Update Content - 2024-08-09

This commit is contained in:
Thomas Dehaeze 2024-08-09 21:01:44 +02:00
parent a3b7ff9e2f
commit b4098c38c8
4 changed files with 16 additions and 16 deletions

View File

@ -94,7 +94,7 @@ There characteristics are shown on table [1](#table--tab:microactuator).
<a id="table--tab:microactuator"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:microactuator">Table 1</a></span>:
<span class="table-number"><a href="#table--tab:microactuator">Table 1</a>:</span>
Performance comparison of microactuators
</div>
@ -206,7 +206,7 @@ is satisfied, where \\(T\_{zw}\\) is the transfer function from \\(w\\) to \\(z\
{{< figure src="/ox-hugo/du19_h_inf_diagram.png" caption="<span class=\"figure-number\">Figure 6: </span>Block diagram for \\(\mathcal{H}\_\infty\\) loop shaping method to design the controller \\(C(s)\\) with the weighting function \\(W(s)\\)" >}}
Equation [1](#org563f2ec) means that \\(S(s)\\) can be shaped similarly to the inverse of the chosen weighting function \\(W(s)\\).
Equation [1](#org60aa04e) means that \\(S(s)\\) can be shaped similarly to the inverse of the chosen weighting function \\(W(s)\\).
One form of \\(W(s)\\) is taken as
\begin{equation}
@ -339,7 +339,7 @@ A decoupled control structure can be used for the three-stage actuation system (
The overall sensitivity function is
\\[ S(z) = \approx S\_v(z) S\_p(z) S\_m(z) \\]
with \\(S\_v(z)\\) and \\(S\_p(z)\\) are defined in equation [1](#org9bf2b8d) and
with \\(S\_v(z)\\) and \\(S\_p(z)\\) are defined in equation [1](#org3237465) and
\\[ S\_m(z) = \frac{1}{1 + P\_m(z) C\_m(z)} \\]
Denote the dual-stage open-loop transfer function as \\(G\_d\\)

View File

@ -105,7 +105,7 @@ The table [1](#table--tab:adv-dis-type-control) summarizes the main features of
<a id="table--tab:adv-dis-type-control"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:adv-dis-type-control">Table 1</a></span>:
<span class="table-number"><a href="#table--tab:adv-dis-type-control">Table 1</a>:</span>
Advantages and Disadvantages of some types of control
</div>
@ -353,7 +353,7 @@ Typical values of the modal damping ratio are summarized on table <tab:damping_r
<a id="table--tab:damping-ratio"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:damping-ratio">Table 2</a></span>:
<span class="table-number"><a href="#table--tab:damping-ratio">Table 2</a>:</span>
Typical Damping ratio
</div>
@ -422,7 +422,7 @@ A **collocated control system** is a control system where:
<a id="table--tab:dual-actuator-sensor"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:dual-actuator-sensor">Table 3</a></span>:
<span class="table-number"><a href="#table--tab:dual-actuator-sensor">Table 3</a>:</span>
Examples of dual actuators and sensors
</div>

View File

@ -619,7 +619,7 @@ The core of the control system is the _plant_, which is the physical system that
<a id="table--tab:walk-control-loop"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:walk-control-loop">Table 3</a>:</span>
Symbols used in Figure <a href="#org8d343af">3</a>
Symbols used in Figure <a href="#org4b1b612">3</a>
</div>
| Symbol | Meaning | Unit |

View File

@ -24,7 +24,7 @@ PDF version
## Introduction {#introduction}
<span class="org-target" id="org-target--sec:introduction"></span>
<span class="org-target" id="org-target--sec-introduction"></span>
This book is intended to give some analysis and design tools for the increase number of engineers and researchers who are interested in the design and implementation of parallel robots.
A systematic approach is presented to analyze the kinematics, dynamics and control of parallel robots.
@ -49,7 +49,7 @@ The control of parallel robots is elaborated in the last two chapters, in which
## Motion Representation {#motion-representation}
<span class="org-target" id="org-target--sec:motion_representation"></span>
<span class="org-target" id="org-target--sec-motion-representation"></span>
### Spatial Motion Representation {#spatial-motion-representation}
@ -429,7 +429,7 @@ Hence, the **inverse of the transformation matrix** can be obtain by
## Kinematics {#kinematics}
<span class="org-target" id="org-target--sec:kinematics"></span>
<span class="org-target" id="org-target--sec-kinematics"></span>
### Introduction {#introduction}
@ -583,7 +583,7 @@ The complexity of the problem depends widely on the manipulator architecture and
## Jacobian: Velocities and Static Forces {#jacobian-velocities-and-static-forces}
<span class="org-target" id="org-target--sec:jacobian"></span>
<span class="org-target" id="org-target--sec-jacobian"></span>
### Introduction {#introduction}
@ -1125,7 +1125,7 @@ The largest axis of the stiffness transformation hyper-ellipsoid is given by thi
## Dynamics {#dynamics}
<span class="org-target" id="org-target--sec:dynamics"></span>
<span class="org-target" id="org-target--sec-dynamics"></span>
### Introduction {#introduction}
@ -1783,7 +1783,7 @@ Therefore, actuator forces \\(\bm{\tau}\\) are computed in the simulation from
## Motion Control {#motion-control}
<span class="org-target" id="org-target--sec:motion_control"></span>
<span class="org-target" id="org-target--sec-motion-control"></span>
### Introduction {#introduction}
@ -1804,7 +1804,7 @@ However, using advanced techniques in nonlinear and MIMO control permits to over
### Controller Topology {#controller-topology}
<span class="org-target" id="org-target--sec:control_topology"></span>
<span class="org-target" id="org-target--sec-control-topology"></span>
<div class="important">
@ -1899,7 +1899,7 @@ For a fully parallel manipulator such as the Stewart-Gough platform, this mappin
### Motion Control in Task Space {#motion-control-in-task-space}
<span class="org-target" id="org-target--sec:control_task_space"></span>
<span class="org-target" id="org-target--sec-control-task-space"></span>
#### Decentralized PD Control {#decentralized-pd-control}
@ -2547,7 +2547,7 @@ Hence, it is recommended to design and implement controllers in the task space,
## Force Control {#force-control}
<span class="org-target" id="org-target--sec:force:control"></span>
<span class="org-target" id="org-target--sec-force-control"></span>
### Introduction {#introduction}