski22_new_kirkp_baez_based_scann]] -- 3-phase linear motor: [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul]] -- Voice Coil: [[cite:&kelly22_delta_robot_long_travel_nano;&geraldes23_sapot_carnaub_sirius_lnls]] - - -Bandwidth: rarely specificity. -Usually slow, so that only drifts are compensated. -Only recently, high bandwidth (100Hz) have been reported with the use of voice coil actuators [[cite:&kelly22_delta_robot_long_travel_nano;&geraldes23_sapot_carnaub_sirius_lnls]]. - -Full rotation for tomography: -- Spindle above XYZ stage: [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage;&villar18_nanop_esrf_id16a_nano_imagin_beaml;&engblom18_nanop_resul;&nazaretski22_new_kirkp_baez_based_scann;&xu23_high_nsls_ii]] -- Spindle bellow XYZ stage: [[cite:&wang12_autom_marker_full_field_hard;&schroer17_ptynam;&schropp20_ptynam;&geraldes23_sapot_carnaub_sirius_lnls]] -Only for mapping: [[cite:&nazaretski15_pushin_limit;&kelly22_delta_robot_long_travel_nano]] - -#+name: fig:introduction_active_stations -#+caption: Example of two end-stations with real-time position feedback based on an online metrology. (\subref{fig:introduction_stages_villar}) [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]]. (\subref{fig:introduction_stages_nazaretski}) [[cite:&nazaretski17_desig_perfor_x_ray_scann;&nazaretski15_pushin_limit]] -#+attr_latex: :options [htbp] -#+begin_figure -#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_villar} ID16a} -#+attr_latex: :options {0.49\textwidth} -#+begin_subfigure -#+attr_latex: :width 0.95\linewidth -[[file:figs/introduction_stages_villar.png]] -#+end_subfigure -#+attr_latex: :caption \subcaption{\label{fig:introduction_stages_nazaretski} 1 and 2 are stage to position the focusing optics. 3 is the sample location, 4 the sample stage and 5 the interferometers} -#+attr_latex: :options {0.49\textwidth} -#+begin_subfigure -#+attr_latex: :scale 1 -[[file:figs/introduction_stages_nazaretski.png]] -#+end_subfigure -#+end_figure - -Payload capabilities: -- All are only supported calibrated, micron scale samples -- Higher sample masses to up to 500g have been reported in [[cite:&nazaretski22_new_kirkp_baez_based_scann;&kelly22_delta_robot_long_travel_nano]] - -100 times heavier payload capabilities than previous stations with similar performances. - -# #+attr_latex: :environment tabularx :width \linewidth :align lllll -# #+attr_latex: :center t :booktabs t :font \scriptsize - -#+name: tab:introduction_active_stations -#+caption: End-Stations with integrated feedback loops based on online metrology. Stages used for static positioning are ommited for readability. Stages used for feedback are indicated in bold font. -#+attr_latex: :environment tabularx :width 1.0\linewidth :align cccccc -#+attr_latex: :center t :booktabs t :font \scriptsize -| *Architecture* | *Metrology* | *Stroke* | *Bandwidth* | *Institute* | *References* | -|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------| -| Mirror / Sample | 3 Interferometers | | | APS | [[cite:&nazaretski15_pushin_limit]] | -| *XYZ piezo motors* | $D_xD_yD_z$ | $D_xD_yD_z: 3\,\text{mm}$ | | | Figure ref:fig:introduction_stages_nazaretski | -|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------| -| Metrology Ring / Sample | 12 Capacitive | light | 10 Hz | ESRF | [[cite:&villar18_nanop_esrf_id16a_nano_imagin_beaml]] | -| Spindle | $D_xD_yD_zR_xR_y$ | $R_z: 180\,\text{deg}$ | | (ID16a) | Figure ref:fig:introduction_stages_villar | -| *Piezo Hexapod* | | $D_xD_yD_z: 50\,\mu m$ | | | | -| | | $R_x R_y: 500\,\mu \text{rad}$ | | | | -|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------| -| Spherical Reference / Sample | 5 Interferometers | light | | PSI | [[cite:&holler17_omny_pin_versat_sampl_holder;&holler18_omny_tomog_nano_cryo_stage]] | -| Spindle | $D_yD_zR_x$ | $R_z: 365\,\text{deg}$ | | (OMNY) | | -| *Piezo Tripod* | | $D_xD_yD_z: 400\,\mu m$ | | | | -|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------| -| Cylindrical Reference / Sample | 5 Interferometers | light | | Soleil | [[cite:&stankevic17_inter_charac_rotat_stages_x_ray_nanot;&engblom18_nanop_resul]] | -| Spindle | $D_xD_yD_zR_xR_y$ | $R_z: 360\,\text{deg}$ | | | | -| *Stacked XYZ linear motors* | | $D_xD_yD_z: 400\,\mu m$ | | | | -|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------| -| Metrology Ring / Sample | 3 Interferometers | up to 500g | | NSLS | [[cite:&nazaretski22_new_kirkp_baez_based_scann]] | -| Spindle | $D_xD_yD_z$ | $R_z: 360\,\text{deg}$ | | (SRX) | | -| *XYZ piezo* | | $D_xD_yD_z: 100\,\mu m$ | | | | -|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------| -| Mirrors / Sample | 3 Interferometers | up to 350g | 100 Hz | Diamond | [[cite:&kelly22_delta_robot_long_travel_nano]] | -| *Parallel XYZ voice coil* | $D_xD_yD_z$ | $D_xD_yD_z: 3\,\text{mm}$ | | (I14) | | -|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------| -| Retroreflectors / Samples | 3 Interferometers | light | 100 Hz | LNLS | [[cite:&geraldes23_sapot_carnaub_sirius_lnls]] | -| *Parallel XYZ voice coil* | $D_xD_yD_z$ | $D_yD_z: 3\,\text{mm}$ | | (Carnauba) | | -| Spindle | | $R_z: \pm 110\,\text{deg}$ | | | | -|--------------------------------+-------------------+--------------------------------+-------------+-------------+-------------------------------------------------------------------------------------------------------| -| Sample | 6 Interferometers | *up to 50kg* | | ESRF | [[cite:&dehaeze18_sampl_stabil_for_tomog_exper;&dehaeze21_mechat_approac_devel_nano_activ_stabil_system]] | -| *Hexapod* | $D_xD_yD_zR_xR_y$ | | | (ID31) | Figure ref:fig:introduction_nass_concept_schematic | -| Spindle | | $R_z : 360\,\text{deg}$ | | | | -| Ry | | $R_y : \pm 3\,\text{deg}$ | | | | -| Ty | | $D_y : \pm 5\,\text{mm}$ | | | | - - -**** Long Stroke - Short Stroke architecture - -Speak about two stage control? -- Long stroke + short stroke -- Usually applied to 1dof, 3dof (show some examples: disk drive, wafer scanner) -- Any application in 6DoF? Maybe new! -- In the table, say which ones are long stroke / short stroke. Some new stages are just long stroke (voice coil) - -#+name: fig:introduction_two_stage_schematic -#+caption: Typical Long Stroke - Short Stroke architecture. The long stroke stage is ... -[[file:figs/introduction_two_stage_schematic.png]] - -#+name: fig:introduction_two_stage_example -#+caption: (\subref{fig:introduction_two_stage_control_example}) [[cite:&shinno11_newly_devel_long_range_posit]], (\subref{fig:introduction_two_stage_control_h_bridge}) [[cite:&schmidt20_desig_high_perfor_mechat_third_revis_edition]] -#+attr_latex: :options [htbp] -#+begin_figure -#+attr_latex: :caption \subcaption{\label{fig:introduction_two_stage_control_example} Two stage control with classical stage and voice coil} -#+attr_latex: :options {0.59\textwidth} -#+begin_subfigure -#+attr_latex: :width 0.95\linewidth -[[file:figs/introduction_two_stage_control_example.png]] -#+end_subfigure -#+attr_latex: :caption \subcaption{\label{fig:introduction_two_stage_control_h_bridge} H-bridge. $y_1$, $y_2$ and $x$ are 3-phase linear motors. Short stroke actuators are voice coils.} -#+attr_latex: :options {0.39\textwidth} -#+begin_subfigure -#+attr_latex: :width 0.95\linewidth -[[file:figs/introduction_two_stage_control_h_bridge.png]] -#+end_subfigure -#+end_figure - +* [#A] Literature Review +*Maybe remove this section has it seems it is discussed elsewhere?* ** Multi-DoF dynamical positioning stations **** Serial and Parallel Kinematics @@ -2231,7 +2281,7 @@ The results reveal that, despite their different implementations, both modified - Several uses (link to some papers). - For the NASS, they could be use to further improve the robustness of the system. -**** Multi-body simulations with reduced order flexible bodies obtained by FEA +**** [#A] Multi-body simulations with reduced order flexible bodies obtained by FEA [[cite:&brumund21_multib_simul_reduc_order_flexib_bodies_fea]] @@ -2253,7 +2303,7 @@ We validated the technique with a test bench that confirmed the good modelling c - Example: collocated actuator/sensor pair => controller can easily be made robust - This is done by using models and using HAC-LAC architecture -**** Mechatronics design +**** [#A] Mechatronics design Conduct a rigorous mechatronics design approach for a nano active stabilization system [[cite:&dehaeze18_sampl_stabil_for_tomog_exper;&dehaeze21_mechat_approac_devel_nano_activ_stabil_system]] @@ -2267,7 +2317,7 @@ Complete design with clear choices based on models. Such approach, while not new, is here applied This can be used for the design of future end-stations. -#+begin_src latex :file nass_mechatronics_approach.pdf +#+begin_src latex :file nass_introduction_mechatronics_approach.pdf % \graphicspath{ {/home/thomas/Cloud/thesis/papers/dehaeze21_mechatronics_approach_nass/tikz/figs-tikz} } \begin{tikzpicture} @@ -2368,7 +2418,7 @@ This can be used for the design of future end-stations. #+caption: Overview of the mechatronic approach used for the Nano-Active-Stabilization-System #+attr_latex: :width \linewidth #+RESULTS: -[[file:figs/nass_mechatronics_approach.png]] +[[file:figs/introduction_nass_mechatronics_approach.png]] **** 6DoF vibration control of a rotating platform diff --git a/nass-introduction.pdf b/nass-introduction.pdf index 0baaba0..82d5d5b 100644 Binary files a/nass-introduction.pdf and b/nass-introduction.pdf differ diff --git a/nass-introduction.tex b/nass-introduction.tex index 443163f..595d076 100644 --- a/nass-introduction.tex +++ b/nass-introduction.tex @@ -1,4 +1,4 @@ -% Created 2024-05-30 Thu 15:40 +% Created 2024-05-30 Thu 15:51 % Intended LaTeX compiler: pdflatex \documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt} @@ -504,7 +504,7 @@ Examples: Explain limitations => Thermal drifts, run-out errors of spindles (improved by using air bearing), straightness of translation stages, \ldots{} -\paragraph{Online Metrology and Active Control of Positioning Errors} +\paragraph{Online Metrology} The idea of having an external metrology to correct for errors is not new. @@ -543,6 +543,31 @@ Sensors: \caption{\label{fig:introduction_metrology_stations}Two examples of end-station with integrated online metrology. (\subref{fig:introduction_stages_wang}) \cite{wang12_autom_marker_full_field_hard} and (\subref{fig:introduction_stages_schroer}) \cite{schroer17_ptynam}} \end{figure} +\begin{table}[htbp] +\caption{\label{tab:introduction_online_metrology}End-Station integrating accurate online metrology systems} +\centering +\scriptsize +\begin{tabularx}{1.0\linewidth}{ccccccc} +\toprule +\textbf{Architecture} & \textbf{Metrology} & \textbf{Usage} & \textbf{Stroke} & \textbf{Institute} & \textbf{References}\\ +\midrule +Sample & 3 Capacitive & Post processing & micron scale & NSLS & \cite{wang12_autom_marker_full_field_hard}\\ +XYZ Stage & \(D_yD_zR_x\) & & & (X8C) & Figure \ref{fig:introduction_stages_wang}\\ +\textbf{Metrology Ring} & & & & & \\ +Spindle & & & & & \\ +\midrule +\textbf{Ball-lens retroreflector} / Sample & 3 interferometers & Characterization & micron scale & PETRA III & \cite{schroer17_ptynam,schropp20_ptynam}\\ +XYZ piezo stage & \(D_yD_z\) & & XYZ: 100um & (P06) & Figure \ref{fig:introduction_stages_schroer}\\ +Spindle & & & Rz: 180 deg & & \\ +\midrule +\textbf{Metrology Ring} / Sample & 2 interferometers & Detector & micron scale & NSLS & \cite{xu23_high_nsls_ii}\\ +Spindle & \(D_yD_z\) & triggering & & (HRX) & \\ +XYZ piezo stage & & & & & \\ +\bottomrule +\end{tabularx} +\end{table} + +\paragraph{Active Control of Positioning Errors} For some applications (especially when using a nano-beam), the position has not only to be measured, but to be controlled. \textbf{Actuators}: @@ -592,7 +617,7 @@ Payload capabilities: \caption{\label{tab:introduction_active_stations}End-Stations with integrated feedback loops based on online metrology. Stages used for static positioning are ommited for readability. Stages used for feedback are indicated in bold font.} \centering \scriptsize -\begin{tabularx}{0.95\linewidth}{cccccc} +\begin{tabularx}{1.0\linewidth}{cccccc} \toprule \textbf{Architecture} & \textbf{Metrology} & \textbf{Stroke} & \textbf{Bandwidth} & \textbf{Institute} & \textbf{References}\\ \midrule @@ -624,7 +649,7 @@ Retroreflectors / Samples & 3 Interferometers & light & 100 Hz & LNLS & \cite{ge Spindle & & \(R_z: \pm 110\,\text{deg}\) & & & \\ \midrule Sample & 6 Interferometers & \textbf{up to 50kg} & & ESRF & \cite{dehaeze18_sampl_stabil_for_tomog_exper,dehaeze21_mechat_approac_devel_nano_activ_stabil_system}\\ -\textbf{Hexapod} & \(D_xD_yD_zR_xR_y\) & & & (ID31) & \\ +\textbf{Hexapod} & \(D_xD_yD_zR_xR_y\) & & & (ID31) & Figure \ref{fig:introduction_nass_concept_schematic}\\ Spindle & & \(R_z : 360\,\text{deg}\) & & & \\ Ry & & \(R_y : \pm 3\,\text{deg}\) & & & \\ Ty & & \(D_y : \pm 5\,\text{mm}\) & & & \\ @@ -632,7 +657,6 @@ Ty & & \(D_y : \pm 5\,\text{mm}\) & & & \\ \end{tabularx} \end{table} - \paragraph{Long Stroke - Short Stroke architecture} Speak about two stage control?