Update Content - 2025-01-16
This commit is contained in:
parent
2ff9fc5839
commit
cf4ed75dfe
131
content/zettels/heat_transfer.md
Normal file
131
content/zettels/heat_transfer.md
Normal file
@ -0,0 +1,131 @@
|
||||
+++
|
||||
title = "Heat Transfer"
|
||||
author = ["Dehaeze Thomas"]
|
||||
draft = false
|
||||
+++
|
||||
|
||||
Tags
|
||||
:
|
||||
|
||||
|
||||
## Conduction (diffusion) {#conduction--diffusion}
|
||||
|
||||
The _conduction_ corresponds to the heat transfer \\(P\\) (in watt) through molecular agitation within a material and is specified with:
|
||||
\\[ P = \frac{\lambda \cdot A \cdot \Delta T}{L} \quad [W] \\]
|
||||
with:
|
||||
|
||||
- \\(\lambda\\) the thermal conductivity in \\([W/m \cdot K]\\)
|
||||
- \\(A\\) the surface area in \\([m^2]\\)
|
||||
- \\(\Delta T\\) the temperature difference in \\([K]\\)
|
||||
- \\(L\\) the length of the barrier in \\([m]\\)
|
||||
|
||||
|
||||
## Convection {#convection}
|
||||
|
||||
The convection corresponds to the heat transfer through flow of a fluid.
|
||||
It can be either _natural_ or _forced_.
|
||||
|
||||
The _forced convection_ \\(P\\) (in watt) can be described with:
|
||||
\\[ P = h A (T\_0 - T\_f) \quad [W] \\]
|
||||
with:
|
||||
|
||||
- \\(h\\) the convection heat transfer coefficient in \\([W/m^2 \cdot K]\\).
|
||||
\\(h \approx 10.5 - v + 10\sqrt{v}\\) with \\(v\\) the velocity of the object through the fluid in \\([m/s]\\)
|
||||
- \\(A\\) the surface area in \\([m^2]\\)
|
||||
- \\(T\_0\\) the temperature of the object in \\([K]\\)
|
||||
- \\(T\_f\\) the temperature of the convecting fluid in \\([K]\\)
|
||||
|
||||
Note that clean-room air flow should be considered as forced convection.
|
||||
|
||||
|
||||
## Radiation {#radiation}
|
||||
|
||||
_Radiation_ corresponds to the heat transfer \\(P\\) (in watt) through the emission of electromagnetic waves from the emitter to its surroundings is:
|
||||
\\[ P = \epsilon \cdot \sigma \cdot A \cdot (T\_r^4 - T\_s^4) \\]
|
||||
with:
|
||||
|
||||
- \\(\epsilon\\) the emissivity which corresponds to the ability of a surface to emit energy through radiation relative to a black body surface at equal temperature.
|
||||
It is between 0 (no emissivity) and 1 (maximum emissivity)
|
||||
- \\(\sigma\\) the Stefan-Boltzmann constant: \\(\sigma = 5.67 \cdot 10^{-8} \\, \frac{W}{m^2 K^4}\\)
|
||||
- \\(A\\) the surface in \\([m^2]\\)
|
||||
- \\(T\_r\\) the temperature of the emitter in \\([K]\\)
|
||||
- \\(T\_s\\) the temperature of the surrounding in \\([K]\\)
|
||||
|
||||
The emissivity of materials highly depend on the surface finish (the more polished, the lower the emissivity).
|
||||
Some examples are given in <tab:emissivity_examples>.
|
||||
|
||||
<a id="table--tab:emissivity-examples"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:emissivity-examples">Table 1</a>:</span>
|
||||
Some examples of emissivity (specified at 25 degrees)
|
||||
</div>
|
||||
|
||||
| Substance | Emissivity |
|
||||
|----------------------------|------------|
|
||||
| Silver (polished) | 0.005 |
|
||||
| Silver (oxidized) | 0.04 |
|
||||
| Stainless Steel (polished) | 0.02 |
|
||||
| Aluminium (polished) | 0.02 |
|
||||
| Aluminium (oxidized) | 0.2 |
|
||||
| Aluminium (anodized) | 0.9 |
|
||||
| Copper (polished) | 0.03 |
|
||||
| Copper (oxidized) | 0.87 |
|
||||
|
||||
<div class="exampl">
|
||||
|
||||
Let's take a polished aluminum plate (20 by 20 cm) at 125K (temperature of zero thermal expansion coefficient of silicon) surrounded by elements are 25 degrees (300 K):
|
||||
\\[ P = \epsilon \cdot \sigma \cdot A \cdot (T\_r^4 - T\_s^4) = 0.36\\, J \\]
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
## Heat {#heat}
|
||||
|
||||
The _heat_ \\(Q\\) (in Joules) corresponds to the energy necessary to change the temperature of the mass with a certain material specific heat capacity:
|
||||
\\[ Q = m \cdot c \cdot \Delta T \\]
|
||||
with:
|
||||
|
||||
- \\(m\\) the mass in \\([kg]\\)
|
||||
- \\(c\\) the specific heat capacity in \\([J/kg \cdot K]\\)
|
||||
- \\(\Delta T\\) the temperature different \\([K]\\)
|
||||
|
||||
<div class="exampl">
|
||||
|
||||
Let's compute the heat (i.e. energy) necessary to increase a 1kg granite by 1 degree.
|
||||
The specific heat capacity of granite is \\(c = 790\\,[J/kg\cdot K]\\).
|
||||
The required heat is then:
|
||||
\\[ Q = m\cdot c \cdot \Delta T = 790 \\,J \\]
|
||||
|
||||
</div>
|
||||
|
||||
<a id="table--tab:specific-heat-capacity"></a>
|
||||
<div class="table-caption">
|
||||
<span class="table-number"><a href="#table--tab:specific-heat-capacity">Table 2</a>:</span>
|
||||
Some examples of specific heat capacity
|
||||
</div>
|
||||
|
||||
| Substance | Specific heat capacity [J/kg.K] |
|
||||
|---------------------|---------------------------------|
|
||||
| Air | 1012 |
|
||||
| Aluminium | 897 |
|
||||
| Copper | 385 |
|
||||
| Granite | 790 |
|
||||
| Steel | 466 |
|
||||
| Water at 25 degrees | 4182 |
|
||||
|
||||
|
||||
## Heat flow {#heat-flow}
|
||||
|
||||
The heat flow \\(P\\) (in watt) is the derivative of the heat:
|
||||
\\[ P = \cdot{Q} = \frac{dQ}{dt} = \frac{dT}{R\_T} = C\_T \cdot dT \\]
|
||||
with:
|
||||
|
||||
- \\(Q\\) the heat in [W]
|
||||
- \\(R\_T\\) the thermal resistance in \\([K/W]\\)
|
||||
- \\(C\_T\\) the thermal conductance in \\([W/K]\\)
|
||||
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
|
||||
</div>
|
Loading…
Reference in New Issue
Block a user