From cc5185a0d3667aada76114659bf11c4d59144556 Mon Sep 17 00:00:00 2001 From: Thomas Dehaeze Date: Sun, 2 May 2021 16:28:46 +0200 Subject: [PATCH] Update Content - 2021-05-02 --- content/zettels/analog_to_digital_converters.md | 14 +++++++++++--- 1 file changed, 11 insertions(+), 3 deletions(-) diff --git a/content/zettels/analog_to_digital_converters.md b/content/zettels/analog_to_digital_converters.md index b2f1f3a..36c203c 100644 --- a/content/zettels/analog_to_digital_converters.md +++ b/content/zettels/analog_to_digital_converters.md @@ -8,6 +8,11 @@ Tags : [Electronics]({{< relref "electronics" >}}) +## Types of Analog to Digital Converters {#types-of-analog-to-digital-converters} + +- Delta Sigma ([Baker 2011](#org1a9e622)) + + ## Power Spectral Density of the Quantization Noise {#power-spectral-density-of-the-quantization-noise} This analysis is taken from [here](https://www.allaboutcircuits.com/technical-articles/quantization-nois-amplitude-quantization-error-analog-to-digital-converters/). @@ -23,9 +28,9 @@ Let's suppose that the ADC is ideal and the only noise comes from the quantizati Interestingly, the noise amplitude is uniformly distributed. The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., it’s a uniform distribution). -Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org2f8924a)). +Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#orga9627b6)). - + {{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}} @@ -76,4 +81,7 @@ The quantization is: {{< youtube b9lxtOJj3yU >}} -<./biblio/references.bib> + +## Bibliography {#bibliography} + +Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.