From b4098c38c89af550664dad18256e186390b8de4f Mon Sep 17 00:00:00 2001 From: Thomas Dehaeze Date: Fri, 9 Aug 2024 21:01:44 +0200 Subject: [PATCH] Update Content - 2024-08-09 --- content/book/du19_multi_actuat_system_contr.md | 6 +++--- ...8_vibrat_contr_activ_struc_fourt_edition.md | 6 +++--- ...g_high_perfor_mechat_third_revis_edition.md | 2 +- content/book/taghirad13_paral.md | 18 +++++++++--------- 4 files changed, 16 insertions(+), 16 deletions(-) diff --git a/content/book/du19_multi_actuat_system_contr.md b/content/book/du19_multi_actuat_system_contr.md index bff94cf..de4dff6 100644 --- a/content/book/du19_multi_actuat_system_contr.md +++ b/content/book/du19_multi_actuat_system_contr.md @@ -94,7 +94,7 @@ There characteristics are shown on table [1](#table--tab:microactuator).
- Table 1: + Table 1: Performance comparison of microactuators
@@ -206,7 +206,7 @@ is satisfied, where \\(T\_{zw}\\) is the transfer function from \\(w\\) to \\(z\ {{< figure src="/ox-hugo/du19_h_inf_diagram.png" caption="Figure 6: Block diagram for \\(\mathcal{H}\_\infty\\) loop shaping method to design the controller \\(C(s)\\) with the weighting function \\(W(s)\\)" >}} -Equation [1](#org563f2ec) means that \\(S(s)\\) can be shaped similarly to the inverse of the chosen weighting function \\(W(s)\\). +Equation [1](#org60aa04e) means that \\(S(s)\\) can be shaped similarly to the inverse of the chosen weighting function \\(W(s)\\). One form of \\(W(s)\\) is taken as \begin{equation} @@ -339,7 +339,7 @@ A decoupled control structure can be used for the three-stage actuation system ( The overall sensitivity function is \\[ S(z) = \approx S\_v(z) S\_p(z) S\_m(z) \\] -with \\(S\_v(z)\\) and \\(S\_p(z)\\) are defined in equation [1](#org9bf2b8d) and +with \\(S\_v(z)\\) and \\(S\_p(z)\\) are defined in equation [1](#org3237465) and \\[ S\_m(z) = \frac{1}{1 + P\_m(z) C\_m(z)} \\] Denote the dual-stage open-loop transfer function as \\(G\_d\\) diff --git a/content/book/preumont18_vibrat_contr_activ_struc_fourt_edition.md b/content/book/preumont18_vibrat_contr_activ_struc_fourt_edition.md index c722911..38f35ca 100644 --- a/content/book/preumont18_vibrat_contr_activ_struc_fourt_edition.md +++ b/content/book/preumont18_vibrat_contr_activ_struc_fourt_edition.md @@ -105,7 +105,7 @@ The table [1](#table--tab:adv-dis-type-control) summarizes the main features of
- Table 1: + Table 1: Advantages and Disadvantages of some types of control
@@ -353,7 +353,7 @@ Typical values of the modal damping ratio are summarized on table
- Table 2: + Table 2: Typical Damping ratio
@@ -422,7 +422,7 @@ A **collocated control system** is a control system where:
- Table 3: + Table 3: Examples of dual actuators and sensors
diff --git a/content/book/schmidt20_desig_high_perfor_mechat_third_revis_edition.md b/content/book/schmidt20_desig_high_perfor_mechat_third_revis_edition.md index a9aa0b8..3bdf96e 100644 --- a/content/book/schmidt20_desig_high_perfor_mechat_third_revis_edition.md +++ b/content/book/schmidt20_desig_high_perfor_mechat_third_revis_edition.md @@ -619,7 +619,7 @@ The core of the control system is the _plant_, which is the physical system that
Table 3: - Symbols used in Figure 3 + Symbols used in Figure 3
| Symbol | Meaning | Unit | diff --git a/content/book/taghirad13_paral.md b/content/book/taghirad13_paral.md index 9b69ccd..04e28a8 100644 --- a/content/book/taghirad13_paral.md +++ b/content/book/taghirad13_paral.md @@ -24,7 +24,7 @@ PDF version ## Introduction {#introduction} - + This book is intended to give some analysis and design tools for the increase number of engineers and researchers who are interested in the design and implementation of parallel robots. A systematic approach is presented to analyze the kinematics, dynamics and control of parallel robots. @@ -49,7 +49,7 @@ The control of parallel robots is elaborated in the last two chapters, in which ## Motion Representation {#motion-representation} - + ### Spatial Motion Representation {#spatial-motion-representation} @@ -429,7 +429,7 @@ Hence, the **inverse of the transformation matrix** can be obtain by ## Kinematics {#kinematics} - + ### Introduction {#introduction} @@ -583,7 +583,7 @@ The complexity of the problem depends widely on the manipulator architecture and ## Jacobian: Velocities and Static Forces {#jacobian-velocities-and-static-forces} - + ### Introduction {#introduction} @@ -1125,7 +1125,7 @@ The largest axis of the stiffness transformation hyper-ellipsoid is given by thi ## Dynamics {#dynamics} - + ### Introduction {#introduction} @@ -1783,7 +1783,7 @@ Therefore, actuator forces \\(\bm{\tau}\\) are computed in the simulation from ## Motion Control {#motion-control} - + ### Introduction {#introduction} @@ -1804,7 +1804,7 @@ However, using advanced techniques in nonlinear and MIMO control permits to over ### Controller Topology {#controller-topology} - +
@@ -1899,7 +1899,7 @@ For a fully parallel manipulator such as the Stewart-Gough platform, this mappin ### Motion Control in Task Space {#motion-control-in-task-space} - + #### Decentralized PD Control {#decentralized-pd-control} @@ -2547,7 +2547,7 @@ Hence, it is recommended to design and implement controllers in the task space, ## Force Control {#force-control} - + ### Introduction {#introduction}