Update Content - 2021-05-02
This commit is contained in:
parent
0f68d28622
commit
cc5185a0d3
@ -8,6 +8,11 @@ Tags
|
||||
: [Electronics]({{< relref "electronics" >}})
|
||||
|
||||
|
||||
## Types of Analog to Digital Converters {#types-of-analog-to-digital-converters}
|
||||
|
||||
- Delta Sigma ([Baker 2011](#org1a9e622))
|
||||
|
||||
|
||||
## Power Spectral Density of the Quantization Noise {#power-spectral-density-of-the-quantization-noise}
|
||||
|
||||
This analysis is taken from [here](https://www.allaboutcircuits.com/technical-articles/quantization-nois-amplitude-quantization-error-analog-to-digital-converters/).
|
||||
@ -23,9 +28,9 @@ Let's suppose that the ADC is ideal and the only noise comes from the quantizati
|
||||
Interestingly, the noise amplitude is uniformly distributed.
|
||||
|
||||
The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., it’s a uniform distribution).
|
||||
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org2f8924a)).
|
||||
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#orga9627b6)).
|
||||
|
||||
<a id="org2f8924a"></a>
|
||||
<a id="orga9627b6"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}}
|
||||
|
||||
@ -76,4 +81,7 @@ The quantization is:
|
||||
|
||||
{{< youtube b9lxtOJj3yU >}}
|
||||
|
||||
<./biblio/references.bib>
|
||||
|
||||
## Bibliography {#bibliography}
|
||||
|
||||
<a id="org1a9e622"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.
|
||||
|
Loading…
Reference in New Issue
Block a user