Update Content - 2021-05-02

This commit is contained in:
Thomas Dehaeze 2021-05-02 16:28:46 +02:00
parent 0f68d28622
commit cc5185a0d3

View File

@ -8,6 +8,11 @@ Tags
: [Electronics]({{< relref "electronics" >}})
## Types of Analog to Digital Converters {#types-of-analog-to-digital-converters}
- Delta Sigma ([Baker 2011](#org1a9e622))
## Power Spectral Density of the Quantization Noise {#power-spectral-density-of-the-quantization-noise}
This analysis is taken from [here](https://www.allaboutcircuits.com/technical-articles/quantization-nois-amplitude-quantization-error-analog-to-digital-converters/).
@ -23,9 +28,9 @@ Let's suppose that the ADC is ideal and the only noise comes from the quantizati
Interestingly, the noise amplitude is uniformly distributed.
The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., its a uniform distribution).
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org2f8924a)).
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#orga9627b6)).
<a id="org2f8924a"></a>
<a id="orga9627b6"></a>
{{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}}
@ -76,4 +81,7 @@ The quantization is:
{{< youtube b9lxtOJj3yU >}}
<./biblio/references.bib>
## Bibliography {#bibliography}
<a id="org1a9e622"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.