Add table and pictures of stewart platforms

This commit is contained in:
Thomas Dehaeze 2025-03-19 19:08:36 +01:00
parent 1a9c598286
commit 51b38ca0a7
16 changed files with 1213 additions and 172 deletions

3
.gitattributes vendored Normal file
View File

@ -0,0 +1,3 @@
*.pdf binary
*.svg binary
*.mat binary

2
.gitignore vendored
View File

@ -1,5 +1,3 @@
mat/
figures/
ltximg/
slprj/
matlab/slprj/

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 99 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 99 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

View File

@ -0,0 +1,542 @@
@inproceedings{spanos95_soft_activ_vibrat_isolat,
author = {J. Spanos and Z. Rahman and G. Blackwood},
title = {A Soft 6-axis Active Vibration Isolator},
booktitle = {Proceedings of 1995 American Control Conference - ACC'95},
year = 1995,
doi = {10.1109/acc.1995.529280},
url = {https://doi.org/10.1109/acc.1995.529280},
keywords = {parallel robot},
}
@inproceedings{rahman98_multiax,
author = {Zahidul H. Rahman and John T. Spanos and Robert A. Laskin},
title = {Multiaxis vibration isolation, suppression, and steering
system for space observational applications},
booktitle = {Telescope Control Systems III},
year = 1998,
doi = {10.1117/12.308821},
url = {https://doi.org/10.1117/12.308821},
keywords = {parallel robot},
month = 5,
}
@inproceedings{thayer98_stewar,
author = {D. Thayer and J. Vagners},
title = {A look at the pole/zero structure of a Stewart platform
using special coordinate basis},
booktitle = {Proceedings of the 1998 American Control Conference. ACC
(IEEE Cat. No.98CH36207)},
year = 1998,
doi = {10.1109/acc.1998.703595},
url = {https://doi.org/10.1109/acc.1998.703595},
keywords = {parallel robot},
}
@article{thayer02_six_axis_vibrat_isolat_system,
author = {Doug Thayer and Mark Campbell and Juris Vagners and Andrew
von Flotow},
title = {Six-Axis Vibration Isolation System Using Soft Actuators
and Multiple Sensors},
journal = {Journal of Spacecraft and Rockets},
volume = 39,
number = 2,
pages = {206-212},
year = 2002,
doi = {10.2514/2.3821},
url = {https://doi.org/10.2514/2.3821},
keywords = {parallel robot},
}
@article{hauge04_sensor_contr_space_based_six,
author = {G.S. Hauge and M.E. Campbell},
title = {Sensors and Control of a Space-Based Six-Axis Vibration
Isolation System},
journal = {Journal of Sound and Vibration},
volume = 269,
number = {3-5},
pages = {913-931},
year = 2004,
doi = {10.1016/s0022-460x(03)00206-2},
url = {https://doi.org/10.1016/s0022-460x(03)00206-2},
keywords = {parallel robot, favorite},
}
@inproceedings{mcinroy99_dynam,
author = {J.E. McInroy},
title = {Dynamic modeling of flexure jointed hexapods for control
purposes},
booktitle = {Proceedings of the 1999 IEEE International Conference on
Control Applications (Cat. No.99CH36328)},
year = 1999,
doi = {10.1109/cca.1999.806694},
url = {https://doi.org/10.1109/cca.1999.806694},
keywords = {parallel robot},
}
@article{mcinroy99_precis_fault_toler_point_using_stewar_platf,
author = {J.E. McInroy and J.F. O'Brien and G.W. Neat},
title = {Precise, Fault-Tolerant Pointing Using a Stewart Platform},
journal = {IEEE/ASME Transactions on Mechatronics},
volume = 4,
number = 1,
pages = {91-95},
year = 1999,
doi = {10.1109/3516.752089},
url = {https://doi.org/10.1109/3516.752089},
keywords = {parallel robot},
}
@article{mcinroy00_desig_contr_flexur_joint_hexap,
author = {J.E. McInroy and J.C. Hamann},
title = {Design and Control of Flexure Jointed Hexapods},
journal = {IEEE Transactions on Robotics and Automation},
volume = 16,
number = 4,
pages = {372-381},
year = 2000,
doi = {10.1109/70.864229},
url = {https://doi.org/10.1109/70.864229},
keywords = {parallel robot},
}
@inproceedings{li01_simul_vibrat_isolat_point_contr,
author = {Xiaochun Li and Jerry C. Hamann and John E. McInroy},
title = {Simultaneous Vibration Isolation and Pointing Control of
Flexure Jointed Hexapods},
booktitle = {Smart Structures and Materials 2001: Smart Structures and
Integrated Systems},
year = 2001,
doi = {10.1117/12.436521},
url = {https://doi.org/10.1117/12.436521},
keywords = {parallel robot},
month = 8,
}
@article{jafari03_orthog_gough_stewar_platf_microm,
author = {Jafari, F. and McInroy, J.E.},
title = {Orthogonal Gough-Stewart Platforms for Micromanipulation},
journal = {IEEE Transactions on Robotics and Automation},
volume = 19,
number = 4,
pages = {595-603},
year = 2003,
doi = {10.1109/tra.2003.814506},
url = {https://doi.org/10.1109/tra.2003.814506},
issn = {1042-296X},
keywords = {parallel robot, cubic configuration},
month = {Aug},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
}
@phdthesis{hanieh03_activ_stewar,
author = {Hanieh, Ahmed Abu},
keywords = {parallel robot},
school = {Universit{\'e} Libre de Bruxelles, Brussels, Belgium},
title = {Active isolation and damping of vibrations via Stewart
platform},
year = 2003,
}
@article{preumont07_six_axis_singl_stage_activ,
author = {A. Preumont and M. Horodinca and I. Romanescu and B. de
Marneffe and M. Avraam and A. Deraemaeker and F. Bossens and
A. Abu Hanieh},
title = {A Six-Axis Single-Stage Active Vibration Isolator Based on
Stewart Platform},
journal = {Journal of Sound and Vibration},
volume = 300,
number = {3-5},
pages = {644-661},
year = 2007,
doi = {10.1016/j.jsv.2006.07.050},
url = {https://doi.org/10.1016/j.jsv.2006.07.050},
keywords = {parallel robot},
}
@inproceedings{taranti01_effic_algor_vibrat_suppr,
author = {Taranti, Christian and Agrawal, Brij and Cristi, Roberto},
title = {An Efficient Algorithm for Vibration Suppression to meet
pointing requirements of optical payloads},
booktitle = {AIAA Guidance, Navigation, and Control Conference and
Exhibit},
year = 2001,
pages = 4094,
}
@inproceedings{chen03_payload_point_activ_vibrat_isolat,
author = {Hong-Jen Chen and Ronald Bishop and Brij Agrawal},
title = {Payload Pointing and Active Vibration Isolation Using
Hexapod Platforms},
booktitle = {44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference},
year = 2003,
doi = {10.2514/6.2003-1643},
url = {https://doi.org/10.2514/6.2003-1643},
keywords = {parallel robot},
month = 4,
}
@article{chi15_desig_exper_study_vcm_based,
author = {Weichao Chi and Dengqing Cao and Dongwei Wang and Jie Tang
and Yifan Nie and Wenhu Huang},
title = {Design and Experimental Study of a Vcm-Based Stewart
Parallel Mechanism Used for Active Vibration Isolation},
journal = {Energies},
volume = 8,
number = 8,
pages = {8001-8019},
year = 2015,
doi = {10.3390/en8088001},
url = {https://doi.org/10.3390/en8088001},
keywords = {parallel robot},
}
@article{tang18_decen_vibrat_contr_voice_coil,
author = {Jie Tang and Dengqing Cao and Tianhu Yu},
title = {Decentralized Vibration Control of a Voice Coil Motor-Based
Stewart Parallel Mechanism: Simulation and Experiments},
journal = {Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science},
volume = 233,
number = 1,
pages = {132-145},
year = 2018,
doi = {10.1177/0954406218756941},
url = {https://doi.org/10.1177/0954406218756941},
keywords = {parallel robot},
}
@article{jiao18_dynam_model_exper_analy_stewar,
author = {Jian Jiao and Ying Wu and Kaiping Yu and Rui Zhao},
title = {Dynamic Modeling and Experimental Analyses of Stewart
Platform With Flexible Hinges},
journal = {Journal of Vibration and Control},
volume = 25,
number = 1,
pages = {151-171},
year = 2018,
doi = {10.1177/1077546318772474},
url = {https://doi.org/10.1177/1077546318772474},
keywords = {parallel robot, flexure},
}
@article{beijen18_self_tunin_mimo_distur_feedf,
author = {M.A. Beijen and M.F. Heertjes and J. Van Dijk and W.B.J.
Hakvoort},
title = {Self-Tuning Mimo Disturbance Feedforward Control for Active
Hard-Mounted Vibration Isolators},
journal = {Control Engineering Practice},
volume = 72,
pages = {90-103},
year = 2018,
doi = {10.1016/j.conengprac.2017.11.008},
url = {https://doi.org/10.1016/j.conengprac.2017.11.008},
keywords = {parallel robot, feedforward},
}
@phdthesis{tjepkema12_activ_ph,
author = {Tjepkema, D},
title = {Active hard mount vibration isolation for precision
equipment [Ph. D. thesis]},
university = {University of Twente, Enschede, The Netherlands},
year = {2012},
}
@article{geng93_six_degree_of_freed_activ,
author = {Zheng Geng and Leonard S. Haynes},
title = {Six-Degree-Of-Freedom Active Vibration Isolation Using a
Stewart Platform Mechanism},
journal = {Journal of Robotic Systems},
volume = 10,
number = 5,
pages = {725-744},
year = 1993,
doi = {10.1002/rob.4620100510},
url = {https://doi.org/10.1002/rob.4620100510},
keywords = {parallel robot},
}
@article{geng94_six_degree_of_freed_activ,
author = {Z.J. Geng and L.S. Haynes},
title = {Six Degree-Of-Freedom Active Vibration Control Using the
Stewart Platforms},
journal = {IEEE Transactions on Control Systems Technology},
volume = 2,
number = 1,
pages = {45-53},
year = 1994,
doi = {10.1109/87.273110},
url = {https://doi.org/10.1109/87.273110},
keywords = {parallel robot, cubic configuration},
}
@article{geng95_intel_contr_system_multip_degree,
author = {Z. Jason Geng and George G. Pan and Leonard S. Haynes and
Ben K. Wada and John A. Garba},
title = {An Intelligent Control System for Multiple
Degree-Of-Freedom Vibration Isolation},
journal = {Journal of Intelligent Material Systems and Structures},
volume = 6,
number = 6,
pages = {787-800},
year = 1995,
doi = {10.1177/1045389x9500600607},
url = {https://doi.org/10.1177/1045389x9500600607},
keywords = {parallel robot},
}
@inproceedings{zhang11_six_dof,
author = {Zhen Zhang and J Liu and Jq Mao and Yx Guo and Yh Ma},
title = {Six DOF active vibration control using stewart platform
with non-cubic configuration},
booktitle = {2011 6th IEEE Conference on Industrial Electronics and
Applications},
year = 2011,
doi = {10.1109/iciea.2011.5975679},
url = {https://doi.org/10.1109/iciea.2011.5975679},
keywords = {parallel robot},
month = 6,
}
@inproceedings{abu02_stiff_soft_stewar_platf_activ,
author = {Abu Hanieh, Ahmed and Horodinca, Mihaita and Preumont,
Andre},
title = {Stiff and Soft Stewart Platforms for Active Damping and
Active Isolation of Vibrations},
booktitle = {Actuator 2002, 8th International Conference on New
Actuators},
year = 2002,
keywords = {parallel robot},
}
@article{agrawal04_algor_activ_vibrat_isolat_spacec,
author = {Brij N Agrawal and Hong-Jen Chen},
title = {Algorithms for Active Vibration Isolation on Spacecraft
Using a Stewart Platform},
journal = {Smart Materials and Structures},
volume = 13,
number = 4,
pages = {873-880},
year = 2004,
doi = {10.1088/0964-1726/13/4/025},
url = {https://doi.org/10.1088/0964-1726/13/4/025},
keywords = {parallel robot},
}
@inproceedings{ting06_desig_stewar_nanos_platf,
author = {Yung Ting and H.-C. Jar and Chun-Chung Li},
title = {Design of a 6DOF Stewart-type Nanoscale Platform},
booktitle = {2006 Sixth IEEE Conference on Nanotechnology},
year = 2006,
doi = {10.1109/nano.2006.247808},
url = {https://doi.org/10.1109/nano.2006.247808},
keywords = {parallel robot},
}
@article{ting13_compos_contr_desig_stewar_nanos_platf,
author = {Yung Ting and Chun-Chung Li and Tho Van Nguyen},
title = {Composite Controller Design for a 6dof Stewart Nanoscale
Platform},
journal = {Precision Engineering},
volume = 37,
number = 3,
pages = {671-683},
year = 2013,
doi = {10.1016/j.precisioneng.2013.01.012},
url = {https://doi.org/10.1016/j.precisioneng.2013.01.012},
keywords = {parallel robot},
}
@article{ting07_measur_calib_stewar_microm_system,
author = {Yung Ting and Ho-Chin Jar and Chun-Chung Li},
title = {Measurement and Calibration for Stewart Micromanipulation
System},
journal = {Precision Engineering},
volume = 31,
number = 3,
pages = {226-233},
year = 2007,
doi = {10.1016/j.precisioneng.2006.09.004},
url = {https://doi.org/10.1016/j.precisioneng.2006.09.004},
keywords = {parallel robot},
}
@article{du14_piezo_actuat_high_precis_flexib,
author = {Zhijiang Du and Ruochong Shi and Wei Dong},
title = {A Piezo-Actuated High-Precision Flexible Parallel Pointing
Mechanism: Conceptual Design, Development, and Experiments},
journal = {IEEE Transactions on Robotics},
volume = 30,
number = 1,
pages = {131-137},
year = 2014,
doi = {10.1109/tro.2013.2288800},
url = {https://doi.org/10.1109/tro.2013.2288800},
keywords = {parallel robot},
}
@article{furutani04_nanom_cuttin_machin_using_stewar,
author = {Katsushi Furutani and Michio Suzuki and Ryusei Kudoh},
title = {Nanometre-Cutting Machine Using a Stewart-Platform Parallel
Mechanism},
journal = {Measurement Science and Technology},
volume = 15,
number = 2,
pages = {467-474},
year = 2004,
doi = {10.1088/0957-0233/15/2/022},
url = {https://doi.org/10.1088/0957-0233/15/2/022},
keywords = {parallel robot, cubic configuration},
}
@article{yang19_dynam_model_decoup_contr_flexib,
author = {Yang, XiaoLong and Wu, HongTao and Chen, Bai and Kang,
ShengZheng and Cheng, ShiLi},
title = {Dynamic Modeling and Decoupled Control of a Flexible
Stewart Platform for Vibration Isolation},
journal = {Journal of Sound and Vibration},
volume = 439,
pages = {398-412},
year = 2019,
doi = {10.1016/j.jsv.2018.10.007},
url = {https://doi.org/10.1016/j.jsv.2018.10.007},
issn = {0022-460X},
keywords = {parallel robot, flexure, decoupled control},
month = {Jan},
publisher = {Elsevier BV},
}
@article{wang16_inves_activ_vibrat_isolat_stewar,
author = {Wang, Chaoxin and Xie, Xiling and Chen, Yanhao and Zhang,
Zhiyi},
title = {Investigation on Active Vibration Isolation of a Stewart
Platform With Piezoelectric Actuators},
journal = {Journal of Sound and Vibration},
volume = 383,
pages = {1-19},
year = 2016,
doi = {10.1016/j.jsv.2016.07.021},
url = {https://doi.org/10.1016/j.jsv.2016.07.021},
issn = {0022-460X},
keywords = {parallel robot},
month = {Nov},
publisher = {Elsevier BV},
}
@inproceedings{defendini00_techn,
author = {Defendini, A and Vaillon, L and Trouve, F and Rouze, Th and
Sanctorum, B and Griseri, G and Spanoudakis, P and von
Alberti, M},
title = {Technology predevelopment for active control of vibration
and very high accuracy pointing systems},
booktitle = {Spacecraft Guidance, Navigation and Control Systems},
year = 2000,
volume = 425,
pages = 385,
}
@article{torii12_small_size_self_propel_stewar_platf,
author = {Akihiro Torii and Masaaki Banno and Akiteru Ueda and Kae
Doki},
title = {A Small-Size Self-Propelled Stewart Platform},
journal = {Electrical Engineering in Japan},
volume = 181,
number = 2,
pages = {37-46},
year = 2012,
doi = {10.1002/eej.21261},
url = {https://doi.org/10.1002/eej.21261},
keywords = {parallel robot},
}
@phdthesis{naves20_desig,
author = {Mark Naves},
school = {Univeristy of Twente},
title = {Design and optimization of large stroke flexure mechanisms},
year = 2020,
keywords = {flexure},
}
@inproceedings{naves20_t_flex,
author = {Naves, M and Hakvoort, WBJ and Nijenhuis, M and Brouwer,
DM},
title = {T-Flex: A large range of motion fully flexure-based 6-DOF
hexapod},
booktitle = {20th EUSPEN International Conference \& Exhibition, EUSPEN
2020},
year = 2020,
pages = {205--208},
keywords = {parallel robot, nass},
organization = {EUSPEN},
}

View File

@ -1,4 +1,4 @@
#+TITLE: Nano Hexapod - Kinematics Study and Optimal Geometry
#+TITLE: Nano Hexapod - Optimal Geometry
:DRAWER:
#+LANGUAGE: en
#+EMAIL: dehaeze.thomas@gmail.com
@ -15,7 +15,8 @@
#+LaTeX_CLASS: scrreprt
#+LaTeX_CLASS_OPTIONS: [a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]
#+LaTeX_HEADER_EXTRA: \input{preamble.tex}
#+LATEX_HEADER: \input{preamble.tex}
#+LATEX_HEADER_EXTRA: \input{preamble_extra.tex}
#+LATEX_HEADER_EXTRA: \bibliography{nass-geometry.bib}
#+BIND: org-latex-bib-compiler "biber"
@ -44,12 +45,6 @@
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
:END:
#+begin_export html
<hr>
<p>This report is also available as a <a href="./nass-geometry.pdf">pdf</a>.</p>
<hr>
#+end_export
#+latex: \clearpage
* Build :noexport:
@ -95,37 +90,199 @@
#+END_SRC
* Notes :noexport:
** Notes
Prefix is =detail_kinematics=
Talk about the optimization of the nano-hexapod: geometry, stiffness, etc...
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/documents/state-of-thesis-2020/index.org][state-of-thesis-2020]]
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/kinematic-study.org::+TITLE: Kinematic Study of the Stewart Platform][Stewart Platform - Kinematics]]
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/flexible-stewart-platform.org::+TITLE: Stewart Platform with Flexible Elements][Stewart platform with flexible elements]]
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/documents/state-of-thesis-2020/index.org::*Optimal Nano-Hexapod Design][Optimal Nano-Hexapod Design]]
- [X] file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/kinematic-study.org
- [X] file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/flexible-stewart-platform.org
Not so interesting
- [ ] Talk about what will influence the dynamics
It will influence the mechanical design.
For instance we want to precisely position =bi= with respect to the top platform
Optimal geometry?
- [ ] Cubic architecture?
- [ ] *Cubic architecture*?
Cubic configuration file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/cubic-configuration.org
https://tdehaeze.github.io/stewart-simscape/cubic-configuration.html
- [ ] Kinematics
- [ ] Trade-off for the strut orientation
- [ ] Requirements in terms of positioning of the joints
- [ ] Not a lot of differences, no specificity of cubic architecture, no specific positioning
- [ ] https://research.tdehaeze.xyz/stewart-simscape/docs/bibliography.html
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/kinematic-study.org::*Estimated required actuator stroke from specified platform mobility][Estimated required actuator stroke from specified platform mobility]]
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/kinematic-study.org::*Estimation of the Joint required Stroke][Estimation of the Joint required Stroke]]
** TODO [#A] Copy relevant parts of reports
** TODO [#A] Structure the review of Stewart platforms
Focus on short stroke (<1 mm) stewart platforms with flexible joints.
- Actuators: voice coil, piezo
- Flexible joints
- Geometry:
- Cubic, non cubic, ...
- Control ? Maybe in the control section ?
** DONE [#A] Make table for review of Stewart platforms
CLOSED: [2025-03-19 Wed 18:25]
[[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/bibliography.org::*Built Stewart PLatforms][Built Stewart PLatforms]]
Link to figures.
In figure legend: link to references, mention the university and the application.
** TODO [#C] Create a function to plot the mobility of the Stewart platform
Arguments:
- choose to fix the orientation with ${}^{B}R_{A}$
- maximum stroke of each actuator (may be included in the Stewart object)
* Introduction :ignore:
#+name: tab:nass_geometry_section_matlab_code
#+caption: Report sections and corresponding Matlab files
#+attr_latex: :environment tabularx :width 0.6\linewidth :align lX
#+attr_latex: :center t :booktabs t
| *Sections* | *Matlab File* |
|----------------------------------+------------------------|
| Section ref:sec:nass_geometry_ | =nass_geometry_1_.m= |
- In the conceptual design phase, the geometry of the Stewart platform was not optimized
- In the detail design phase, we want to see if the geometry can be optimized to improve the overall performances
- Optimization criteria: mobility, stiffness, dynamical decoupling, more performance / bandwidth
Outline:
- Review of Stewart platform: Section ref:sec:detail_kinematics_stewart_review
Geometry, Actuators, Sensors, Joints
- Effect of geometry on the Stewart platform characteristics ref:sec:detail_kinematics_geometry
- Cubic configuration: benefits? ref:sec:detail_kinematics_cubic
* Amplified Piezoelectric Geometry
:PROPERTIES:
:HEADER-ARGS:matlab+: :tangle matlab/nass_geometry_1_.m
:END:
<<sec:nass_geometry_mechanics>>
* Review of Stewart platforms
<<sec:detail_kinematics_stewart_review>>
** Introduction :ignore:
- as was explained in the conceptual phase, Stewart platform have the following key elements:
- two plates
- flexible joints
- actuators
- sensors
- the geometry
- This results in various designs as shown in Table ref:tab:detail_kinematics_stewart_review
- The focus is here made on Stewart platforms for nano-positioning of vibration control.
Not on long stroke stewart platforms.
- All presented Stewart platforms are using flexible joints, as it is a prerequisites for nano-positioning capabilities.
- Most of stewart platforms are using voice coil actuators or piezoelectric actuators.
The actuators used for the Stewart platform will be chosen in the next section.
# TODO - Add reference to the section
- Depending on the application, various sensors are integrated in the struts or on the plates.
The choice of sensor for the nano-hexapod will be described in the next section.
# TODO - Add reference to the section
- [ ] Only keep integrated sensor and not external metrology
- [ ] Check for missing information
#+name: fig:detail_kinematics_stewart_examples_cubic
#+caption: Some examples of developped Stewart platform with Cubic geometry. (\subref{fig:detail_kinematics_jpl}), (\subref{fig:detail_kinematics_uw_gsp}), (\subref{fig:detail_kinematics_ulb_pz}), (\subref{fig:detail_kinematics_uqp})
#+attr_latex: :options [htbp]
#+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_jpl}California Institute of Technology - USA}
#+attr_latex: :options {0.48\textwidth}
#+begin_subfigure
#+attr_latex: :width 0.95\linewidth
[[file:figs/detail_kinematics_jpl.jpg]]
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_uw_gsp}University of Wyoming - USA}
#+attr_latex: :options {0.48\textwidth}
#+begin_subfigure
#+attr_latex: :width 0.95\linewidth
[[file:figs/detail_kinematics_uw_gsp.jpg]]
#+end_subfigure
\bigskip
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_ulb_pz}ULB - Belgium}
#+attr_latex: :options {0.53\textwidth}
#+begin_subfigure
#+attr_latex: :width 0.95\linewidth
[[file:figs/detail_kinematics_ulb_pz.jpg]]
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_uqp}Naval Postgraduate School - USA}
#+attr_latex: :options {0.43\textwidth}
#+begin_subfigure
#+attr_latex: :width 0.95\linewidth
[[file:figs/detail_kinematics_uqp.jpg]]
#+end_subfigure
#+end_figure
#+name: fig:detail_kinematics_stewart_examples_non_cubic
#+caption: Some examples of developped Stewart platform with non-cubic geometry. (\subref{fig:detail_kinematics_pph}), (\subref{fig:detail_kinematics_zhang11}), (\subref{fig:detail_kinematics_yang19}), (\subref{fig:detail_kinematics_naves})
#+attr_latex: :options [htbp]
#+begin_figure
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_pph}Naval Postgraduate School - USA}
#+attr_latex: :options {0.48\textwidth}
#+begin_subfigure
#+attr_latex: :height 5cm
[[file:figs/detail_kinematics_pph.jpg]]
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_zhang11}Beihang University - China}
#+attr_latex: :options {0.48\textwidth}
#+begin_subfigure
#+attr_latex: :height 5cm
[[file:figs/detail_kinematics_zhang11.jpg]]
#+end_subfigure
\bigskip
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_yang19}Nanjing University - China}
#+attr_latex: :options {0.43\textwidth}
#+begin_subfigure
#+attr_latex: :height 5cm
[[file:figs/detail_kinematics_yang19.jpg]]
#+end_subfigure
#+attr_latex: :caption \subcaption{\label{fig:detail_kinematics_naves}University of Twente - Netherlands}
#+attr_latex: :options {0.53\textwidth}
#+begin_subfigure
#+attr_latex: :height 5cm
[[file:figs/detail_kinematics_naves.jpg]]
#+end_subfigure
#+end_figure
#+name: tab:detail_kinematics_stewart_review
#+caption: Examples of Stewart platform developed. When not specifically indicated, sensors are included in the struts. All presented Stewart platforms are using flexible joints. The table is sorted by "date"
#+attr_latex: :environment tabularx :width \linewidth :align llllX
#+attr_latex: :center t :booktabs t :font \scriptsize
| | *Geometry* | *Actuators* | *Sensors* | *Reference* |
|------------------------------------------+-------------------+------------------------------+------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| | Cubic (6-UPU) | Magnetostrictive | Force (collocated), Accelerometers | [[cite:&geng93_six_degree_of_freed_activ;&geng94_six_degree_of_freed_activ;&geng95_intel_contr_system_multip_degree]] |
| Figure ref:fig:detail_kinematics_jpl | Cubic | Voice Coil (0.5 mm) | Force (collocated) | [[cite:&spanos95_soft_activ_vibrat_isolat;&rahman98_multiax]] |
| | Cubic | Voice Coil (10 mm) | Force, LVDT, Geophones | [[cite:&thayer98_stewar;&thayer02_six_axis_vibrat_isolat_system;&hauge04_sensor_contr_space_based_six]] |
| Figure ref:fig:detail_kinematics_uw_gsp | Cubic (CoM=CoK) | Voice Coil | Force | [[cite:&mcinroy99_dynam;&mcinroy99_precis_fault_toler_point_using_stewar_platf;&mcinroy00_desig_contr_flexur_joint_hexap;&li01_simul_vibrat_isolat_point_contr;&jafari03_orthog_gough_stewar_platf_microm]] |
| | Cubic | Piezoelectric ($25\,\mu m$) | Piezo force sensors | [[cite:&defendini00_techn]] |
| Figure ref:fig:detail_kinematics_ulb_pz | Cubic | APA ($50\,\mu m$) | Force sensor | [[cite:&abu02_stiff_soft_stewar_platf_activ]] |
| Figure ref:fig:detail_kinematics_pph | Non-Cubic | Voice Coil | Accelerometers | [[cite:&chen03_payload_point_activ_vibrat_isolat]] |
| | Cubic | Voice Coil | Force | [[cite:&hanieh03_activ_stewar;&preumont07_six_axis_singl_stage_activ]] |
| Figure ref:fig:detail_kinematics_uqp | Cubic | Piezoelectric ($50\,\mu m$) | Geophone aligned with the strut | [[cite:&agrawal04_algor_activ_vibrat_isolat_spacec]] |
| | Non-Cubic | Piezoelectric ($16\,\mu m$) | Eddy Current | [[cite:&furutani04_nanom_cuttin_machin_using_stewar]] |
| | Cubic | Piezoelectric ($120\,\mu m$) | External capacitive | [[cite:&ting06_desig_stewar_nanos_platf;&ting13_compos_contr_desig_stewar_nanos_platf]] |
| | Non-Cubic | Piezoelectric ($160\,\mu m$) | External capacitive (LION) | [[cite:&ting07_measur_calib_stewar_microm_system]] |
| Figure ref:fig:detail_kinematics_zhang11 | Non-cubic | Magnetostrictive | Inertial | [[cite:&zhang11_six_dof]] |
| | 6-SPS (Optimized) | Piezoelectric | Strain Gauge | [[cite:&du14_piezo_actuat_high_precis_flexib]] |
| | Cubic | Voice Coil | Accelerometer in each leg | [[cite:&chi15_desig_exper_study_vcm_based;&tang18_decen_vibrat_contr_voice_coil;&jiao18_dynam_model_exper_analy_stewar]] |
| | Cubic | Piezoelectric | Force Sensor + Accelerometer | [[cite:&wang16_inves_activ_vibrat_isolat_stewar]] |
| | Almost cubic | Voice Coil | Force Sensor + Accelerometer | [[cite:&beijen18_self_tunin_mimo_distur_feedf;&tjepkema12_activ_ph]] |
| Figure ref:fig:detail_kinematics_yang19 | 6-UPS (Cubic?) | Piezoelectric | Force, Position | [[cite:&yang19_dynam_model_decoup_contr_flexib]] |
| Figure ref:fig:detail_kinematics_naves | Non-Cubic | 3-phase rotary motor | Rotary Encoders | [[cite:&naves20_desig;&naves20_t_flex]] |
- [ ] https://research.tdehaeze.xyz/stewart-simscape/docs/bibliography.html
- [ ] Joints and actuators are optimized in the next section
* Effect of geometry on Stewart platform properties
<<sec:detail_kinematics_geometry>>
** Introduction :ignore:
- Remind that the choice of frames (independently of the physical geometry) impacts the obtained stiffness matrix (as it is defined as forces/motion evaluated at the chosen frame)
- Important: bi (join position w.r.t top platform) and si (orientation of struts)
For the nano-hexapod:
- Size requirements: Maximum height, maximum radius
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
@ -147,8 +304,112 @@ Optimal geometry?
<<m-init-other>>
#+end_src
** Stiffness
- Give some examples:
- struts further apart: higher angular stiffness, same linear stiffness
- orientation: more vertical => increase vertical stiffness, decrease horizontal stiffness
** Mobility and required joint and actuator stroke
- Comparison of the XYZ mobility (fixed orientation) for two geometry (or maybe only in the XY or YZ plane to see more clearly the differences)
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/kinematic-study.org::*Estimated required actuator stroke from specified platform mobility][Estimated required actuator stroke from specified platform mobility]]
Will be useful to choose the actuators
- [ ] [[file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/kinematic-study.org::*Estimation of the Joint required Stroke][Estimation of the Joint required Stroke]]
Will be useful to design the flexible joints
** Conclusion
:PROPERTIES:
:UNNUMBERED: t
:END:
- [ ] Table that summarize the findings
[[file:~/Cloud/work-projects/ID31-NASS/documents/state-of-thesis-2020/index.org::*Optimal Nano-Hexapod Geometry][Optimal Nano-Hexapod Geometry]]
* The Cubic Architecture
:PROPERTIES:
:HEADER-ARGS:matlab+: :tangle matlab/detail_kinematics_1_.m
:END:
<<sec:detail_kinematics_cubic>>
** Introduction :ignore:
Cubic configuration file:~/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/cubic-configuration.org
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
#+begin_src matlab :tangle no :noweb yes
<<m-init-path>>
#+end_src
#+begin_src matlab :eval no :noweb yes
<<m-init-path-tangle>>
#+end_src
#+begin_src matlab :noweb yes
<<m-init-other>>
#+end_src
** The Cubic Architecture
From [[cite:&geng94_six_degree_of_freed_activ]], 7 properties of cubic configuration:
1) Uniformity in control capability in all directions
2) Uniformity in stiffness in all directions
3) Minimum cross coupling force effect among actuators
4) Facilitate collocated sensor-actuator control system design
5) Simple kinematics relationships
6) Simple dynamic analysis
7) Simple mechanical design
- Principle
- Examples of Stewart platform with Cubic architecture
- Different options?
Center of the cube above the top platform?
Where to mention that ? With examples
** Static Properties
Explain that we get diagonal K matrix => static decoupling in the cartesian frame.
Uniform mobility in X,Y,Z directions
** Dynamical Properties?
[[cite:&mcinroy00_desig_contr_flexur_joint_hexap]]
[[cite:&afzali-far16_vibrat_dynam_isotr_hexap_analy_studies]]:
- proposes an architecture where the CoM can be above the top platform
- "*Dynamic isotropy*, leading to equal eigenfrequencies, is a powerful optimization measure."
- Show examples where the dynamics can indeed be decoupled in the cartesian frame (i.e. decoupled K and M matrices)
- Better decoupling between the struts? not sure...
Compute the coupling between the struts for a cubic and non-cubic architecture
- Same resonance frequencies for suspension modes?
Maybe in one case: sphere at the CoM?
Could be nice to show that.
Say that this can be nice for optimal damping for instance (link to paper explaining that)
* Conclusion
<<sec:nass_geometry_conclusion>>
<<sec:detail_kinematics_conclusion>>
Inertia used for experiments will be very broad => difficult to optimize the dynamics
Specific geometry is not found to have a huge impact on performances.
Practical implementation is important.
Geometry impacts the static and dynamical characteristics of the Stewart platform.
Considering the design constrains, the slight change of geometry will not significantly impact the obtained results.
* Bibliography :ignore:
#+latex: \printbibliography[heading=bibintoc,title={Bibliography}]

Binary file not shown.

View File

@ -1,18 +1,19 @@
% Created 2024-03-19 Tue 11:07
% Created 2025-03-19 Wed 19:08
% Intended LaTeX compiler: pdflatex
\documentclass[a4paper, 10pt, DIV=12, parskip=full, bibliography=totoc]{scrreprt}
\input{preamble.tex}
\input{preamble_extra.tex}
\bibliography{nass-geometry.bib}
\author{Dehaeze Thomas}
\date{\today}
\title{Nano Hexapod - Obtained Geometry}
\title{Nano Hexapod - Optimal Geometry}
\hypersetup{
pdfauthor={Dehaeze Thomas},
pdftitle={Nano Hexapod - Obtained Geometry},
pdftitle={Nano Hexapod - Optimal Geometry},
pdfkeywords={},
pdfsubject={},
pdfcreator={Emacs 29.2 (Org mode 9.7)},
pdfcreator={Emacs 29.4 (Org mode 9.6)},
pdflang={English}}
\usepackage{biblatex}
@ -22,20 +23,243 @@
\tableofcontents
\clearpage
\begin{itemize}
\item In the conceptual design phase, the geometry of the Stewart platform was not optimized
\item In the detail design phase, we want to see if the geometry can be optimized to improve the overall performances
\item Optimization criteria: mobility, stiffness, dynamical decoupling, more performance / bandwidth
\end{itemize}
Outline:
\begin{itemize}
\item Review of Stewart platform: Section \ref{sec:detail_kinematics_stewart_review}
Geometry, Actuators, Sensors, Joints
\item Effect of geometry on the Stewart platform characteristics \ref{sec:detail_kinematics_geometry}
\item Cubic configuration: benefits? \ref{sec:detail_kinematics_cubic}
\end{itemize}
\chapter{Review of Stewart platforms}
\label{sec:detail_kinematics_stewart_review}
\begin{itemize}
\item as was explained in the conceptual phase, Stewart platform have the following key elements:
\begin{itemize}
\item two plates
\item flexible joints
\item actuators
\item sensors
\end{itemize}
\item the geometry
\item This results in various designs as shown in Table \ref{tab:detail_kinematics_stewart_review}
\item The focus is here made on Stewart platforms for nano-positioning of vibration control.
Not on long stroke stewart platforms.
\item All presented Stewart platforms are using flexible joints, as it is a prerequisites for nano-positioning capabilities.
\item Most of stewart platforms are using voice coil actuators or piezoelectric actuators.
The actuators used for the Stewart platform will be chosen in the next section.
\item Depending on the application, various sensors are integrated in the struts or on the plates.
The choice of sensor for the nano-hexapod will be described in the next section.
\item[{$\square$}] Only keep integrated sensor and not external metrology
\item[{$\square$}] Check for missing information
\end{itemize}
\begin{figure}[htbp]
\begin{subfigure}{0.48\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_kinematics_jpl.jpg}
\end{center}
\subcaption{\label{fig:detail_kinematics_jpl}California Institute of Technology - USA}
\end{subfigure}
\begin{subfigure}{0.48\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_kinematics_uw_gsp.jpg}
\end{center}
\subcaption{\label{fig:detail_kinematics_uw_gsp}University of Wyoming - USA}
\end{subfigure}
\bigskip
\begin{subfigure}{0.53\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_kinematics_ulb_pz.jpg}
\end{center}
\subcaption{\label{fig:detail_kinematics_ulb_pz}ULB - Belgium}
\end{subfigure}
\begin{subfigure}{0.43\textwidth}
\begin{center}
\includegraphics[scale=1,width=0.95\linewidth]{figs/detail_kinematics_uqp.jpg}
\end{center}
\subcaption{\label{fig:detail_kinematics_uqp}Naval Postgraduate School - USA}
\end{subfigure}
\caption{\label{fig:detail_kinematics_stewart_examples_cubic}Some examples of developped Stewart platform with Cubic geometry. (\subref{fig:detail_kinematics_jpl}), (\subref{fig:detail_kinematics_uw_gsp}), (\subref{fig:detail_kinematics_ulb_pz}), (\subref{fig:detail_kinematics_uqp})}
\end{figure}
\begin{figure}[htbp]
\begin{subfigure}{0.48\textwidth}
\begin{center}
\includegraphics[scale=1,height=5cm]{figs/detail_kinematics_pph.jpg}
\end{center}
\subcaption{\label{fig:detail_kinematics_pph}Naval Postgraduate School - USA}
\end{subfigure}
\begin{subfigure}{0.48\textwidth}
\begin{center}
\includegraphics[scale=1,height=5cm]{figs/detail_kinematics_zhang11.jpg}
\end{center}
\subcaption{\label{fig:detail_kinematics_zhang11}Beihang University - China}
\end{subfigure}
\bigskip
\begin{subfigure}{0.43\textwidth}
\begin{center}
\includegraphics[scale=1,height=5cm]{figs/detail_kinematics_yang19.jpg}
\end{center}
\subcaption{\label{fig:detail_kinematics_yang19}Nanjing University - China}
\end{subfigure}
\begin{subfigure}{0.53\textwidth}
\begin{center}
\includegraphics[scale=1,height=5cm]{figs/detail_kinematics_naves.jpg}
\end{center}
\subcaption{\label{fig:detail_kinematics_naves}University of Twente - Netherlands}
\end{subfigure}
\caption{\label{fig:detail_kinematics_stewart_examples_non_cubic}Some examples of developped Stewart platform with non-cubic geometry. (\subref{fig:detail_kinematics_pph}), (\subref{fig:detail_kinematics_zhang11}), (\subref{fig:detail_kinematics_yang19}), (\subref{fig:detail_kinematics_naves})}
\end{figure}
\begin{table}[htbp]
\caption{\label{tab:nass_geometry_section_matlab_code}Report sections and corresponding Matlab files}
\caption{\label{tab:detail_kinematics_stewart_review}Examples of Stewart platform developed. When not specifically indicated, sensors are included in the struts. All presented Stewart platforms are using flexible joints. The table is sorted by ``date''}
\centering
\begin{tabularx}{0.6\linewidth}{lX}
\scriptsize
\begin{tabularx}{\linewidth}{llllX}
\toprule
\textbf{Sections} & \textbf{Matlab File}\\
& \textbf{Geometry} & \textbf{Actuators} & \textbf{Sensors} & \textbf{Reference}\\
\midrule
Section \ref{sec:nass_geometry}\_ & \texttt{nass\_geometry\_1\_.m}\\
& Cubic (6-UPU) & Magnetostrictive & Force (collocated), Accelerometers & \cite{geng93_six_degree_of_freed_activ,geng94_six_degree_of_freed_activ,geng95_intel_contr_system_multip_degree}\\
Figure \ref{fig:detail_kinematics_jpl} & Cubic & Voice Coil (0.5 mm) & Force (collocated) & \cite{spanos95_soft_activ_vibrat_isolat,rahman98_multiax}\\
& Cubic & Voice Coil (10 mm) & Force, LVDT, Geophones & \cite{thayer98_stewar,thayer02_six_axis_vibrat_isolat_system,hauge04_sensor_contr_space_based_six}\\
Figure \ref{fig:detail_kinematics_uw_gsp} & Cubic (CoM=CoK) & Voice Coil & Force & \cite{mcinroy99_dynam,mcinroy99_precis_fault_toler_point_using_stewar_platf,mcinroy00_desig_contr_flexur_joint_hexap,li01_simul_vibrat_isolat_point_contr,jafari03_orthog_gough_stewar_platf_microm}\\
& Cubic & Piezoelectric (\(25\,\mu m\)) & Piezo force sensors & \cite{defendini00_techn}\\
Figure \ref{fig:detail_kinematics_ulb_pz} & Cubic & APA (\(50\,\mu m\)) & Force sensor & \cite{abu02_stiff_soft_stewar_platf_activ}\\
Figure \ref{fig:detail_kinematics_pph} & Non-Cubic & Voice Coil & Accelerometers & \cite{chen03_payload_point_activ_vibrat_isolat}\\
& Cubic & Voice Coil & Force & \cite{hanieh03_activ_stewar,preumont07_six_axis_singl_stage_activ}\\
Figure \ref{fig:detail_kinematics_uqp} & Cubic & Piezoelectric (\(50\,\mu m\)) & Geophone aligned with the strut & \cite{agrawal04_algor_activ_vibrat_isolat_spacec}\\
& Non-Cubic & Piezoelectric (\(16\,\mu m\)) & Eddy Current & \cite{furutani04_nanom_cuttin_machin_using_stewar}\\
& Cubic & Piezoelectric (\(120\,\mu m\)) & External capacitive & \cite{ting06_desig_stewar_nanos_platf,ting13_compos_contr_desig_stewar_nanos_platf}\\
& Non-Cubic & Piezoelectric (\(160\,\mu m\)) & External capacitive (LION) & \cite{ting07_measur_calib_stewar_microm_system}\\
Figure \ref{fig:detail_kinematics_zhang11} & Non-cubic & Magnetostrictive & Inertial & \cite{zhang11_six_dof}\\
& 6-SPS (Optimized) & Piezoelectric & Strain Gauge & \cite{du14_piezo_actuat_high_precis_flexib}\\
& Cubic & Voice Coil & Accelerometer in each leg & \cite{chi15_desig_exper_study_vcm_based,tang18_decen_vibrat_contr_voice_coil,jiao18_dynam_model_exper_analy_stewar}\\
& Cubic & Piezoelectric & Force Sensor + Accelerometer & \cite{wang16_inves_activ_vibrat_isolat_stewar}\\
& Almost cubic & Voice Coil & Force Sensor + Accelerometer & \cite{beijen18_self_tunin_mimo_distur_feedf,tjepkema12_activ_ph}\\
Figure \ref{fig:detail_kinematics_yang19} & 6-UPS (Cubic?) & Piezoelectric & Force, Position & \cite{yang19_dynam_model_decoup_contr_flexib}\\
Figure \ref{fig:detail_kinematics_naves} & Non-Cubic & 3-phase rotary motor & Rotary Encoders & \cite{naves20_desig,naves20_t_flex}\\
\bottomrule
\end{tabularx}
\end{table}
\chapter{Amplified Piezoelectric Geometry}
\label{sec:nass_geometry_mechanics}
\begin{itemize}
\item[{$\square$}] \url{https://research.tdehaeze.xyz/stewart-simscape/docs/bibliography.html}
\item[{$\square$}] Joints and actuators are optimized in the next section
\end{itemize}
\chapter{Effect of geometry on Stewart platform properties}
\label{sec:detail_kinematics_geometry}
\begin{itemize}
\item Remind that the choice of frames (independently of the physical geometry) impacts the obtained stiffness matrix (as it is defined as forces/motion evaluated at the chosen frame)
\item Important: bi (join position w.r.t top platform) and si (orientation of struts)
\end{itemize}
For the nano-hexapod:
\begin{itemize}
\item Size requirements: Maximum height, maximum radius
\end{itemize}
\section{Stiffness}
\begin{itemize}
\item Give some examples:
\begin{itemize}
\item struts further apart: higher angular stiffness, same linear stiffness
\item orientation: more vertical => increase vertical stiffness, decrease horizontal stiffness
\end{itemize}
\end{itemize}
\section{Mobility and required joint and actuator stroke}
\begin{itemize}
\item Comparison of the XYZ mobility (fixed orientation) for two geometry (or maybe only in the XY or YZ plane to see more clearly the differences)
\item[{$\square$}] \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/kinematic-study.org}{Estimated required actuator stroke from specified platform mobility}
Will be useful to choose the actuators
\item[{$\square$}] \href{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/kinematic-study.org}{Estimation of the Joint required Stroke}
Will be useful to design the flexible joints
\end{itemize}
\section*{Conclusion}
\begin{itemize}
\item[{$\square$}] Table that summarize the findings
\href{file:///home/thomas/Cloud/work-projects/ID31-NASS/documents/state-of-thesis-2020/index.org}{Optimal Nano-Hexapod Geometry}
\end{itemize}
\chapter{The Cubic Architecture}
\label{sec:detail_kinematics_cubic}
Cubic configuration \url{file:///home/thomas/Cloud/work-projects/ID31-NASS/matlab/stewart-simscape/org/cubic-configuration.org}
\section{The Cubic Architecture}
From \cite{geng94_six_degree_of_freed_activ}, 7 properties of cubic configuration:
\begin{enumerate}
\item Uniformity in control capability in all directions
\item Uniformity in stiffness in all directions
\item Minimum cross coupling force effect among actuators
\item Facilitate collocated sensor-actuator control system design
\item Simple kinematics relationships
\item Simple dynamic analysis
\item Simple mechanical design
\end{enumerate}
\begin{itemize}
\item Principle
\item Examples of Stewart platform with Cubic architecture
\item Different options?
Center of the cube above the top platform?
Where to mention that ? With examples
\end{itemize}
\section{Static Properties}
Explain that we get diagonal K matrix => static decoupling in the cartesian frame.
Uniform mobility in X,Y,Z directions
\section{Dynamical Properties?}
\cite{mcinroy00_desig_contr_flexur_joint_hexap}
\cite{afzali-far16_vibrat_dynam_isotr_hexap_analy_studies}:
\begin{itemize}
\item proposes an architecture where the CoM can be above the top platform
\item ``\textbf{Dynamic isotropy}, leading to equal eigenfrequencies, is a powerful optimization measure.''
\end{itemize}
\begin{itemize}
\item Show examples where the dynamics can indeed be decoupled in the cartesian frame (i.e. decoupled K and M matrices)
\item Better decoupling between the struts? not sure\ldots{}
Compute the coupling between the struts for a cubic and non-cubic architecture
\item Same resonance frequencies for suspension modes?
Maybe in one case: sphere at the CoM?
Could be nice to show that.
Say that this can be nice for optimal damping for instance (link to paper explaining that)
\end{itemize}
\chapter{Conclusion}
\label{sec:nass_geometry_conclusion}
\label{sec:detail_kinematics_conclusion}
Inertia used for experiments will be very broad => difficult to optimize the dynamics
Specific geometry is not found to have a huge impact on performances.
Practical implementation is important.
Geometry impacts the static and dynamical characteristics of the Stewart platform.
Considering the design constrains, the slight change of geometry will not significantly impact the obtained results.
\printbibliography[heading=bibintoc,title={Bibliography}]
\end{document}

View File

@ -1,137 +1,16 @@
\usepackage{float}
\usepackage[ %
acronym, % Separate acronyms and glossary
toc, % appear in ToC
automake, % auto-use the makeglossaries command (requires shell-escape)
nonumberlist, % don't back reference pages
nogroupskip, % don't group by letter
nopostdot % don't add a dot at the end of each element
]{glossaries}
\usepackage{caption,tabularx,booktabs}
\usepackage{bm}
\usepackage[stylemods=longextra]{glossaries-extra}
\usepackage{xpatch} % Recommanded for biblatex
\usepackage[ % use biblatex for bibliography
backend=biber, % use biber backend (bibtex replacement) or bibtex
style=ieee, % bib style
hyperref=true, % activate hyperref support
backref=true, % activate backrefs
isbn=false, % don't show isbn tags
url=false, % don't show url tags
doi=false, % don't show doi tags
urldate=long, % display type for dates
maxnames=3, %
minnames=1, %
maxbibnames=5, %
minbibnames=3, %
maxcitenames=2, %
mincitenames=1 %
]{biblatex}
\setabbreviationstyle[acronym]{long-short}
\setglossarystyle{long-name-desc}
\setlength\bibitemsep{1.1\itemsep}
% \renewcommand*{\bibfont}{\footnotesize}
\usepackage{fontawesome}
\usepackage{caption}
\usepackage{subcaption}
\captionsetup[figure]{labelfont=bf}
\captionsetup[subfigure]{labelfont=bf}
\captionsetup[listing]{labelfont=bf}
\captionsetup[table]{labelfont=bf}
\usepackage{xcolor}
\definecolor{my-blue}{HTML}{6b7adb}
\definecolor{my-pale-blue}{HTML}{e6e9f9}
\definecolor{my-red}{HTML}{db6b6b}
\definecolor{my-pale-red}{HTML}{f9e6e6}
\definecolor{my-green}{HTML}{6bdbb6}
\definecolor{my-pale-green}{HTML}{e6f9f3}
\definecolor{my-yellow}{HTML}{dbd26b}
\definecolor{my-pale-yellow}{HTML}{f9f7e6}
\definecolor{my-orange}{HTML}{dba76b}
\definecolor{my-pale-orange}{HTML}{f9f0e6}
\definecolor{my-grey}{HTML}{a3a3a3}
\definecolor{my-pale-grey}{HTML}{f0f0f0}
\definecolor{my-turq}{HTML}{6bc7db}
\definecolor{my-pale-turq}{HTML}{e6f6f9}
\usepackage{inconsolata}
\usepackage[newfloat=true, chapter]{minted}
\usemintedstyle{autumn}
\setminted{frame=lines,breaklines=true,tabsize=4,fontsize=\scriptsize,autogobble=true,labelposition=topline,bgcolor=my-pale-grey}
\setminted[matlab]{label=Matlab}
\setminted[latex]{label=LaTeX}
\setminted[bash]{label=Bash}
\setminted[python]{label=Python}
\setminted[text]{label=Results}
\setminted[md]{label=Org Mode}
\setmintedinline{fontsize=\normalsize,bgcolor=my-pale-grey}
\usepackage[most]{tcolorbox}
\tcbuselibrary{minted}
\newtcolorbox{seealso}{ enhanced,breakable,colback=my-pale-grey,colframe=my-grey,fonttitle=\bfseries,title=See Also}
\newtcolorbox{hint}{ enhanced,breakable,colback=my-pale-grey,colframe=my-grey,fonttitle=\bfseries,title=Hint}
\newtcolorbox{definition}{enhanced,breakable,colback=my-pale-red, colframe=my-red, fonttitle=\bfseries,title=Definition}
\newtcolorbox{important}{ enhanced,breakable,colback=my-pale-red, colframe=my-red, fonttitle=\bfseries,title=Important}
\newtcolorbox{exampl}[1][]{ enhanced,breakable,colback=my-pale-green,colframe=my-green,fonttitle=\bfseries,title=Example,#1}
\newtcolorbox{exercice}{ enhanced,breakable,colback=my-pale-yellow,colframe=my-yellow,fonttitle=\bfseries,title=Exercice}
\newtcolorbox{question}{ enhanced,breakable,colback=my-pale-yellow,colframe=my-yellow,fonttitle=\bfseries,title=Question}
\newtcolorbox{answer}{ enhanced,breakable,colback=my-pale-turq,colframe=my-turq,fonttitle=\bfseries,title=Answer}
\newtcolorbox{summary}{ enhanced,breakable,colback=my-pale-blue,colframe=my-blue,fonttitle=\bfseries,title=Summary}
\newtcolorbox{note}{ enhanced,breakable,colback=my-pale-blue,colframe=my-blue,fonttitle=\bfseries,title=Note}
\newtcolorbox{caution}{ enhanced,breakable,colback=my-pale-orange,colframe=my-orange,fonttitle=\bfseries,title=Caution}
\newtcolorbox{warning}{ enhanced,breakable,colback=my-pale-orange,colframe=my-orange,fonttitle=\bfseries,title=Warning}
\newtcolorbox{my-quote}[1]{%
colback=my-pale-grey,
grow to right by=-10mm,
grow to left by=-10mm,
boxrule=0pt,
boxsep=0pt,
breakable,
enhanced jigsaw,
borderline west={4pt}{0pt}{my-grey}}
\renewenvironment{quote}{\begin{my-quote}}{\end{my-quote}}
\newtcolorbox{my-verse}[1]{%
colback=my-pale-grey,
grow to right by=-10mm,
grow to left by=-10mm,
boxrule=0pt,
boxsep=0pt,
breakable,
enhanced jigsaw,
borderline west={4pt}{0pt}{my-grey}}
\renewenvironment{verse}{\begin{my-verse}}{\end{my-verse}}
\usepackage{environ}% http://ctan.org/pkg/environ
\NewEnviron{aside}{%
\marginpar{\BODY}
}
\renewenvironment{verbatim}{\VerbatimEnvironment\begin{minted}[]{text}}{\end{minted}}
\usepackage{soul}
\sethlcolor{my-pale-grey}
\let\OldTexttt\texttt
\renewcommand{\texttt}[1]{{\ttfamily\hl{\mbox{\,#1\,}}}}
\makeatletter
\preto\Gin@extensions{png,}
\DeclareGraphicsRule{.png}{pdf}{.pdf}{\noexpand\Gin@base.pdf}
\preto\Gin@extensions{gif,}
\DeclareGraphicsRule{.gif}{png}{.png}{\noexpand\Gin@base.png}
\makeatother
\usepackage{hyperref}
\hypersetup{
colorlinks = true,
allcolors = my-blue
}
\usepackage{hypcap}
\makeindex
\makeglossaries

134
preamble_extra.tex Normal file
View File

@ -0,0 +1,134 @@
\usepackage{float}
\usepackage{enumitem}
\usepackage{caption,tabularx,booktabs}
\usepackage{bm}
\usepackage{xpatch} % Recommanded for biblatex
\usepackage[ % use biblatex for bibliography
backend=biber, % use biber backend (bibtex replacement) or bibtex
style=ieee, % bib style
hyperref=true, % activate hyperref support
backref=true, % activate backrefs
isbn=false, % don't show isbn tags
url=false, % don't show url tags
doi=false, % don't show doi tags
urldate=long, % display type for dates
maxnames=3, %
minnames=1, %
maxbibnames=5, %
minbibnames=3, %
maxcitenames=2, %
mincitenames=1 %
]{biblatex}
\setlength\bibitemsep{1.1\itemsep}
\usepackage{caption}
\usepackage{subcaption}
\captionsetup[figure]{labelfont=bf}
\captionsetup[subfigure]{labelfont=bf}
\captionsetup[listing]{labelfont=bf}
\captionsetup[table]{labelfont=bf}
\usepackage{xcolor}
\definecolor{my-blue}{HTML}{6b7adb}
\definecolor{my-pale-blue}{HTML}{e6e9f9}
\definecolor{my-red}{HTML}{db6b6b}
\definecolor{my-pale-red}{HTML}{f9e6e6}
\definecolor{my-green}{HTML}{6bdbb6}
\definecolor{my-pale-green}{HTML}{e6f9f3}
\definecolor{my-yellow}{HTML}{dbd26b}
\definecolor{my-pale-yellow}{HTML}{f9f7e6}
\definecolor{my-orange}{HTML}{dba76b}
\definecolor{my-pale-orange}{HTML}{f9f0e6}
\definecolor{my-grey}{HTML}{a3a3a3}
\definecolor{my-pale-grey}{HTML}{f0f0f0}
\definecolor{my-turq}{HTML}{6bc7db}
\definecolor{my-pale-turq}{HTML}{e6f6f9}
\usepackage{inconsolata}
\usepackage[newfloat=true, chapter]{minted}
\usemintedstyle{autumn}
\setminted{frame=lines,breaklines=true,tabsize=4,fontsize=\scriptsize,autogobble=true,labelposition=topline,bgcolor=my-pale-grey}
\setminted[matlab]{label=Matlab}
\setminted[latex]{label=LaTeX}
\setminted[bash]{label=Bash}
\setminted[python]{label=Python}
\setminted[text]{label=Results}
\setminted[md]{label=Org Mode}
\setmintedinline{fontsize=\normalsize,bgcolor=my-pale-grey}
\usepackage[most]{tcolorbox}
\tcbuselibrary{minted}
\newtcolorbox{seealso}{ enhanced,breakable,colback=my-pale-grey,colframe=my-grey,fonttitle=\bfseries,title=See Also}
\newtcolorbox{hint}{ enhanced,breakable,colback=my-pale-grey,colframe=my-grey,fonttitle=\bfseries,title=Hint}
\newtcolorbox{definition}{enhanced,breakable,colback=my-pale-red, colframe=my-red, fonttitle=\bfseries,title=Definition}
\newtcolorbox{important}{ enhanced,breakable,colback=my-pale-red, colframe=my-red, fonttitle=\bfseries,title=Important}
\newtcolorbox{exampl}[1][]{ enhanced,breakable,colback=my-pale-green,colframe=my-green,fonttitle=\bfseries,title=Example,#1}
\newtcolorbox{exercice}{ enhanced,breakable,colback=my-pale-yellow,colframe=my-yellow,fonttitle=\bfseries,title=Exercice}
\newtcolorbox{question}{ enhanced,breakable,colback=my-pale-yellow,colframe=my-yellow,fonttitle=\bfseries,title=Question}
\newtcolorbox{answer}{ enhanced,breakable,colback=my-pale-turq,colframe=my-turq,fonttitle=\bfseries,title=Answer}
\newtcolorbox{summary}{ enhanced,breakable,colback=my-pale-blue,colframe=my-blue,fonttitle=\bfseries,title=Summary}
\newtcolorbox{note}{ enhanced,breakable,colback=my-pale-blue,colframe=my-blue,fonttitle=\bfseries,title=Note}
\newtcolorbox{caution}{ enhanced,breakable,colback=my-pale-orange,colframe=my-orange,fonttitle=\bfseries,title=Caution}
\newtcolorbox{warning}{ enhanced,breakable,colback=my-pale-orange,colframe=my-orange,fonttitle=\bfseries,title=Warning}
\newtcolorbox{my-quote}[1]{%
colback=my-pale-grey,
grow to right by=-10mm,
grow to left by=-10mm,
boxrule=0pt,
boxsep=0pt,
breakable,
enhanced jigsaw,
borderline west={4pt}{0pt}{my-grey}}
\renewenvironment{quote}{\begin{my-quote}}{\end{my-quote}}
\newtcolorbox{my-verse}[1]{%
colback=my-pale-grey,
grow to right by=-10mm,
grow to left by=-10mm,
boxrule=0pt,
boxsep=0pt,
breakable,
enhanced jigsaw,
borderline west={4pt}{0pt}{my-grey}}
\renewenvironment{verse}{\begin{my-verse}}{\end{my-verse}}
\usepackage{environ}% http://ctan.org/pkg/environ
\NewEnviron{aside}{%
\marginpar{\BODY}
}
\renewenvironment{verbatim}{\VerbatimEnvironment\begin{minted}[]{text}}{\end{minted}}
\usepackage{soul}
\sethlcolor{my-pale-grey}
\let\OldTexttt\texttt
\renewcommand{\texttt}[1]{{\ttfamily\hl{\mbox{\,#1\,}}}}
\makeatletter
\preto\Gin@extensions{png,}
\DeclareGraphicsRule{.png}{pdf}{.pdf}{\noexpand\Gin@base.pdf}
\preto\Gin@extensions{gif,}
\DeclareGraphicsRule{.gif}{png}{.png}{\noexpand\Gin@base.png}
\makeatother
\usepackage{hyperref}
\hypersetup{
colorlinks = true,
allcolors = my-blue
}
\usepackage{hypcap}