Update Content - 2024-08-08

This commit is contained in:
Thomas Dehaeze 2024-08-08 18:39:49 +02:00
parent 5f54040d33
commit a3b7ff9e2f

View File

@ -84,7 +84,7 @@ The quantization is:
{{< youtube b9lxtOJj3yU >}}
Also see (<a href="#citeproc_bib_item_2">Kester 2005</a>).
Also see (<a href="#citeproc_bib_item_4">Kester 2005</a>).
## Link between required dynamic range and effective number of bits {#link-between-required-dynamic-range-and-effective-number-of-bits}
@ -96,7 +96,7 @@ Also see (<a href="#citeproc_bib_item_2">Kester 2005</a>).
## Oversampling {#oversampling}
(<a href="#citeproc_bib_item_3">Lab 2013</a>)
(<a href="#citeproc_bib_item_5">Lab 2013</a>)
To have additional \\(w\\) bits of resolution, the oversampling frequency \\(f\_{os}\\) should be:
@ -104,6 +104,8 @@ To have additional \\(w\\) bits of resolution, the oversampling frequency \\(f\_
f\_{os} = 4^w \cdot f\_s
\end{equation}
(<a href="#citeproc_bib_item_3">Hauser 1991</a>)
### When Oversampling and Averaging Will Work {#when-oversampling-and-averaging-will-work}
@ -116,7 +118,7 @@ f\_{os} = 4^w \cdot f\_s
## Sigma Delta ADC {#sigma-delta-adc}
From (<a href="#citeproc_bib_item_4">Schmidt, Schitter, and Rankers 2020</a>):
From (<a href="#citeproc_bib_item_7">Schmidt, Schitter, and Rankers 2020</a>):
> The low cost and excellent linearity properties of the Sigma-Delta ADC have replaced other ADC types in many measurement and registration systems, especially where storage of data is more important than real-time measurement.
> This has typically been the case in audio recording and reproduction.
@ -138,11 +140,24 @@ Therefore, even though there are sigma-delta ADC with high precision and samplin
<https://www.crystalinstruments.com/antialiasing-filter-and-phase-match>
## Anti-Aliasing Filters {#anti-aliasing-filters}
(<a href="#citeproc_bib_item_6">Microchip 1999</a>)
## State of the art ADC {#state-of-the-art-adc}
(<a href="#citeproc_bib_item_2">Beev 2018</a>)
## Bibliography {#bibliography}
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
<div class="csl-entry"><a id="citeproc_bib_item_1"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” <i>Analog Applications</i> 7.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Kester, Walt. 2005. “Taking the Mystery out of the Infamous Formula, $snr = 6.02 N + 1.76 Db$, and Why You Should Care.”</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Lab, Silicon. 2013. “Improving the ADC Resolution by Oversampling and Averaging.” Silicon Laboratories.</div>
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2020. <i>The Design of High Performance Mechatronics - Third Revised Edition</i>. Ios Press.</div>
<div class="csl-entry"><a id="citeproc_bib_item_2"></a>Beev, Nikolai. 2018. “Analog-to-Digital Conversion beyond 20 Bits.” In <i>2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)</i>, nil. doi:<a href="https://doi.org/10.1109/i2mtc.2018.8409543">10.1109/i2mtc.2018.8409543</a>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_3"></a>Hauser, Max. 1991. “Principles of Oversampling a/D Conversion.” <i>Journal of Audio Engineering Society</i>.</div>
<div class="csl-entry"><a id="citeproc_bib_item_4"></a>Kester, Walt. 2005. “Taking the Mystery out of the Infamous Formula, $snr = 6.02 N + 1.76 Db$, and Why You Should Care.”</div>
<div class="csl-entry"><a id="citeproc_bib_item_5"></a>Lab, Silicon. 2013. “Improving the ADC Resolution by Oversampling and Averaging.” Silicon Laboratories.</div>
<div class="csl-entry"><a id="citeproc_bib_item_6"></a>Microchip. 1999. “Anti-Aliasing, Analog Filters for Data Acquisition Systems.”</div>
<div class="csl-entry"><a id="citeproc_bib_item_7"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2020. <i>The Design of High Performance Mechatronics - Third Revised Edition</i>. Ios Press.</div>
</div>