Update Content - 2021-05-02

This commit is contained in:
Thomas Dehaeze 2021-05-02 20:56:04 +02:00
parent f975b4bd90
commit d0fbdd075e

View File

@ -12,7 +12,7 @@ Tags
<https://dewesoft.com/daq/types-of-adc-converters>
- Delta Sigma ([Baker 2011](#orgf10fad8))
- Delta Sigma ([Baker 2011](#orgb22f10b))
- Successive Approximation
@ -31,9 +31,9 @@ Let's suppose that the ADC is ideal and the only noise comes from the quantizati
Interestingly, the noise amplitude is uniformly distributed.
The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., its a uniform distribution).
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org0a7db3b)).
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org57805de)).
<a id="org0a7db3b"></a>
<a id="org57805de"></a>
{{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}}
@ -88,4 +88,4 @@ The quantization is:
## Bibliography {#bibliography}
<a id="orgf10fad8"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.
<a id="orgb22f10b"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.