Add table and pictures of stewart platforms
3
.gitattributes
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
*.pdf binary
|
||||
*.svg binary
|
||||
*.mat binary
|
2
.gitignore
vendored
@ -1,5 +1,3 @@
|
||||
mat/
|
||||
figures/
|
||||
ltximg/
|
||||
slprj/
|
||||
matlab/slprj/
|
||||
|
BIN
figs/detail_kinematics_jpl.jpg
Normal file
After Width: | Height: | Size: 33 KiB |
BIN
figs/detail_kinematics_naves.jpg
Normal file
After Width: | Height: | Size: 99 KiB |
BIN
figs/detail_kinematics_pph.jpg
Normal file
After Width: | Height: | Size: 99 KiB |
BIN
figs/detail_kinematics_ulb_pz.jpg
Normal file
After Width: | Height: | Size: 45 KiB |
BIN
figs/detail_kinematics_uqp.jpg
Normal file
After Width: | Height: | Size: 32 KiB |
BIN
figs/detail_kinematics_uw_gsp.jpg
Normal file
After Width: | Height: | Size: 62 KiB |
BIN
figs/detail_kinematics_yang19.jpg
Normal file
After Width: | Height: | Size: 64 KiB |
BIN
figs/detail_kinematics_zhang11.jpg
Normal file
After Width: | Height: | Size: 24 KiB |
@ -0,0 +1,542 @@
|
||||
@inproceedings{spanos95_soft_activ_vibrat_isolat,
|
||||
author = {J. Spanos and Z. Rahman and G. Blackwood},
|
||||
title = {A Soft 6-axis Active Vibration Isolator},
|
||||
booktitle = {Proceedings of 1995 American Control Conference - ACC'95},
|
||||
year = 1995,
|
||||
doi = {10.1109/acc.1995.529280},
|
||||
url = {https://doi.org/10.1109/acc.1995.529280},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@inproceedings{rahman98_multiax,
|
||||
author = {Zahidul H. Rahman and John T. Spanos and Robert A. Laskin},
|
||||
title = {Multiaxis vibration isolation, suppression, and steering
|
||||
system for space observational applications},
|
||||
booktitle = {Telescope Control Systems III},
|
||||
year = 1998,
|
||||
doi = {10.1117/12.308821},
|
||||
url = {https://doi.org/10.1117/12.308821},
|
||||
keywords = {parallel robot},
|
||||
month = 5,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@inproceedings{thayer98_stewar,
|
||||
author = {D. Thayer and J. Vagners},
|
||||
title = {A look at the pole/zero structure of a Stewart platform
|
||||
using special coordinate basis},
|
||||
booktitle = {Proceedings of the 1998 American Control Conference. ACC
|
||||
(IEEE Cat. No.98CH36207)},
|
||||
year = 1998,
|
||||
doi = {10.1109/acc.1998.703595},
|
||||
url = {https://doi.org/10.1109/acc.1998.703595},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{thayer02_six_axis_vibrat_isolat_system,
|
||||
author = {Doug Thayer and Mark Campbell and Juris Vagners and Andrew
|
||||
von Flotow},
|
||||
title = {Six-Axis Vibration Isolation System Using Soft Actuators
|
||||
and Multiple Sensors},
|
||||
journal = {Journal of Spacecraft and Rockets},
|
||||
volume = 39,
|
||||
number = 2,
|
||||
pages = {206-212},
|
||||
year = 2002,
|
||||
doi = {10.2514/2.3821},
|
||||
url = {https://doi.org/10.2514/2.3821},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{hauge04_sensor_contr_space_based_six,
|
||||
author = {G.S. Hauge and M.E. Campbell},
|
||||
title = {Sensors and Control of a Space-Based Six-Axis Vibration
|
||||
Isolation System},
|
||||
journal = {Journal of Sound and Vibration},
|
||||
volume = 269,
|
||||
number = {3-5},
|
||||
pages = {913-931},
|
||||
year = 2004,
|
||||
doi = {10.1016/s0022-460x(03)00206-2},
|
||||
url = {https://doi.org/10.1016/s0022-460x(03)00206-2},
|
||||
keywords = {parallel robot, favorite},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@inproceedings{mcinroy99_dynam,
|
||||
author = {J.E. McInroy},
|
||||
title = {Dynamic modeling of flexure jointed hexapods for control
|
||||
purposes},
|
||||
booktitle = {Proceedings of the 1999 IEEE International Conference on
|
||||
Control Applications (Cat. No.99CH36328)},
|
||||
year = 1999,
|
||||
doi = {10.1109/cca.1999.806694},
|
||||
url = {https://doi.org/10.1109/cca.1999.806694},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{mcinroy99_precis_fault_toler_point_using_stewar_platf,
|
||||
author = {J.E. McInroy and J.F. O'Brien and G.W. Neat},
|
||||
title = {Precise, Fault-Tolerant Pointing Using a Stewart Platform},
|
||||
journal = {IEEE/ASME Transactions on Mechatronics},
|
||||
volume = 4,
|
||||
number = 1,
|
||||
pages = {91-95},
|
||||
year = 1999,
|
||||
doi = {10.1109/3516.752089},
|
||||
url = {https://doi.org/10.1109/3516.752089},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{mcinroy00_desig_contr_flexur_joint_hexap,
|
||||
author = {J.E. McInroy and J.C. Hamann},
|
||||
title = {Design and Control of Flexure Jointed Hexapods},
|
||||
journal = {IEEE Transactions on Robotics and Automation},
|
||||
volume = 16,
|
||||
number = 4,
|
||||
pages = {372-381},
|
||||
year = 2000,
|
||||
doi = {10.1109/70.864229},
|
||||
url = {https://doi.org/10.1109/70.864229},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@inproceedings{li01_simul_vibrat_isolat_point_contr,
|
||||
author = {Xiaochun Li and Jerry C. Hamann and John E. McInroy},
|
||||
title = {Simultaneous Vibration Isolation and Pointing Control of
|
||||
Flexure Jointed Hexapods},
|
||||
booktitle = {Smart Structures and Materials 2001: Smart Structures and
|
||||
Integrated Systems},
|
||||
year = 2001,
|
||||
doi = {10.1117/12.436521},
|
||||
url = {https://doi.org/10.1117/12.436521},
|
||||
keywords = {parallel robot},
|
||||
month = 8,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{jafari03_orthog_gough_stewar_platf_microm,
|
||||
author = {Jafari, F. and McInroy, J.E.},
|
||||
title = {Orthogonal Gough-Stewart Platforms for Micromanipulation},
|
||||
journal = {IEEE Transactions on Robotics and Automation},
|
||||
volume = 19,
|
||||
number = 4,
|
||||
pages = {595-603},
|
||||
year = 2003,
|
||||
doi = {10.1109/tra.2003.814506},
|
||||
url = {https://doi.org/10.1109/tra.2003.814506},
|
||||
issn = {1042-296X},
|
||||
keywords = {parallel robot, cubic configuration},
|
||||
month = {Aug},
|
||||
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@phdthesis{hanieh03_activ_stewar,
|
||||
author = {Hanieh, Ahmed Abu},
|
||||
keywords = {parallel robot},
|
||||
school = {Universit{\'e} Libre de Bruxelles, Brussels, Belgium},
|
||||
title = {Active isolation and damping of vibrations via Stewart
|
||||
platform},
|
||||
year = 2003,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{preumont07_six_axis_singl_stage_activ,
|
||||
author = {A. Preumont and M. Horodinca and I. Romanescu and B. de
|
||||
Marneffe and M. Avraam and A. Deraemaeker and F. Bossens and
|
||||
A. Abu Hanieh},
|
||||
title = {A Six-Axis Single-Stage Active Vibration Isolator Based on
|
||||
Stewart Platform},
|
||||
journal = {Journal of Sound and Vibration},
|
||||
volume = 300,
|
||||
number = {3-5},
|
||||
pages = {644-661},
|
||||
year = 2007,
|
||||
doi = {10.1016/j.jsv.2006.07.050},
|
||||
url = {https://doi.org/10.1016/j.jsv.2006.07.050},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@inproceedings{taranti01_effic_algor_vibrat_suppr,
|
||||
author = {Taranti, Christian and Agrawal, Brij and Cristi, Roberto},
|
||||
title = {An Efficient Algorithm for Vibration Suppression to meet
|
||||
pointing requirements of optical payloads},
|
||||
booktitle = {AIAA Guidance, Navigation, and Control Conference and
|
||||
Exhibit},
|
||||
year = 2001,
|
||||
pages = 4094,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@inproceedings{chen03_payload_point_activ_vibrat_isolat,
|
||||
author = {Hong-Jen Chen and Ronald Bishop and Brij Agrawal},
|
||||
title = {Payload Pointing and Active Vibration Isolation Using
|
||||
Hexapod Platforms},
|
||||
booktitle = {44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural
|
||||
Dynamics, and Materials Conference},
|
||||
year = 2003,
|
||||
doi = {10.2514/6.2003-1643},
|
||||
url = {https://doi.org/10.2514/6.2003-1643},
|
||||
keywords = {parallel robot},
|
||||
month = 4,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{chi15_desig_exper_study_vcm_based,
|
||||
author = {Weichao Chi and Dengqing Cao and Dongwei Wang and Jie Tang
|
||||
and Yifan Nie and Wenhu Huang},
|
||||
title = {Design and Experimental Study of a Vcm-Based Stewart
|
||||
Parallel Mechanism Used for Active Vibration Isolation},
|
||||
journal = {Energies},
|
||||
volume = 8,
|
||||
number = 8,
|
||||
pages = {8001-8019},
|
||||
year = 2015,
|
||||
doi = {10.3390/en8088001},
|
||||
url = {https://doi.org/10.3390/en8088001},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{tang18_decen_vibrat_contr_voice_coil,
|
||||
author = {Jie Tang and Dengqing Cao and Tianhu Yu},
|
||||
title = {Decentralized Vibration Control of a Voice Coil Motor-Based
|
||||
Stewart Parallel Mechanism: Simulation and Experiments},
|
||||
journal = {Proceedings of the Institution of Mechanical Engineers,
|
||||
Part C: Journal of Mechanical Engineering Science},
|
||||
volume = 233,
|
||||
number = 1,
|
||||
pages = {132-145},
|
||||
year = 2018,
|
||||
doi = {10.1177/0954406218756941},
|
||||
url = {https://doi.org/10.1177/0954406218756941},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{jiao18_dynam_model_exper_analy_stewar,
|
||||
author = {Jian Jiao and Ying Wu and Kaiping Yu and Rui Zhao},
|
||||
title = {Dynamic Modeling and Experimental Analyses of Stewart
|
||||
Platform With Flexible Hinges},
|
||||
journal = {Journal of Vibration and Control},
|
||||
volume = 25,
|
||||
number = 1,
|
||||
pages = {151-171},
|
||||
year = 2018,
|
||||
doi = {10.1177/1077546318772474},
|
||||
url = {https://doi.org/10.1177/1077546318772474},
|
||||
keywords = {parallel robot, flexure},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{beijen18_self_tunin_mimo_distur_feedf,
|
||||
author = {M.A. Beijen and M.F. Heertjes and J. Van Dijk and W.B.J.
|
||||
Hakvoort},
|
||||
title = {Self-Tuning Mimo Disturbance Feedforward Control for Active
|
||||
Hard-Mounted Vibration Isolators},
|
||||
journal = {Control Engineering Practice},
|
||||
volume = 72,
|
||||
pages = {90-103},
|
||||
year = 2018,
|
||||
doi = {10.1016/j.conengprac.2017.11.008},
|
||||
url = {https://doi.org/10.1016/j.conengprac.2017.11.008},
|
||||
keywords = {parallel robot, feedforward},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@phdthesis{tjepkema12_activ_ph,
|
||||
author = {Tjepkema, D},
|
||||
title = {Active hard mount vibration isolation for precision
|
||||
equipment [Ph. D. thesis]},
|
||||
university = {University of Twente, Enschede, The Netherlands},
|
||||
year = {2012},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{geng93_six_degree_of_freed_activ,
|
||||
author = {Zheng Geng and Leonard S. Haynes},
|
||||
title = {Six-Degree-Of-Freedom Active Vibration Isolation Using a
|
||||
Stewart Platform Mechanism},
|
||||
journal = {Journal of Robotic Systems},
|
||||
volume = 10,
|
||||
number = 5,
|
||||
pages = {725-744},
|
||||
year = 1993,
|
||||
doi = {10.1002/rob.4620100510},
|
||||
url = {https://doi.org/10.1002/rob.4620100510},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{geng94_six_degree_of_freed_activ,
|
||||
author = {Z.J. Geng and L.S. Haynes},
|
||||
title = {Six Degree-Of-Freedom Active Vibration Control Using the
|
||||
Stewart Platforms},
|
||||
journal = {IEEE Transactions on Control Systems Technology},
|
||||
volume = 2,
|
||||
number = 1,
|
||||
pages = {45-53},
|
||||
year = 1994,
|
||||
doi = {10.1109/87.273110},
|
||||
url = {https://doi.org/10.1109/87.273110},
|
||||
keywords = {parallel robot, cubic configuration},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{geng95_intel_contr_system_multip_degree,
|
||||
author = {Z. Jason Geng and George G. Pan and Leonard S. Haynes and
|
||||
Ben K. Wada and John A. Garba},
|
||||
title = {An Intelligent Control System for Multiple
|
||||
Degree-Of-Freedom Vibration Isolation},
|
||||
journal = {Journal of Intelligent Material Systems and Structures},
|
||||
volume = 6,
|
||||
number = 6,
|
||||
pages = {787-800},
|
||||
year = 1995,
|
||||
doi = {10.1177/1045389x9500600607},
|
||||
url = {https://doi.org/10.1177/1045389x9500600607},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@inproceedings{zhang11_six_dof,
|
||||
author = {Zhen Zhang and J Liu and Jq Mao and Yx Guo and Yh Ma},
|
||||
title = {Six DOF active vibration control using stewart platform
|
||||
with non-cubic configuration},
|
||||
booktitle = {2011 6th IEEE Conference on Industrial Electronics and
|
||||
Applications},
|
||||
year = 2011,
|
||||
doi = {10.1109/iciea.2011.5975679},
|
||||
url = {https://doi.org/10.1109/iciea.2011.5975679},
|
||||
keywords = {parallel robot},
|
||||
month = 6,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@inproceedings{abu02_stiff_soft_stewar_platf_activ,
|
||||
author = {Abu Hanieh, Ahmed and Horodinca, Mihaita and Preumont,
|
||||
Andre},
|
||||
title = {Stiff and Soft Stewart Platforms for Active Damping and
|
||||
Active Isolation of Vibrations},
|
||||
booktitle = {Actuator 2002, 8th International Conference on New
|
||||
Actuators},
|
||||
year = 2002,
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{agrawal04_algor_activ_vibrat_isolat_spacec,
|
||||
author = {Brij N Agrawal and Hong-Jen Chen},
|
||||
title = {Algorithms for Active Vibration Isolation on Spacecraft
|
||||
Using a Stewart Platform},
|
||||
journal = {Smart Materials and Structures},
|
||||
volume = 13,
|
||||
number = 4,
|
||||
pages = {873-880},
|
||||
year = 2004,
|
||||
doi = {10.1088/0964-1726/13/4/025},
|
||||
url = {https://doi.org/10.1088/0964-1726/13/4/025},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@inproceedings{ting06_desig_stewar_nanos_platf,
|
||||
author = {Yung Ting and H.-C. Jar and Chun-Chung Li},
|
||||
title = {Design of a 6DOF Stewart-type Nanoscale Platform},
|
||||
booktitle = {2006 Sixth IEEE Conference on Nanotechnology},
|
||||
year = 2006,
|
||||
doi = {10.1109/nano.2006.247808},
|
||||
url = {https://doi.org/10.1109/nano.2006.247808},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{ting13_compos_contr_desig_stewar_nanos_platf,
|
||||
author = {Yung Ting and Chun-Chung Li and Tho Van Nguyen},
|
||||
title = {Composite Controller Design for a 6dof Stewart Nanoscale
|
||||
Platform},
|
||||
journal = {Precision Engineering},
|
||||
volume = 37,
|
||||
number = 3,
|
||||
pages = {671-683},
|
||||
year = 2013,
|
||||
doi = {10.1016/j.precisioneng.2013.01.012},
|
||||
url = {https://doi.org/10.1016/j.precisioneng.2013.01.012},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{ting07_measur_calib_stewar_microm_system,
|
||||
author = {Yung Ting and Ho-Chin Jar and Chun-Chung Li},
|
||||
title = {Measurement and Calibration for Stewart Micromanipulation
|
||||
System},
|
||||
journal = {Precision Engineering},
|
||||
volume = 31,
|
||||
number = 3,
|
||||
pages = {226-233},
|
||||
year = 2007,
|
||||
doi = {10.1016/j.precisioneng.2006.09.004},
|
||||
url = {https://doi.org/10.1016/j.precisioneng.2006.09.004},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{du14_piezo_actuat_high_precis_flexib,
|
||||
author = {Zhijiang Du and Ruochong Shi and Wei Dong},
|
||||
title = {A Piezo-Actuated High-Precision Flexible Parallel Pointing
|
||||
Mechanism: Conceptual Design, Development, and Experiments},
|
||||
journal = {IEEE Transactions on Robotics},
|
||||
volume = 30,
|
||||
number = 1,
|
||||
pages = {131-137},
|
||||
year = 2014,
|
||||
doi = {10.1109/tro.2013.2288800},
|
||||
url = {https://doi.org/10.1109/tro.2013.2288800},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{furutani04_nanom_cuttin_machin_using_stewar,
|
||||
author = {Katsushi Furutani and Michio Suzuki and Ryusei Kudoh},
|
||||
title = {Nanometre-Cutting Machine Using a Stewart-Platform Parallel
|
||||
Mechanism},
|
||||
journal = {Measurement Science and Technology},
|
||||
volume = 15,
|
||||
number = 2,
|
||||
pages = {467-474},
|
||||
year = 2004,
|
||||
doi = {10.1088/0957-0233/15/2/022},
|
||||
url = {https://doi.org/10.1088/0957-0233/15/2/022},
|
||||
keywords = {parallel robot, cubic configuration},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{yang19_dynam_model_decoup_contr_flexib,
|
||||
author = {Yang, XiaoLong and Wu, HongTao and Chen, Bai and Kang,
|
||||
ShengZheng and Cheng, ShiLi},
|
||||
title = {Dynamic Modeling and Decoupled Control of a Flexible
|
||||
Stewart Platform for Vibration Isolation},
|
||||
journal = {Journal of Sound and Vibration},
|
||||
volume = 439,
|
||||
pages = {398-412},
|
||||
year = 2019,
|
||||
doi = {10.1016/j.jsv.2018.10.007},
|
||||
url = {https://doi.org/10.1016/j.jsv.2018.10.007},
|
||||
issn = {0022-460X},
|
||||
keywords = {parallel robot, flexure, decoupled control},
|
||||
month = {Jan},
|
||||
publisher = {Elsevier BV},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{wang16_inves_activ_vibrat_isolat_stewar,
|
||||
author = {Wang, Chaoxin and Xie, Xiling and Chen, Yanhao and Zhang,
|
||||
Zhiyi},
|
||||
title = {Investigation on Active Vibration Isolation of a Stewart
|
||||
Platform With Piezoelectric Actuators},
|
||||
journal = {Journal of Sound and Vibration},
|
||||
volume = 383,
|
||||
pages = {1-19},
|
||||
year = 2016,
|
||||
doi = {10.1016/j.jsv.2016.07.021},
|
||||
url = {https://doi.org/10.1016/j.jsv.2016.07.021},
|
||||
issn = {0022-460X},
|
||||
keywords = {parallel robot},
|
||||
month = {Nov},
|
||||
publisher = {Elsevier BV},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@inproceedings{defendini00_techn,
|
||||
author = {Defendini, A and Vaillon, L and Trouve, F and Rouze, Th and
|
||||
Sanctorum, B and Griseri, G and Spanoudakis, P and von
|
||||
Alberti, M},
|
||||
title = {Technology predevelopment for active control of vibration
|
||||
and very high accuracy pointing systems},
|
||||
booktitle = {Spacecraft Guidance, Navigation and Control Systems},
|
||||
year = 2000,
|
||||
volume = 425,
|
||||
pages = 385,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@article{torii12_small_size_self_propel_stewar_platf,
|
||||
author = {Akihiro Torii and Masaaki Banno and Akiteru Ueda and Kae
|
||||
Doki},
|
||||
title = {A Small-Size Self-Propelled Stewart Platform},
|
||||
journal = {Electrical Engineering in Japan},
|
||||
volume = 181,
|
||||
number = 2,
|
||||
pages = {37-46},
|
||||
year = 2012,
|
||||
doi = {10.1002/eej.21261},
|
||||
url = {https://doi.org/10.1002/eej.21261},
|
||||
keywords = {parallel robot},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@phdthesis{naves20_desig,
|
||||
author = {Mark Naves},
|
||||
school = {Univeristy of Twente},
|
||||
title = {Design and optimization of large stroke flexure mechanisms},
|
||||
year = 2020,
|
||||
keywords = {flexure},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@inproceedings{naves20_t_flex,
|
||||
author = {Naves, M and Hakvoort, WBJ and Nijenhuis, M and Brouwer,
|
||||
DM},
|
||||
title = {T-Flex: A large range of motion fully flexure-based 6-DOF
|
||||
hexapod},
|
||||
booktitle = {20th EUSPEN International Conference \& Exhibition, EUSPEN
|
||||
2020},
|
||||
year = 2020,
|
||||
pages = {205--208},
|
||||
keywords = {parallel robot, nass},
|
||||
organization = {EUSPEN},
|
||||
}
|
||||
|
@ -1,4 +1,4 @@
|
||||
#+TITLE: Nano Hexapod - Kinematics Study and Optimal Geometry
|
||||
#+TITLE: Nano Hexapod - Optimal Geometry
|
||||
:DRAWER:
|
||||
#+LANGUAGE: en
|
||||
#+EMAIL: dehaeze.thomas@gmail.com
|
||||
@ -15,7 +15,8 @@
|
||||
|
||||
#+LaTeX_CLASS: scrreprt
|
||||
#+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]
|
||||
#+LaTeX_HEADER_EXTRA: \input{preamble.tex}
|
||||
#+LATEX_HEADER: \input{preamble.tex}
|
||||
#+LATEX_HEADER_EXTRA: \input{preamble_extra.tex}
|
||||
#+LATEX_HEADER_EXTRA: \bibliography{nass-geometry.bib}
|
||||
|
||||
#+BIND: org-latex-bib-compiler "biber"
|
||||
@ -44,12 +45,6 @@
|
||||
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
||||
:END:
|
||||
|
||||
#+begin_export html
|
||||
<hr>
|
||||
<p>This report is also available as a <a href="./nass-geometry.pdf">pdf</a>.</p>
|
||||
<hr>
|
||||
#+end_export
|
||||
|
||||
#+latex: \clearpage
|
||||
|
||||
* Build :noexport:
|
||||
@ -95,37 +90,199 @@
|
||||
#+END_SRC
|
||||
|
||||
* Notes :noexport:
|
||||
** Notes
|
||||
Prefix is =detail_kinematics=
|
||||
|
||||
Talk about the optimization of the nano-hexapod: geometry, stiffness, etc...
|
||||
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/documents/state-of-thesis-2020/index.org][state-of-thesis-2020]]
|
||||
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/kinematic-study.org::+TITLE: Kinematic Study of the Stewart Platform][Stewart Platform - Kinematics]]
|
||||
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/flexible-stewart-platform.org::+TITLE: Stewart Platform with Flexible Elements][Stewart platform with flexible elements]]
|
||||
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/documents/state-of-thesis-2020/index.org::*Optimal Nano-Hexapod Design][Optimal Nano-Hexapod Design]]
|
||||
- [X] file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/kinematic-study.org
|
||||
- [X] file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/flexible-stewart-platform.org
|
||||
Not so interesting
|
||||
|
||||
- [ ] Talk about what will influence the dynamics
|
||||
It will influence the mechanical design.
|
||||
For instance we want to precisely position =bi= with respect to the top platform
|
||||
|
||||
Optimal geometry?
|
||||
- [ ] Cubic architecture?
|
||||
- [ ] *Cubic architecture*?
|
||||
Cubic configuration file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/cubic-configuration.org
|
||||
https://tdehaeze.github.io/stewart-simscape/cubic-configuration.html
|
||||
- [ ] Kinematics
|
||||
- [ ] Trade-off for the strut orientation
|
||||
- [ ] Requirements in terms of positioning of the joints
|
||||
- [ ] Not a lot of differences, no specificity of cubic architecture, no specific positioning
|
||||
|
||||
|
||||
- [ ] https://research.tdehaeze.xyz/stewart-simscape/docs/bibliography.html
|
||||
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/kinematic-study.org::*Estimated required actuator stroke from specified platform mobility][Estimated required actuator stroke from specified platform mobility]]
|
||||
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/kinematic-study.org::*Estimation of the Joint required Stroke][Estimation of the Joint required Stroke]]
|
||||
|
||||
** TODO [#A] Copy relevant parts of reports
|
||||
|
||||
** TODO [#A] Structure the review of Stewart platforms
|
||||
|
||||
Focus on short stroke (<1 mm) stewart platforms with flexible joints.
|
||||
|
||||
- Actuators: voice coil, piezo
|
||||
- Flexible joints
|
||||
- Geometry:
|
||||
- Cubic, non cubic, ...
|
||||
- Control ? Maybe in the control section ?
|
||||
|
||||
** DONE [#A] Make table for review of Stewart platforms
|
||||
CLOSED: [2025-03-19 Wed 18:25]
|
||||
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org::*Built Stewart PLatforms][Built Stewart PLatforms]]
|
||||
|
||||
Link to figures.
|
||||
|
||||
In figure legend: link to references, mention the university and the application.
|
||||
|
||||
** TODO [#C] Create a function to plot the mobility of the Stewart platform
|
||||
|
||||
Arguments:
|
||||
- choose to fix the orientation with ${}^{B}R_{A}$
|
||||
- maximum stroke of each actuator (may be included in the Stewart object)
|
||||
|
||||
* Introduction :ignore:
|
||||
|
||||
#+name: tab:nass_geometry_section_matlab_code
|
||||
#+caption: Report sections and corresponding Matlab files
|
||||
#+attr_latex: :environment tabularx :width 0.6\linewidth :align lX
|
||||
#+attr_latex: :center t :booktabs t
|
||||
| *Sections* | *Matlab File* |
|
||||
|----------------------------------+------------------------|
|
||||
| Section ref:sec:nass_geometry_ | =nass_geometry_1_.m= |
|
||||
- In the conceptual design phase, the geometry of the Stewart platform was not optimized
|
||||
- In the detail design phase, we want to see if the geometry can be optimized to improve the overall performances
|
||||
- Optimization criteria: mobility, stiffness, dynamical decoupling, more performance / bandwidth
|
||||
|
||||
Outline:
|
||||
- Review of Stewart platform: Section ref:sec:detail_kinematics_stewart_review
|
||||
Geometry, Actuators, Sensors, Joints
|
||||
- Effect of geometry on the Stewart platform characteristics ref:sec:detail_kinematics_geometry
|
||||
- Cubic configuration: benefits? ref:sec:detail_kinematics_cubic
|
||||
|
||||
* Amplified Piezoelectric Geometry
|
||||
:PROPERTIES:
|
||||
:HEADER-ARGS:matlab+: :tangle matlab/nass_geometry_1_.m
|
||||
:END:
|
||||
<<sec:nass_geometry_mechanics>>
|
||||
* Review of Stewart platforms
|
||||
<<sec:detail_kinematics_stewart_review>>
|
||||
** Introduction :ignore:
|
||||
|
||||
- as was explained in the conceptual phase, Stewart platform have the following key elements:
|
||||
- two plates
|
||||
- flexible joints
|
||||
- actuators
|
||||
- sensors
|
||||
- the geometry
|
||||
- This results in various designs as shown in Table ref:tab:detail_kinematics_stewart_review
|
||||
- The focus is here made on Stewart platforms for nano-positioning of vibration control.
|
||||
Not on long stroke stewart platforms.
|
||||
- All presented Stewart platforms are using flexible joints, as it is a prerequisites for nano-positioning capabilities.
|
||||
- Most of stewart platforms are using voice coil actuators or piezoelectric actuators.
|
||||
The actuators used for the Stewart platform will be chosen in the next section.
|
||||
# TODO - Add reference to the section
|
||||
- Depending on the application, various sensors are integrated in the struts or on the plates.
|
||||
The choice of sensor for the nano-hexapod will be described in the next section.
|
||||
# TODO - Add reference to the section
|
||||
|
||||
- [ ] Only keep integrated sensor and not external metrology
|
||||
- [ ] Check for missing information
|
||||
|
||||
#+name: fig:detail_kinematics_stewart_examples_cubic
|
||||
#+caption: Some examples of developped Stewart platform with Cubic geometry. (\subref{fig:detail_kinematics_jpl}), (\subref{fig:detail_kinematics_uw_gsp}), (\subref{fig:detail_kinematics_ulb_pz}), (\subref{fig:detail_kinematics_uqp})
|
||||
#+attr_latex: :options [htbp]
|
||||
#+begin_figure
|
||||
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_jpl}California Institute of Technology - USA}
|
||||
#+attr_latex: :options {0.48\textwidth}
|
||||
#+begin_subfigure
|
||||
#+attr_latex: :width 0.95\linewidth
|
||||
[[file:figs/detail_kinematics_jpl.jpg]]
|
||||
#+end_subfigure
|
||||
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_uw_gsp}University of Wyoming - USA}
|
||||
#+attr_latex: :options {0.48\textwidth}
|
||||
#+begin_subfigure
|
||||
#+attr_latex: :width 0.95\linewidth
|
||||
[[file:figs/detail_kinematics_uw_gsp.jpg]]
|
||||
#+end_subfigure
|
||||
|
||||
\bigskip
|
||||
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_ulb_pz}ULB - Belgium}
|
||||
#+attr_latex: :options {0.53\textwidth}
|
||||
#+begin_subfigure
|
||||
#+attr_latex: :width 0.95\linewidth
|
||||
[[file:figs/detail_kinematics_ulb_pz.jpg]]
|
||||
#+end_subfigure
|
||||
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_uqp}Naval Postgraduate School - USA}
|
||||
#+attr_latex: :options {0.43\textwidth}
|
||||
#+begin_subfigure
|
||||
#+attr_latex: :width 0.95\linewidth
|
||||
[[file:figs/detail_kinematics_uqp.jpg]]
|
||||
#+end_subfigure
|
||||
#+end_figure
|
||||
|
||||
#+name: fig:detail_kinematics_stewart_examples_non_cubic
|
||||
#+caption: Some examples of developped Stewart platform with non-cubic geometry. (\subref{fig:detail_kinematics_pph}), (\subref{fig:detail_kinematics_zhang11}), (\subref{fig:detail_kinematics_yang19}), (\subref{fig:detail_kinematics_naves})
|
||||
#+attr_latex: :options [htbp]
|
||||
#+begin_figure
|
||||
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_pph}Naval Postgraduate School - USA}
|
||||
#+attr_latex: :options {0.48\textwidth}
|
||||
#+begin_subfigure
|
||||
#+attr_latex: :height 5cm
|
||||
[[file:figs/detail_kinematics_pph.jpg]]
|
||||
#+end_subfigure
|
||||
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_zhang11}Beihang University - China}
|
||||
#+attr_latex: :options {0.48\textwidth}
|
||||
#+begin_subfigure
|
||||
#+attr_latex: :height 5cm
|
||||
[[file:figs/detail_kinematics_zhang11.jpg]]
|
||||
#+end_subfigure
|
||||
|
||||
\bigskip
|
||||
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_yang19}Nanjing University - China}
|
||||
#+attr_latex: :options {0.43\textwidth}
|
||||
#+begin_subfigure
|
||||
#+attr_latex: :height 5cm
|
||||
[[file:figs/detail_kinematics_yang19.jpg]]
|
||||
#+end_subfigure
|
||||
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_naves}University of Twente - Netherlands}
|
||||
#+attr_latex: :options {0.53\textwidth}
|
||||
#+begin_subfigure
|
||||
#+attr_latex: :height 5cm
|
||||
[[file:figs/detail_kinematics_naves.jpg]]
|
||||
#+end_subfigure
|
||||
#+end_figure
|
||||
|
||||
#+name: tab:detail_kinematics_stewart_review
|
||||
#+caption: Examples of Stewart platform developed. When not specifically indicated, sensors are included in the struts. All presented Stewart platforms are using flexible joints. The table is sorted by "date"
|
||||
#+attr_latex: :environment tabularx :width \linewidth :align llllX
|
||||
#+attr_latex: :center t :booktabs t :font \scriptsize
|
||||
| | *Geometry* | *Actuators* | *Sensors* | *Reference* |
|
||||
|------------------------------------------+-------------------+------------------------------+------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| | Cubic (6-UPU) | Magnetostrictive | Force (collocated), Accelerometers | [[cite:&geng93_six_degree_of_freed_activ;&geng94_six_degree_of_freed_activ;&geng95_intel_contr_system_multip_degree]] |
|
||||
| Figure ref:fig:detail_kinematics_jpl | Cubic | Voice Coil (0.5 mm) | Force (collocated) | [[cite:&spanos95_soft_activ_vibrat_isolat;&rahman98_multiax]] |
|
||||
| | Cubic | Voice Coil (10 mm) | Force, LVDT, Geophones | [[cite:&thayer98_stewar;&thayer02_six_axis_vibrat_isolat_system;&hauge04_sensor_contr_space_based_six]] |
|
||||
| Figure ref:fig:detail_kinematics_uw_gsp | Cubic (CoM=CoK) | Voice Coil | Force | [[cite:&mcinroy99_dynam;&mcinroy99_precis_fault_toler_point_using_stewar_platf;&mcinroy00_desig_contr_flexur_joint_hexap;&li01_simul_vibrat_isolat_point_contr;&jafari03_orthog_gough_stewar_platf_microm]] |
|
||||
| | Cubic | Piezoelectric ($25\,\mu m$) | Piezo force sensors | [[cite:&defendini00_techn]] |
|
||||
| Figure ref:fig:detail_kinematics_ulb_pz | Cubic | APA ($50\,\mu m$) | Force sensor | [[cite:&abu02_stiff_soft_stewar_platf_activ]] |
|
||||
| Figure ref:fig:detail_kinematics_pph | Non-Cubic | Voice Coil | Accelerometers | [[cite:&chen03_payload_point_activ_vibrat_isolat]] |
|
||||
| | Cubic | Voice Coil | Force | [[cite:&hanieh03_activ_stewar;&preumont07_six_axis_singl_stage_activ]] |
|
||||
| Figure ref:fig:detail_kinematics_uqp | Cubic | Piezoelectric ($50\,\mu m$) | Geophone aligned with the strut | [[cite:&agrawal04_algor_activ_vibrat_isolat_spacec]] |
|
||||
| | Non-Cubic | Piezoelectric ($16\,\mu m$) | Eddy Current | [[cite:&furutani04_nanom_cuttin_machin_using_stewar]] |
|
||||
| | Cubic | Piezoelectric ($120\,\mu m$) | External capacitive | [[cite:&ting06_desig_stewar_nanos_platf;&ting13_compos_contr_desig_stewar_nanos_platf]] |
|
||||
| | Non-Cubic | Piezoelectric ($160\,\mu m$) | External capacitive (LION) | [[cite:&ting07_measur_calib_stewar_microm_system]] |
|
||||
| Figure ref:fig:detail_kinematics_zhang11 | Non-cubic | Magnetostrictive | Inertial | [[cite:&zhang11_six_dof]] |
|
||||
| | 6-SPS (Optimized) | Piezoelectric | Strain Gauge | [[cite:&du14_piezo_actuat_high_precis_flexib]] |
|
||||
| | Cubic | Voice Coil | Accelerometer in each leg | [[cite:&chi15_desig_exper_study_vcm_based;&tang18_decen_vibrat_contr_voice_coil;&jiao18_dynam_model_exper_analy_stewar]] |
|
||||
| | Cubic | Piezoelectric | Force Sensor + Accelerometer | [[cite:&wang16_inves_activ_vibrat_isolat_stewar]] |
|
||||
| | Almost cubic | Voice Coil | Force Sensor + Accelerometer | [[cite:&beijen18_self_tunin_mimo_distur_feedf;&tjepkema12_activ_ph]] |
|
||||
| Figure ref:fig:detail_kinematics_yang19 | 6-UPS (Cubic?) | Piezoelectric | Force, Position | [[cite:&yang19_dynam_model_decoup_contr_flexib]] |
|
||||
| Figure ref:fig:detail_kinematics_naves | Non-Cubic | 3-phase rotary motor | Rotary Encoders | [[cite:&naves20_desig;&naves20_t_flex]] |
|
||||
|
||||
- [ ] https://research.tdehaeze.xyz/stewart-simscape/docs/bibliography.html
|
||||
- [ ] Joints and actuators are optimized in the next section
|
||||
|
||||
* Effect of geometry on Stewart platform properties
|
||||
<<sec:detail_kinematics_geometry>>
|
||||
** Introduction :ignore:
|
||||
|
||||
- Remind that the choice of frames (independently of the physical geometry) impacts the obtained stiffness matrix (as it is defined as forces/motion evaluated at the chosen frame)
|
||||
- Important: bi (join position w.r.t top platform) and si (orientation of struts)
|
||||
|
||||
For the nano-hexapod:
|
||||
- Size requirements: Maximum height, maximum radius
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
@ -147,8 +304,112 @@ Optimal geometry?
|
||||
<<m-init-other>>
|
||||
#+end_src
|
||||
|
||||
** Stiffness
|
||||
|
||||
- Give some examples:
|
||||
- struts further apart: higher angular stiffness, same linear stiffness
|
||||
- orientation: more vertical => increase vertical stiffness, decrease horizontal stiffness
|
||||
|
||||
** Mobility and required joint and actuator stroke
|
||||
|
||||
- Comparison of the XYZ mobility (fixed orientation) for two geometry (or maybe only in the XY or YZ plane to see more clearly the differences)
|
||||
|
||||
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/kinematic-study.org::*Estimated required actuator stroke from specified platform mobility][Estimated required actuator stroke from specified platform mobility]]
|
||||
Will be useful to choose the actuators
|
||||
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/kinematic-study.org::*Estimation of the Joint required Stroke][Estimation of the Joint required Stroke]]
|
||||
Will be useful to design the flexible joints
|
||||
|
||||
** Conclusion
|
||||
:PROPERTIES:
|
||||
:UNNUMBERED: t
|
||||
:END:
|
||||
|
||||
- [ ] Table that summarize the findings
|
||||
[[file:~/Cloud/work-projects/ID31-NASS/documents/state-of-thesis-2020/index.org::*Optimal Nano-Hexapod Geometry][Optimal Nano-Hexapod Geometry]]
|
||||
|
||||
* The Cubic Architecture
|
||||
:PROPERTIES:
|
||||
:HEADER-ARGS:matlab+: :tangle matlab/detail_kinematics_1_.m
|
||||
:END:
|
||||
<<sec:detail_kinematics_cubic>>
|
||||
** Introduction :ignore:
|
||||
|
||||
Cubic configuration file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/cubic-configuration.org
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :noweb yes
|
||||
<<m-init-path>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :eval no :noweb yes
|
||||
<<m-init-path-tangle>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :noweb yes
|
||||
<<m-init-other>>
|
||||
#+end_src
|
||||
|
||||
** The Cubic Architecture
|
||||
|
||||
From [[cite:&geng94_six_degree_of_freed_activ]], 7 properties of cubic configuration:
|
||||
1) Uniformity in control capability in all directions
|
||||
2) Uniformity in stiffness in all directions
|
||||
3) Minimum cross coupling force effect among actuators
|
||||
4) Facilitate collocated sensor-actuator control system design
|
||||
5) Simple kinematics relationships
|
||||
6) Simple dynamic analysis
|
||||
7) Simple mechanical design
|
||||
|
||||
|
||||
|
||||
- Principle
|
||||
- Examples of Stewart platform with Cubic architecture
|
||||
- Different options?
|
||||
Center of the cube above the top platform?
|
||||
Where to mention that ? With examples
|
||||
|
||||
|
||||
|
||||
** Static Properties
|
||||
|
||||
Explain that we get diagonal K matrix => static decoupling in the cartesian frame.
|
||||
Uniform mobility in X,Y,Z directions
|
||||
|
||||
** Dynamical Properties?
|
||||
|
||||
[[cite:&mcinroy00_desig_contr_flexur_joint_hexap]]
|
||||
|
||||
[[cite:&afzali-far16_vibrat_dynam_isotr_hexap_analy_studies]]:
|
||||
- proposes an architecture where the CoM can be above the top platform
|
||||
- "*Dynamic isotropy*, leading to equal eigenfrequencies, is a powerful optimization measure."
|
||||
|
||||
|
||||
|
||||
- Show examples where the dynamics can indeed be decoupled in the cartesian frame (i.e. decoupled K and M matrices)
|
||||
- Better decoupling between the struts? not sure...
|
||||
Compute the coupling between the struts for a cubic and non-cubic architecture
|
||||
- Same resonance frequencies for suspension modes?
|
||||
Maybe in one case: sphere at the CoM?
|
||||
Could be nice to show that.
|
||||
Say that this can be nice for optimal damping for instance (link to paper explaining that)
|
||||
|
||||
* Conclusion
|
||||
<<sec:nass_geometry_conclusion>>
|
||||
<<sec:detail_kinematics_conclusion>>
|
||||
|
||||
Inertia used for experiments will be very broad => difficult to optimize the dynamics
|
||||
Specific geometry is not found to have a huge impact on performances.
|
||||
Practical implementation is important.
|
||||
|
||||
Geometry impacts the static and dynamical characteristics of the Stewart platform.
|
||||
Considering the design constrains, the slight change of geometry will not significantly impact the obtained results.
|
||||
|
||||
* Bibliography :ignore:
|
||||
#+latex: \printbibliography[heading=bibintoc,title={Bibliography}]
|
||||
|
@ -1,18 +1,19 @@
|
||||
% Created 2024-03-19 Tue 11:07
|
||||
% Created 2025-03-19 Wed 19:08
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
|
||||
|
||||
\input{preamble.tex}
|
||||
\input{preamble_extra.tex}
|
||||
\bibliography{nass-geometry.bib}
|
||||
\author{Dehaeze Thomas}
|
||||
\date{\today}
|
||||
\title{Nano Hexapod - Obtained Geometry}
|
||||
\title{Nano Hexapod - Optimal Geometry}
|
||||
\hypersetup{
|
||||
pdfauthor={Dehaeze Thomas},
|
||||
pdftitle={Nano Hexapod - Obtained Geometry},
|
||||
pdftitle={Nano Hexapod - Optimal Geometry},
|
||||
pdfkeywords={},
|
||||
pdfsubject={},
|
||||
pdfcreator={Emacs 29.2 (Org mode 9.7)},
|
||||
pdfcreator={Emacs 29.4 (Org mode 9.6)},
|
||||
pdflang={English}}
|
||||
\usepackage{biblatex}
|
||||
|
||||
@ -22,20 +23,243 @@
|
||||
\tableofcontents
|
||||
|
||||
\clearpage
|
||||
|
||||
\begin{itemize}
|
||||
\item In the conceptual design phase, the geometry of the Stewart platform was not optimized
|
||||
\item In the detail design phase, we want to see if the geometry can be optimized to improve the overall performances
|
||||
\item Optimization criteria: mobility, stiffness, dynamical decoupling, more performance / bandwidth
|
||||
\end{itemize}
|
||||
|
||||
Outline:
|
||||
\begin{itemize}
|
||||
\item Review of Stewart platform: Section \ref{sec:detail_kinematics_stewart_review}
|
||||
Geometry, Actuators, Sensors, Joints
|
||||
\item Effect of geometry on the Stewart platform characteristics \ref{sec:detail_kinematics_geometry}
|
||||
\item Cubic configuration: benefits? \ref{sec:detail_kinematics_cubic}
|
||||
\end{itemize}
|
||||
|
||||
\chapter{Review of Stewart platforms}
|
||||
\label{sec:detail_kinematics_stewart_review}
|
||||
\begin{itemize}
|
||||
\item as was explained in the conceptual phase, Stewart platform have the following key elements:
|
||||
\begin{itemize}
|
||||
\item two plates
|
||||
\item flexible joints
|
||||
\item actuators
|
||||
\item sensors
|
||||
\end{itemize}
|
||||
\item the geometry
|
||||
\item This results in various designs as shown in Table \ref{tab:detail_kinematics_stewart_review}
|
||||
\item The focus is here made on Stewart platforms for nano-positioning of vibration control.
|
||||
Not on long stroke stewart platforms.
|
||||
\item All presented Stewart platforms are using flexible joints, as it is a prerequisites for nano-positioning capabilities.
|
||||
\item Most of stewart platforms are using voice coil actuators or piezoelectric actuators.
|
||||
The actuators used for the Stewart platform will be chosen in the next section.
|
||||
\item Depending on the application, various sensors are integrated in the struts or on the plates.
|
||||
The choice of sensor for the nano-hexapod will be described in the next section.
|
||||
|
||||
\item[{$\square$}] Only keep integrated sensor and not external metrology
|
||||
\item[{$\square$}] Check for missing information
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}{0.48\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_kinematics_jpl.jpg}
|
||||
\end{center}
|
||||
\subcaption{\label{fig:detail_kinematics_jpl}California Institute of Technology - USA}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.48\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_kinematics_uw_gsp.jpg}
|
||||
\end{center}
|
||||
\subcaption{\label{fig:detail_kinematics_uw_gsp}University of Wyoming - USA}
|
||||
\end{subfigure}
|
||||
|
||||
\bigskip
|
||||
\begin{subfigure}{0.53\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_kinematics_ulb_pz.jpg}
|
||||
\end{center}
|
||||
\subcaption{\label{fig:detail_kinematics_ulb_pz}ULB - Belgium}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.43\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_kinematics_uqp.jpg}
|
||||
\end{center}
|
||||
\subcaption{\label{fig:detail_kinematics_uqp}Naval Postgraduate School - USA}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:detail_kinematics_stewart_examples_cubic}Some examples of developped Stewart platform with Cubic geometry. (\subref{fig:detail_kinematics_jpl}), (\subref{fig:detail_kinematics_uw_gsp}), (\subref{fig:detail_kinematics_ulb_pz}), (\subref{fig:detail_kinematics_uqp})}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[htbp]
|
||||
\begin{subfigure}{0.48\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=1,height=5cm]{figs/detail_kinematics_pph.jpg}
|
||||
\end{center}
|
||||
\subcaption{\label{fig:detail_kinematics_pph}Naval Postgraduate School - USA}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.48\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=1,height=5cm]{figs/detail_kinematics_zhang11.jpg}
|
||||
\end{center}
|
||||
\subcaption{\label{fig:detail_kinematics_zhang11}Beihang University - China}
|
||||
\end{subfigure}
|
||||
|
||||
\bigskip
|
||||
\begin{subfigure}{0.43\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=1,height=5cm]{figs/detail_kinematics_yang19.jpg}
|
||||
\end{center}
|
||||
\subcaption{\label{fig:detail_kinematics_yang19}Nanjing University - China}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.53\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[scale=1,height=5cm]{figs/detail_kinematics_naves.jpg}
|
||||
\end{center}
|
||||
\subcaption{\label{fig:detail_kinematics_naves}University of Twente - Netherlands}
|
||||
\end{subfigure}
|
||||
\caption{\label{fig:detail_kinematics_stewart_examples_non_cubic}Some examples of developped Stewart platform with non-cubic geometry. (\subref{fig:detail_kinematics_pph}), (\subref{fig:detail_kinematics_zhang11}), (\subref{fig:detail_kinematics_yang19}), (\subref{fig:detail_kinematics_naves})}
|
||||
\end{figure}
|
||||
|
||||
\begin{table}[htbp]
|
||||
\caption{\label{tab:nass_geometry_section_matlab_code}Report sections and corresponding Matlab files}
|
||||
\caption{\label{tab:detail_kinematics_stewart_review}Examples of Stewart platform developed. When not specifically indicated, sensors are included in the struts. All presented Stewart platforms are using flexible joints. The table is sorted by ``date''}
|
||||
\centering
|
||||
\begin{tabularx}{0.6\linewidth}{lX}
|
||||
\scriptsize
|
||||
\begin{tabularx}{\linewidth}{llllX}
|
||||
\toprule
|
||||
\textbf{Sections} & \textbf{Matlab File}\\
|
||||
& \textbf{Geometry} & \textbf{Actuators} & \textbf{Sensors} & \textbf{Reference}\\
|
||||
\midrule
|
||||
Section \ref{sec:nass_geometry}\_ & \texttt{nass\_geometry\_1\_.m}\\
|
||||
& Cubic (6-UPU) & Magnetostrictive & Force (collocated), Accelerometers & \cite{geng93_six_degree_of_freed_activ,geng94_six_degree_of_freed_activ,geng95_intel_contr_system_multip_degree}\\
|
||||
Figure \ref{fig:detail_kinematics_jpl} & Cubic & Voice Coil (0.5 mm) & Force (collocated) & \cite{spanos95_soft_activ_vibrat_isolat,rahman98_multiax}\\
|
||||
& Cubic & Voice Coil (10 mm) & Force, LVDT, Geophones & \cite{thayer98_stewar,thayer02_six_axis_vibrat_isolat_system,hauge04_sensor_contr_space_based_six}\\
|
||||
Figure \ref{fig:detail_kinematics_uw_gsp} & Cubic (CoM=CoK) & Voice Coil & Force & \cite{mcinroy99_dynam,mcinroy99_precis_fault_toler_point_using_stewar_platf,mcinroy00_desig_contr_flexur_joint_hexap,li01_simul_vibrat_isolat_point_contr,jafari03_orthog_gough_stewar_platf_microm}\\
|
||||
& Cubic & Piezoelectric (\(25\,\mu m\)) & Piezo force sensors & \cite{defendini00_techn}\\
|
||||
Figure \ref{fig:detail_kinematics_ulb_pz} & Cubic & APA (\(50\,\mu m\)) & Force sensor & \cite{abu02_stiff_soft_stewar_platf_activ}\\
|
||||
Figure \ref{fig:detail_kinematics_pph} & Non-Cubic & Voice Coil & Accelerometers & \cite{chen03_payload_point_activ_vibrat_isolat}\\
|
||||
& Cubic & Voice Coil & Force & \cite{hanieh03_activ_stewar,preumont07_six_axis_singl_stage_activ}\\
|
||||
Figure \ref{fig:detail_kinematics_uqp} & Cubic & Piezoelectric (\(50\,\mu m\)) & Geophone aligned with the strut & \cite{agrawal04_algor_activ_vibrat_isolat_spacec}\\
|
||||
& Non-Cubic & Piezoelectric (\(16\,\mu m\)) & Eddy Current & \cite{furutani04_nanom_cuttin_machin_using_stewar}\\
|
||||
& Cubic & Piezoelectric (\(120\,\mu m\)) & External capacitive & \cite{ting06_desig_stewar_nanos_platf,ting13_compos_contr_desig_stewar_nanos_platf}\\
|
||||
& Non-Cubic & Piezoelectric (\(160\,\mu m\)) & External capacitive (LION) & \cite{ting07_measur_calib_stewar_microm_system}\\
|
||||
Figure \ref{fig:detail_kinematics_zhang11} & Non-cubic & Magnetostrictive & Inertial & \cite{zhang11_six_dof}\\
|
||||
& 6-SPS (Optimized) & Piezoelectric & Strain Gauge & \cite{du14_piezo_actuat_high_precis_flexib}\\
|
||||
& Cubic & Voice Coil & Accelerometer in each leg & \cite{chi15_desig_exper_study_vcm_based,tang18_decen_vibrat_contr_voice_coil,jiao18_dynam_model_exper_analy_stewar}\\
|
||||
& Cubic & Piezoelectric & Force Sensor + Accelerometer & \cite{wang16_inves_activ_vibrat_isolat_stewar}\\
|
||||
& Almost cubic & Voice Coil & Force Sensor + Accelerometer & \cite{beijen18_self_tunin_mimo_distur_feedf,tjepkema12_activ_ph}\\
|
||||
Figure \ref{fig:detail_kinematics_yang19} & 6-UPS (Cubic?) & Piezoelectric & Force, Position & \cite{yang19_dynam_model_decoup_contr_flexib}\\
|
||||
Figure \ref{fig:detail_kinematics_naves} & Non-Cubic & 3-phase rotary motor & Rotary Encoders & \cite{naves20_desig,naves20_t_flex}\\
|
||||
\bottomrule
|
||||
\end{tabularx}
|
||||
\end{table}
|
||||
\chapter{Amplified Piezoelectric Geometry}
|
||||
\label{sec:nass_geometry_mechanics}
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] \url{https://research.tdehaeze.xyz/stewart-simscape/docs/bibliography.html}
|
||||
\item[{$\square$}] Joints and actuators are optimized in the next section
|
||||
\end{itemize}
|
||||
|
||||
\chapter{Effect of geometry on Stewart platform properties}
|
||||
\label{sec:detail_kinematics_geometry}
|
||||
\begin{itemize}
|
||||
\item Remind that the choice of frames (independently of the physical geometry) impacts the obtained stiffness matrix (as it is defined as forces/motion evaluated at the chosen frame)
|
||||
\item Important: bi (join position w.r.t top platform) and si (orientation of struts)
|
||||
\end{itemize}
|
||||
|
||||
For the nano-hexapod:
|
||||
\begin{itemize}
|
||||
\item Size requirements: Maximum height, maximum radius
|
||||
\end{itemize}
|
||||
\section{Stiffness}
|
||||
|
||||
\begin{itemize}
|
||||
\item Give some examples:
|
||||
\begin{itemize}
|
||||
\item struts further apart: higher angular stiffness, same linear stiffness
|
||||
\item orientation: more vertical => increase vertical stiffness, decrease horizontal stiffness
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
\section{Mobility and required joint and actuator stroke}
|
||||
|
||||
\begin{itemize}
|
||||
\item Comparison of the XYZ mobility (fixed orientation) for two geometry (or maybe only in the XY or YZ plane to see more clearly the differences)
|
||||
|
||||
\item[{$\square$}] \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/kinematic-study.org}{Estimated required actuator stroke from specified platform mobility}
|
||||
Will be useful to choose the actuators
|
||||
\item[{$\square$}] \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/kinematic-study.org}{Estimation of the Joint required Stroke}
|
||||
Will be useful to design the flexible joints
|
||||
\end{itemize}
|
||||
|
||||
\section*{Conclusion}
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Table that summarize the findings
|
||||
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/documents/state-of-thesis-2020/index.org}{Optimal Nano-Hexapod Geometry}
|
||||
\end{itemize}
|
||||
|
||||
\chapter{The Cubic Architecture}
|
||||
\label{sec:detail_kinematics_cubic}
|
||||
Cubic configuration \url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/cubic-configuration.org}
|
||||
\section{The Cubic Architecture}
|
||||
|
||||
From \cite{geng94_six_degree_of_freed_activ}, 7 properties of cubic configuration:
|
||||
\begin{enumerate}
|
||||
\item Uniformity in control capability in all directions
|
||||
\item Uniformity in stiffness in all directions
|
||||
\item Minimum cross coupling force effect among actuators
|
||||
\item Facilitate collocated sensor-actuator control system design
|
||||
\item Simple kinematics relationships
|
||||
\item Simple dynamic analysis
|
||||
\item Simple mechanical design
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
|
||||
\begin{itemize}
|
||||
\item Principle
|
||||
\item Examples of Stewart platform with Cubic architecture
|
||||
\item Different options?
|
||||
Center of the cube above the top platform?
|
||||
Where to mention that ? With examples
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
||||
\section{Static Properties}
|
||||
|
||||
Explain that we get diagonal K matrix => static decoupling in the cartesian frame.
|
||||
Uniform mobility in X,Y,Z directions
|
||||
|
||||
\section{Dynamical Properties?}
|
||||
|
||||
\cite{mcinroy00_desig_contr_flexur_joint_hexap}
|
||||
|
||||
\cite{afzali-far16_vibrat_dynam_isotr_hexap_analy_studies}:
|
||||
\begin{itemize}
|
||||
\item proposes an architecture where the CoM can be above the top platform
|
||||
\item ``\textbf{Dynamic isotropy}, leading to equal eigenfrequencies, is a powerful optimization measure.''
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
||||
\begin{itemize}
|
||||
\item Show examples where the dynamics can indeed be decoupled in the cartesian frame (i.e. decoupled K and M matrices)
|
||||
\item Better decoupling between the struts? not sure\ldots{}
|
||||
Compute the coupling between the struts for a cubic and non-cubic architecture
|
||||
\item Same resonance frequencies for suspension modes?
|
||||
Maybe in one case: sphere at the CoM?
|
||||
Could be nice to show that.
|
||||
Say that this can be nice for optimal damping for instance (link to paper explaining that)
|
||||
\end{itemize}
|
||||
|
||||
\chapter{Conclusion}
|
||||
\label{sec:nass_geometry_conclusion}
|
||||
\label{sec:detail_kinematics_conclusion}
|
||||
|
||||
Inertia used for experiments will be very broad => difficult to optimize the dynamics
|
||||
Specific geometry is not found to have a huge impact on performances.
|
||||
Practical implementation is important.
|
||||
|
||||
Geometry impacts the static and dynamical characteristics of the Stewart platform.
|
||||
Considering the design constrains, the slight change of geometry will not significantly impact the obtained results.
|
||||
|
||||
\printbibliography[heading=bibintoc,title={Bibliography}]
|
||||
\end{document}
|
||||
|
147
preamble.tex
@ -1,137 +1,16 @@
|
||||
\usepackage{float}
|
||||
\usepackage[ %
|
||||
acronym, % Separate acronyms and glossary
|
||||
toc, % appear in ToC
|
||||
automake, % auto-use the makeglossaries command (requires shell-escape)
|
||||
nonumberlist, % don't back reference pages
|
||||
nogroupskip, % don't group by letter
|
||||
nopostdot % don't add a dot at the end of each element
|
||||
]{glossaries}
|
||||
|
||||
\usepackage{caption,tabularx,booktabs}
|
||||
\usepackage{bm}
|
||||
\usepackage[stylemods=longextra]{glossaries-extra}
|
||||
|
||||
\usepackage{xpatch} % Recommanded for biblatex
|
||||
\usepackage[ % use biblatex for bibliography
|
||||
backend=biber, % use biber backend (bibtex replacement) or bibtex
|
||||
style=ieee, % bib style
|
||||
hyperref=true, % activate hyperref support
|
||||
backref=true, % activate backrefs
|
||||
isbn=false, % don't show isbn tags
|
||||
url=false, % don't show url tags
|
||||
doi=false, % don't show doi tags
|
||||
urldate=long, % display type for dates
|
||||
maxnames=3, %
|
||||
minnames=1, %
|
||||
maxbibnames=5, %
|
||||
minbibnames=3, %
|
||||
maxcitenames=2, %
|
||||
mincitenames=1 %
|
||||
]{biblatex}
|
||||
\setabbreviationstyle[acronym]{long-short}
|
||||
\setglossarystyle{long-name-desc}
|
||||
|
||||
\setlength\bibitemsep{1.1\itemsep}
|
||||
|
||||
% \renewcommand*{\bibfont}{\footnotesize}
|
||||
|
||||
\usepackage{fontawesome}
|
||||
|
||||
\usepackage{caption}
|
||||
\usepackage{subcaption}
|
||||
|
||||
\captionsetup[figure]{labelfont=bf}
|
||||
\captionsetup[subfigure]{labelfont=bf}
|
||||
\captionsetup[listing]{labelfont=bf}
|
||||
\captionsetup[table]{labelfont=bf}
|
||||
|
||||
\usepackage{xcolor}
|
||||
|
||||
\definecolor{my-blue}{HTML}{6b7adb}
|
||||
\definecolor{my-pale-blue}{HTML}{e6e9f9}
|
||||
\definecolor{my-red}{HTML}{db6b6b}
|
||||
\definecolor{my-pale-red}{HTML}{f9e6e6}
|
||||
\definecolor{my-green}{HTML}{6bdbb6}
|
||||
\definecolor{my-pale-green}{HTML}{e6f9f3}
|
||||
\definecolor{my-yellow}{HTML}{dbd26b}
|
||||
\definecolor{my-pale-yellow}{HTML}{f9f7e6}
|
||||
\definecolor{my-orange}{HTML}{dba76b}
|
||||
\definecolor{my-pale-orange}{HTML}{f9f0e6}
|
||||
\definecolor{my-grey}{HTML}{a3a3a3}
|
||||
\definecolor{my-pale-grey}{HTML}{f0f0f0}
|
||||
\definecolor{my-turq}{HTML}{6bc7db}
|
||||
\definecolor{my-pale-turq}{HTML}{e6f6f9}
|
||||
|
||||
\usepackage{inconsolata}
|
||||
|
||||
\usepackage[newfloat=true, chapter]{minted}
|
||||
\usemintedstyle{autumn}
|
||||
|
||||
\setminted{frame=lines,breaklines=true,tabsize=4,fontsize=\scriptsize,autogobble=true,labelposition=topline,bgcolor=my-pale-grey}
|
||||
\setminted[matlab]{label=Matlab}
|
||||
\setminted[latex]{label=LaTeX}
|
||||
\setminted[bash]{label=Bash}
|
||||
\setminted[python]{label=Python}
|
||||
\setminted[text]{label=Results}
|
||||
\setminted[md]{label=Org Mode}
|
||||
|
||||
\setmintedinline{fontsize=\normalsize,bgcolor=my-pale-grey}
|
||||
|
||||
\usepackage[most]{tcolorbox}
|
||||
|
||||
\tcbuselibrary{minted}
|
||||
|
||||
\newtcolorbox{seealso}{ enhanced,breakable,colback=my-pale-grey,colframe=my-grey,fonttitle=\bfseries,title=See Also}
|
||||
\newtcolorbox{hint}{ enhanced,breakable,colback=my-pale-grey,colframe=my-grey,fonttitle=\bfseries,title=Hint}
|
||||
\newtcolorbox{definition}{enhanced,breakable,colback=my-pale-red, colframe=my-red, fonttitle=\bfseries,title=Definition}
|
||||
\newtcolorbox{important}{ enhanced,breakable,colback=my-pale-red, colframe=my-red, fonttitle=\bfseries,title=Important}
|
||||
\newtcolorbox{exampl}[1][]{ enhanced,breakable,colback=my-pale-green,colframe=my-green,fonttitle=\bfseries,title=Example,#1}
|
||||
\newtcolorbox{exercice}{ enhanced,breakable,colback=my-pale-yellow,colframe=my-yellow,fonttitle=\bfseries,title=Exercice}
|
||||
\newtcolorbox{question}{ enhanced,breakable,colback=my-pale-yellow,colframe=my-yellow,fonttitle=\bfseries,title=Question}
|
||||
\newtcolorbox{answer}{ enhanced,breakable,colback=my-pale-turq,colframe=my-turq,fonttitle=\bfseries,title=Answer}
|
||||
\newtcolorbox{summary}{ enhanced,breakable,colback=my-pale-blue,colframe=my-blue,fonttitle=\bfseries,title=Summary}
|
||||
\newtcolorbox{note}{ enhanced,breakable,colback=my-pale-blue,colframe=my-blue,fonttitle=\bfseries,title=Note}
|
||||
\newtcolorbox{caution}{ enhanced,breakable,colback=my-pale-orange,colframe=my-orange,fonttitle=\bfseries,title=Caution}
|
||||
\newtcolorbox{warning}{ enhanced,breakable,colback=my-pale-orange,colframe=my-orange,fonttitle=\bfseries,title=Warning}
|
||||
|
||||
\newtcolorbox{my-quote}[1]{%
|
||||
colback=my-pale-grey,
|
||||
grow to right by=-10mm,
|
||||
grow to left by=-10mm,
|
||||
boxrule=0pt,
|
||||
boxsep=0pt,
|
||||
breakable,
|
||||
enhanced jigsaw,
|
||||
borderline west={4pt}{0pt}{my-grey}}
|
||||
|
||||
\renewenvironment{quote}{\begin{my-quote}}{\end{my-quote}}
|
||||
|
||||
\newtcolorbox{my-verse}[1]{%
|
||||
colback=my-pale-grey,
|
||||
grow to right by=-10mm,
|
||||
grow to left by=-10mm,
|
||||
boxrule=0pt,
|
||||
boxsep=0pt,
|
||||
breakable,
|
||||
enhanced jigsaw,
|
||||
borderline west={4pt}{0pt}{my-grey}}
|
||||
|
||||
\renewenvironment{verse}{\begin{my-verse}}{\end{my-verse}}
|
||||
|
||||
\usepackage{environ}% http://ctan.org/pkg/environ
|
||||
\NewEnviron{aside}{%
|
||||
\marginpar{\BODY}
|
||||
}
|
||||
|
||||
\renewenvironment{verbatim}{\VerbatimEnvironment\begin{minted}[]{text}}{\end{minted}}
|
||||
|
||||
\usepackage{soul}
|
||||
\sethlcolor{my-pale-grey}
|
||||
|
||||
\let\OldTexttt\texttt
|
||||
\renewcommand{\texttt}[1]{{\ttfamily\hl{\mbox{\,#1\,}}}}
|
||||
|
||||
\makeatletter
|
||||
\preto\Gin@extensions{png,}
|
||||
\DeclareGraphicsRule{.png}{pdf}{.pdf}{\noexpand\Gin@base.pdf}
|
||||
\preto\Gin@extensions{gif,}
|
||||
\DeclareGraphicsRule{.gif}{png}{.png}{\noexpand\Gin@base.png}
|
||||
\makeatother
|
||||
|
||||
\usepackage{hyperref}
|
||||
\hypersetup{
|
||||
colorlinks = true,
|
||||
allcolors = my-blue
|
||||
}
|
||||
|
||||
\usepackage{hypcap}
|
||||
\makeindex
|
||||
\makeglossaries
|
||||
|
134
preamble_extra.tex
Normal file
@ -0,0 +1,134 @@
|
||||
\usepackage{float}
|
||||
\usepackage{enumitem}
|
||||
|
||||
\usepackage{caption,tabularx,booktabs}
|
||||
\usepackage{bm}
|
||||
|
||||
\usepackage{xpatch} % Recommanded for biblatex
|
||||
\usepackage[ % use biblatex for bibliography
|
||||
backend=biber, % use biber backend (bibtex replacement) or bibtex
|
||||
style=ieee, % bib style
|
||||
hyperref=true, % activate hyperref support
|
||||
backref=true, % activate backrefs
|
||||
isbn=false, % don't show isbn tags
|
||||
url=false, % don't show url tags
|
||||
doi=false, % don't show doi tags
|
||||
urldate=long, % display type for dates
|
||||
maxnames=3, %
|
||||
minnames=1, %
|
||||
maxbibnames=5, %
|
||||
minbibnames=3, %
|
||||
maxcitenames=2, %
|
||||
mincitenames=1 %
|
||||
]{biblatex}
|
||||
|
||||
\setlength\bibitemsep{1.1\itemsep}
|
||||
|
||||
\usepackage{caption}
|
||||
\usepackage{subcaption}
|
||||
|
||||
\captionsetup[figure]{labelfont=bf}
|
||||
\captionsetup[subfigure]{labelfont=bf}
|
||||
\captionsetup[listing]{labelfont=bf}
|
||||
\captionsetup[table]{labelfont=bf}
|
||||
|
||||
\usepackage{xcolor}
|
||||
|
||||
\definecolor{my-blue}{HTML}{6b7adb}
|
||||
\definecolor{my-pale-blue}{HTML}{e6e9f9}
|
||||
\definecolor{my-red}{HTML}{db6b6b}
|
||||
\definecolor{my-pale-red}{HTML}{f9e6e6}
|
||||
\definecolor{my-green}{HTML}{6bdbb6}
|
||||
\definecolor{my-pale-green}{HTML}{e6f9f3}
|
||||
\definecolor{my-yellow}{HTML}{dbd26b}
|
||||
\definecolor{my-pale-yellow}{HTML}{f9f7e6}
|
||||
\definecolor{my-orange}{HTML}{dba76b}
|
||||
\definecolor{my-pale-orange}{HTML}{f9f0e6}
|
||||
\definecolor{my-grey}{HTML}{a3a3a3}
|
||||
\definecolor{my-pale-grey}{HTML}{f0f0f0}
|
||||
\definecolor{my-turq}{HTML}{6bc7db}
|
||||
\definecolor{my-pale-turq}{HTML}{e6f6f9}
|
||||
|
||||
\usepackage{inconsolata}
|
||||
|
||||
\usepackage[newfloat=true, chapter]{minted}
|
||||
\usemintedstyle{autumn}
|
||||
|
||||
\setminted{frame=lines,breaklines=true,tabsize=4,fontsize=\scriptsize,autogobble=true,labelposition=topline,bgcolor=my-pale-grey}
|
||||
\setminted[matlab]{label=Matlab}
|
||||
\setminted[latex]{label=LaTeX}
|
||||
\setminted[bash]{label=Bash}
|
||||
\setminted[python]{label=Python}
|
||||
\setminted[text]{label=Results}
|
||||
\setminted[md]{label=Org Mode}
|
||||
|
||||
\setmintedinline{fontsize=\normalsize,bgcolor=my-pale-grey}
|
||||
|
||||
\usepackage[most]{tcolorbox}
|
||||
|
||||
\tcbuselibrary{minted}
|
||||
|
||||
\newtcolorbox{seealso}{ enhanced,breakable,colback=my-pale-grey,colframe=my-grey,fonttitle=\bfseries,title=See Also}
|
||||
\newtcolorbox{hint}{ enhanced,breakable,colback=my-pale-grey,colframe=my-grey,fonttitle=\bfseries,title=Hint}
|
||||
\newtcolorbox{definition}{enhanced,breakable,colback=my-pale-red, colframe=my-red, fonttitle=\bfseries,title=Definition}
|
||||
\newtcolorbox{important}{ enhanced,breakable,colback=my-pale-red, colframe=my-red, fonttitle=\bfseries,title=Important}
|
||||
\newtcolorbox{exampl}[1][]{ enhanced,breakable,colback=my-pale-green,colframe=my-green,fonttitle=\bfseries,title=Example,#1}
|
||||
\newtcolorbox{exercice}{ enhanced,breakable,colback=my-pale-yellow,colframe=my-yellow,fonttitle=\bfseries,title=Exercice}
|
||||
\newtcolorbox{question}{ enhanced,breakable,colback=my-pale-yellow,colframe=my-yellow,fonttitle=\bfseries,title=Question}
|
||||
\newtcolorbox{answer}{ enhanced,breakable,colback=my-pale-turq,colframe=my-turq,fonttitle=\bfseries,title=Answer}
|
||||
\newtcolorbox{summary}{ enhanced,breakable,colback=my-pale-blue,colframe=my-blue,fonttitle=\bfseries,title=Summary}
|
||||
\newtcolorbox{note}{ enhanced,breakable,colback=my-pale-blue,colframe=my-blue,fonttitle=\bfseries,title=Note}
|
||||
\newtcolorbox{caution}{ enhanced,breakable,colback=my-pale-orange,colframe=my-orange,fonttitle=\bfseries,title=Caution}
|
||||
\newtcolorbox{warning}{ enhanced,breakable,colback=my-pale-orange,colframe=my-orange,fonttitle=\bfseries,title=Warning}
|
||||
|
||||
\newtcolorbox{my-quote}[1]{%
|
||||
colback=my-pale-grey,
|
||||
grow to right by=-10mm,
|
||||
grow to left by=-10mm,
|
||||
boxrule=0pt,
|
||||
boxsep=0pt,
|
||||
breakable,
|
||||
enhanced jigsaw,
|
||||
borderline west={4pt}{0pt}{my-grey}}
|
||||
|
||||
\renewenvironment{quote}{\begin{my-quote}}{\end{my-quote}}
|
||||
|
||||
\newtcolorbox{my-verse}[1]{%
|
||||
colback=my-pale-grey,
|
||||
grow to right by=-10mm,
|
||||
grow to left by=-10mm,
|
||||
boxrule=0pt,
|
||||
boxsep=0pt,
|
||||
breakable,
|
||||
enhanced jigsaw,
|
||||
borderline west={4pt}{0pt}{my-grey}}
|
||||
|
||||
\renewenvironment{verse}{\begin{my-verse}}{\end{my-verse}}
|
||||
|
||||
\usepackage{environ}% http://ctan.org/pkg/environ
|
||||
\NewEnviron{aside}{%
|
||||
\marginpar{\BODY}
|
||||
}
|
||||
|
||||
\renewenvironment{verbatim}{\VerbatimEnvironment\begin{minted}[]{text}}{\end{minted}}
|
||||
|
||||
\usepackage{soul}
|
||||
\sethlcolor{my-pale-grey}
|
||||
|
||||
\let\OldTexttt\texttt
|
||||
\renewcommand{\texttt}[1]{{\ttfamily\hl{\mbox{\,#1\,}}}}
|
||||
|
||||
\makeatletter
|
||||
\preto\Gin@extensions{png,}
|
||||
\DeclareGraphicsRule{.png}{pdf}{.pdf}{\noexpand\Gin@base.pdf}
|
||||
\preto\Gin@extensions{gif,}
|
||||
\DeclareGraphicsRule{.gif}{png}{.png}{\noexpand\Gin@base.png}
|
||||
\makeatother
|
||||
|
||||
\usepackage{hyperref}
|
||||
\hypersetup{
|
||||
colorlinks = true,
|
||||
allcolors = my-blue
|
||||
}
|
||||
|
||||
\usepackage{hypcap}
|