Update Content - 2020-10-19

This commit is contained in:
Thomas Dehaeze 2020-10-19 10:13:36 +02:00
parent c1dfe9fdbb
commit ca3fcb0b9d
8 changed files with 117 additions and 163 deletions

View File

@ -0,0 +1,31 @@
+++
title = "Charge Amplifiers"
author = ["Thomas Dehaeze"]
draft = false
+++
Tags
: [Electronics]({{< relref "electronics" >}})
## Description {#description}
A charge amplifier outputs a voltage proportional to the charge generated by a sensor connected to its inputs.
This can be typically used to interface with piezoelectric sensors.
## Manufacturers {#manufacturers}
| Manufacturers | Links | Country |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|
| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | USA |
| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany |
| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
| DJB | [link](https://www.djbinstruments.com/products/instrumentation/view/9-Channel-Charge-Voltage-Amplifier-IEPE-Signal-Conditioning-Rack-Mounted) | UK |
| MTI Instruments | [link](https://www.mtiinstruments.com/products/turbine-balancing-vibration-analysis/charge-amplifiers/ca1800/) | USA |
| Sinocera | [link](http://www.china-yec.net/instruments/signal-conditioner/multi-channels-charge-amplifier.html) | China |
| L-Card | [link](https://en.lcard.ru/products/accesories/le-41) | Rusia |
<./biblio/references.bib>

View File

@ -0,0 +1,15 @@
+++
title = "Non Linear Control"
author = ["Thomas Dehaeze"]
draft = false
+++
Tags
:
## Resources {#resources}
- [Slotine Lectures on Nonlinear Systems](http://web.mit.edu/nsl/www/videos/lectures.html)
<./biblio/references.bib>

View File

@ -36,7 +36,7 @@ Tags
### Model {#model} ### Model {#model}
A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#org340217c)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). A model of a multi-layer monolithic piezoelectric stack actuator is described in ([Fleming 2010](#orgcec2c91)) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel. Basically, it can be represented by a spring \\(k\_a\\) with the force source \\(F\_a\\) in parallel.
@ -60,14 +60,14 @@ Some manufacturers propose "raw" plate actuators that can be used as actuator /
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators} ## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#orge216fed)): The Amplified Piezo Actuators principle is presented in ([Claeyssen et al. 2007](#org5001506)):
> The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height. > The displacement amplification effect is related in a first approximation to the ratio of the shell long axis length to the short axis height.
> The flatter is the actuator, the higher is the amplification. > The flatter is the actuator, the higher is the amplification.
A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org58c76c8)). A model of an amplified piezoelectric actuator is described in ([Lucinskis and Mangeot 2016](#org3149aa9)).
<a id="org149ff7f"></a> <a id="org9697be4"></a>
{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms <sup id=\"d9e8b33774f1e65d16bd79114db8ac64\"><a href=\"#ling16_enhan_mathem_model_displ_amplif\" title=\"Mingxiang Ling, Junyi Cao, Minghua Zeng, Jing Lin, \&amp; Daniel J Inman, Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms, {Smart Materials and Structures}, v(7), 075022 (2016).\">ling16_enhan_mathem_model_displ_amplif</a></sup>" >}} {{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms <sup id=\"d9e8b33774f1e65d16bd79114db8ac64\"><a href=\"#ling16_enhan_mathem_model_displ_amplif\" title=\"Mingxiang Ling, Junyi Cao, Minghua Zeng, Jing Lin, \&amp; Daniel J Inman, Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms, {Smart Materials and Structures}, v(7), 075022 (2016).\">ling16_enhan_mathem_model_displ_amplif</a></sup>" >}}
@ -159,51 +159,56 @@ For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolut
### Electrical Capacitance {#electrical-capacitance} ### Electrical Capacitance {#electrical-capacitance}
The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org3fa87dc)). The electrical capacitance may limit the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#orgd7dbc72)).
This is due to the fact that voltage amplifier has a limitation on the deliverable current. This is due to the fact that voltage amplifier has a limitation on the deliverable current.
[Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used. [Voltage Amplifier]({{< relref "voltage_amplifier" >}}) with high maximum output current should be used if either high bandwidth is wanted or piezoelectric stacks with high capacitance are to be used.
<a id="org3fa87dc"></a> <a id="orgd7dbc72"></a>
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}} {{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load} ## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org8acd580)). When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#org8d01bc7)).
<a id="org8acd580"></a> <a id="org8d01bc7"></a>
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}} {{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}}
## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load} ## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#org2781d4a)): Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgef5702a)):
\begin{equation} \begin{equation}
\Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e} \Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
\end{equation} \end{equation}
<a id="org2781d4a"></a> <a id="orgef5702a"></a>
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}} {{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
For piezo actuators, force and displacement are inversely related (Figure [5](#org79cc909)). For piezo actuators, force and displacement are inversely related (Figure [5](#orgb3c806e)).
Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement. Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated. Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced. When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(\Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
<a id="org79cc909"></a> <a id="orgb3c806e"></a>
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}} {{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}}
## Driving Electronics {#driving-electronics}
Piezoelectric actuators can be driven either using a voltage to charge converter or a [Voltage Amplifier]({{< relref "voltage_amplifier" >}}).
## Bibliography {#bibliography} ## Bibliography {#bibliography}
<a id="orge216fed"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):314. <https://doi.org/10.1080/00150190701351865>. <a id="org5001506"></a>Claeyssen, Frank, R. Le Letty, F. Barillot, and O. Sosnicki. 2007. “Amplified Piezoelectric Actuators: Static & Dynamic Applications.” _Ferroelectrics_ 351 (1):314. <https://doi.org/10.1080/00150190701351865>.
<a id="org340217c"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):43347. <https://doi.org/10.1109/tmech.2009.2028422>. <a id="orgcec2c91"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):43347. <https://doi.org/10.1109/tmech.2009.2028422>.
<a id="org58c76c8"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.” <a id="org3149aa9"></a>Lucinskis, R., and C. Mangeot. 2016. “Dynamic Characterization of an Amplified Piezoelectric Actuator.”

View File

@ -6,18 +6,19 @@ draft = false
Backlinks: Backlinks:
- [Force Sensors]({{< relref "force_sensors" >}})
- [Position Sensors]({{< relref "position_sensors" >}}) - [Position Sensors]({{< relref "position_sensors" >}})
- [Force Sensors]({{< relref "force_sensors" >}})
Tags Tags
: [Force Sensors]({{< relref "force_sensors" >}}), [Sensors]({{< relref "sensors" >}}), [Electronics]({{< relref "electronics" >}}) : [Sensors]({{< relref "sensors" >}}), [Electronics]({{< relref "electronics" >}})
Most sensors needs some signal conditioner electronics before digitize the signal. Most sensors needs some signal conditioner electronics before digitize the signal.
Few examples are: Few examples are:
- Piezoelectric force sensors - Piezoelectric force sensors
- Geophone - Geophone
- Thermocouple, ... - Photodiode
- Thermocouple
The signal conditioning electronics can have different functions: The signal conditioning electronics can have different functions:
@ -27,43 +28,10 @@ The signal conditioning electronics can have different functions:
- Excitation - Excitation
- Linearization - Linearization
Depending on the electrical quantity that is meaningful for the measurement, different types of amplifiers are used:
## Charge Amplifier {#charge-amplifier} - Current to Voltage ([Transimpedance Amplifiers]({{< relref "transimpedance_amplifiers" >}}))
- Charge to Voltage ([Charge Amplifiers]({{< relref "charge_amplifiers" >}}))
This can be used to interface with: - Voltage to Voltage ([Voltage Amplifier]({{< relref "voltage_amplifier" >}}))
- piezoelectric sensors
| Manufacturers | Links | Country |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|
| PCB | [link](https://www.pcb.com/sensors-for-test-measurement/electronics/line-powered-multi-channel-signal-conditioners) | USA |
| HBM | [link](https://www.hbm.com/en/2660/paceline-cma-charge-amplifier-analogamplifier/) | Germany |
| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
| DJB | [link](https://www.djbinstruments.com/products/instrumentation/view/9-Channel-Charge-Voltage-Amplifier-IEPE-Signal-Conditioning-Rack-Mounted) | UK |
| MTI Instruments | [link](https://www.mtiinstruments.com/products/turbine-balancing-vibration-analysis/charge-amplifiers/ca1800/) | USA |
| Sinocera | [link](http://www.china-yec.net/instruments/signal-conditioner/multi-channels-charge-amplifier.html) | China |
| L-Card | [link](https://en.lcard.ru/products/accesories/le-41) | Rusia |
## Voltage Amplifier {#voltage-amplifier}
| Manufacturers | Links | Country |
|---------------|-----------------------------------------------------------------------------------|---------|
| Femto | [link](https://www.femto.de/en/products/voltage-amplifiers.html) | Germany |
| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
## Current Amplifier {#current-amplifier}
This can be used to interface with:
- photodiodes
| Manufacturers | Links | Country |
|---------------|------------------------------------------------------------------------------------------------------|---------|
| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) | Germany |
| FMB Oxford | [link](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK |
<./biblio/references.bib> <./biblio/references.bib>

View File

@ -1,103 +0,0 @@
+++
title = "Test File"
author = ["Thomas Dehaeze"]
draft = false
+++
> This is a quote!
```matlab
a = 2;
figure;
```
<div class="important">
<div></div>
This is an important part of the text.
</div>
See Eq. [eq:test1](#eq:test1) and [eq:test2](#eq:test2).
\begin{equation}
a = 1
\end{equation}
\begin{equation}
a = 2 \label{eq:test2}
\end{equation}
Also look at [1](#org7280632) \eqref{eq:test2}.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.
Some text.

View File

@ -1,5 +1,5 @@
+++ +++
title = "Current Amplifier" title = "Transconductance Amplifiers"
author = ["Thomas Dehaeze"] author = ["Thomas Dehaeze"]
draft = false draft = false
+++ +++
@ -12,10 +12,14 @@ Tags
: [Electronics]({{< relref "electronics" >}}), [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}}) : [Electronics]({{< relref "electronics" >}}), [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
## Current Amplifier to drive Inductive Loads {#current-amplifier-to-drive-inductive-loads} ## Description {#description}
A Transconductance Amplifier converts the control voltage into current with a current source characteristic.
Such a converter is called a voltage-to-current converter, also named a voltage-controlled current source or _transconductance_ amplifier.
### Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
| Manufacturers | Links | Country | | Manufacturers | Links | Country |
|---------------|-------|---------| |---------------|-------|---------|

View File

@ -0,0 +1,27 @@
+++
title = "Transimpedance Amplifiers"
author = ["Thomas Dehaeze"]
draft = false
+++
Tags
: [Electronics]({{< relref "electronics" >}})
## Description {#description}
A transimpedance amplifier is a "current to voltage converter" and is also named a current controlled voltage source.
It is generally used to interface a sensor which outputs a current proportional to the measurement parameter (photodiode for instance).
## Manufacturers {#manufacturers}
| Manufacturers | Links | Country |
|---------------|------------------------------------------------------------------------------------------------------|---------|
| Kistler | [link](https://www.kistler.com/fr/produits/composants/conditionnement-de-signal/) | Swiss |
| MMF | [link](https://www.mmf.de/signal%5Fconditioners.htm) | Germany |
| Femto | [link](https://www.femto.de/en/products/current-amplifiers.html) | Germany |
| FMB Oxford | [link](https://www.fmb-oxford.com/products/controls-2/control-modules/i404-quad-current-integrator/) | UK |
<./biblio/references.bib>

View File

@ -11,7 +11,7 @@ Backlinks:
- [Current Amplifier]({{< relref "current_amplifier" >}}) - [Current Amplifier]({{< relref "current_amplifier" >}})
Tags Tags
: [Actuators]({{< relref "actuators" >}}), [Current Amplifier]({{< relref "current_amplifier" >}}) : [Actuators]({{< relref "actuators" >}})
## Working Principle {#working-principle} ## Working Principle {#working-principle}
@ -22,9 +22,13 @@ Tags
## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator} ## Model of a Voice Coil Actuator {#model-of-a-voice-coil-actuator}
([Schmidt, Schitter, and Rankers 2014](#org107036b))
## Driving Electronics {#driving-electronics} ## Driving Electronics {#driving-electronics}
As the force is proportional to the current, a [Transconductance Amplifiers]({{< relref "transconductance_amplifiers" >}}) (voltage-controller current source) is generally used as the driving electronics.
## Manufacturers {#manufacturers} ## Manufacturers {#manufacturers}
@ -41,4 +45,7 @@ Tags
| Magnetic Innovations | [link](https://www.magneticinnovations.com/) | Netherlands | | Magnetic Innovations | [link](https://www.magneticinnovations.com/) | Netherlands |
| Monticont | [link](http://www.moticont.com/) | USA | | Monticont | [link](http://www.moticont.com/) | USA |
<./biblio/references.bib>
## Bibliography {#bibliography}
<a id="org107036b"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.