Update Content - 2024-08-09

This commit is contained in:
Thomas Dehaeze 2024-08-09 21:01:44 +02:00
parent a3b7ff9e2f
commit b4098c38c8
4 changed files with 16 additions and 16 deletions

View File

@ -94,7 +94,7 @@ There characteristics are shown on table [1](#table--tab:microactuator).
<a id="table--tab:microactuator"></a> <a id="table--tab:microactuator"></a>
<div class="table-caption"> <div class="table-caption">
<span class="table-number"><a href="#table--tab:microactuator">Table 1</a></span>: <span class="table-number"><a href="#table--tab:microactuator">Table 1</a>:</span>
Performance comparison of microactuators Performance comparison of microactuators
</div> </div>
@ -206,7 +206,7 @@ is satisfied, where \\(T\_{zw}\\) is the transfer function from \\(w\\) to \\(z\
{{< figure src="/ox-hugo/du19_h_inf_diagram.png" caption="<span class=\"figure-number\">Figure 6: </span>Block diagram for \\(\mathcal{H}\_\infty\\) loop shaping method to design the controller \\(C(s)\\) with the weighting function \\(W(s)\\)" >}} {{< figure src="/ox-hugo/du19_h_inf_diagram.png" caption="<span class=\"figure-number\">Figure 6: </span>Block diagram for \\(\mathcal{H}\_\infty\\) loop shaping method to design the controller \\(C(s)\\) with the weighting function \\(W(s)\\)" >}}
Equation [1](#org563f2ec) means that \\(S(s)\\) can be shaped similarly to the inverse of the chosen weighting function \\(W(s)\\). Equation [1](#org60aa04e) means that \\(S(s)\\) can be shaped similarly to the inverse of the chosen weighting function \\(W(s)\\).
One form of \\(W(s)\\) is taken as One form of \\(W(s)\\) is taken as
\begin{equation} \begin{equation}
@ -339,7 +339,7 @@ A decoupled control structure can be used for the three-stage actuation system (
The overall sensitivity function is The overall sensitivity function is
\\[ S(z) = \approx S\_v(z) S\_p(z) S\_m(z) \\] \\[ S(z) = \approx S\_v(z) S\_p(z) S\_m(z) \\]
with \\(S\_v(z)\\) and \\(S\_p(z)\\) are defined in equation [1](#org9bf2b8d) and with \\(S\_v(z)\\) and \\(S\_p(z)\\) are defined in equation [1](#org3237465) and
\\[ S\_m(z) = \frac{1}{1 + P\_m(z) C\_m(z)} \\] \\[ S\_m(z) = \frac{1}{1 + P\_m(z) C\_m(z)} \\]
Denote the dual-stage open-loop transfer function as \\(G\_d\\) Denote the dual-stage open-loop transfer function as \\(G\_d\\)

View File

@ -105,7 +105,7 @@ The table [1](#table--tab:adv-dis-type-control) summarizes the main features of
<a id="table--tab:adv-dis-type-control"></a> <a id="table--tab:adv-dis-type-control"></a>
<div class="table-caption"> <div class="table-caption">
<span class="table-number"><a href="#table--tab:adv-dis-type-control">Table 1</a></span>: <span class="table-number"><a href="#table--tab:adv-dis-type-control">Table 1</a>:</span>
Advantages and Disadvantages of some types of control Advantages and Disadvantages of some types of control
</div> </div>
@ -353,7 +353,7 @@ Typical values of the modal damping ratio are summarized on table <tab:damping_r
<a id="table--tab:damping-ratio"></a> <a id="table--tab:damping-ratio"></a>
<div class="table-caption"> <div class="table-caption">
<span class="table-number"><a href="#table--tab:damping-ratio">Table 2</a></span>: <span class="table-number"><a href="#table--tab:damping-ratio">Table 2</a>:</span>
Typical Damping ratio Typical Damping ratio
</div> </div>
@ -422,7 +422,7 @@ A **collocated control system** is a control system where:
<a id="table--tab:dual-actuator-sensor"></a> <a id="table--tab:dual-actuator-sensor"></a>
<div class="table-caption"> <div class="table-caption">
<span class="table-number"><a href="#table--tab:dual-actuator-sensor">Table 3</a></span>: <span class="table-number"><a href="#table--tab:dual-actuator-sensor">Table 3</a>:</span>
Examples of dual actuators and sensors Examples of dual actuators and sensors
</div> </div>

View File

@ -619,7 +619,7 @@ The core of the control system is the _plant_, which is the physical system that
<a id="table--tab:walk-control-loop"></a> <a id="table--tab:walk-control-loop"></a>
<div class="table-caption"> <div class="table-caption">
<span class="table-number"><a href="#table--tab:walk-control-loop">Table 3</a>:</span> <span class="table-number"><a href="#table--tab:walk-control-loop">Table 3</a>:</span>
Symbols used in Figure <a href="#org8d343af">3</a> Symbols used in Figure <a href="#org4b1b612">3</a>
</div> </div>
| Symbol | Meaning | Unit | | Symbol | Meaning | Unit |

View File

@ -24,7 +24,7 @@ PDF version
## Introduction {#introduction} ## Introduction {#introduction}
<span class="org-target" id="org-target--sec:introduction"></span> <span class="org-target" id="org-target--sec-introduction"></span>
This book is intended to give some analysis and design tools for the increase number of engineers and researchers who are interested in the design and implementation of parallel robots. This book is intended to give some analysis and design tools for the increase number of engineers and researchers who are interested in the design and implementation of parallel robots.
A systematic approach is presented to analyze the kinematics, dynamics and control of parallel robots. A systematic approach is presented to analyze the kinematics, dynamics and control of parallel robots.
@ -49,7 +49,7 @@ The control of parallel robots is elaborated in the last two chapters, in which
## Motion Representation {#motion-representation} ## Motion Representation {#motion-representation}
<span class="org-target" id="org-target--sec:motion_representation"></span> <span class="org-target" id="org-target--sec-motion-representation"></span>
### Spatial Motion Representation {#spatial-motion-representation} ### Spatial Motion Representation {#spatial-motion-representation}
@ -429,7 +429,7 @@ Hence, the **inverse of the transformation matrix** can be obtain by
## Kinematics {#kinematics} ## Kinematics {#kinematics}
<span class="org-target" id="org-target--sec:kinematics"></span> <span class="org-target" id="org-target--sec-kinematics"></span>
### Introduction {#introduction} ### Introduction {#introduction}
@ -583,7 +583,7 @@ The complexity of the problem depends widely on the manipulator architecture and
## Jacobian: Velocities and Static Forces {#jacobian-velocities-and-static-forces} ## Jacobian: Velocities and Static Forces {#jacobian-velocities-and-static-forces}
<span class="org-target" id="org-target--sec:jacobian"></span> <span class="org-target" id="org-target--sec-jacobian"></span>
### Introduction {#introduction} ### Introduction {#introduction}
@ -1125,7 +1125,7 @@ The largest axis of the stiffness transformation hyper-ellipsoid is given by thi
## Dynamics {#dynamics} ## Dynamics {#dynamics}
<span class="org-target" id="org-target--sec:dynamics"></span> <span class="org-target" id="org-target--sec-dynamics"></span>
### Introduction {#introduction} ### Introduction {#introduction}
@ -1783,7 +1783,7 @@ Therefore, actuator forces \\(\bm{\tau}\\) are computed in the simulation from
## Motion Control {#motion-control} ## Motion Control {#motion-control}
<span class="org-target" id="org-target--sec:motion_control"></span> <span class="org-target" id="org-target--sec-motion-control"></span>
### Introduction {#introduction} ### Introduction {#introduction}
@ -1804,7 +1804,7 @@ However, using advanced techniques in nonlinear and MIMO control permits to over
### Controller Topology {#controller-topology} ### Controller Topology {#controller-topology}
<span class="org-target" id="org-target--sec:control_topology"></span> <span class="org-target" id="org-target--sec-control-topology"></span>
<div class="important"> <div class="important">
@ -1899,7 +1899,7 @@ For a fully parallel manipulator such as the Stewart-Gough platform, this mappin
### Motion Control in Task Space {#motion-control-in-task-space} ### Motion Control in Task Space {#motion-control-in-task-space}
<span class="org-target" id="org-target--sec:control_task_space"></span> <span class="org-target" id="org-target--sec-control-task-space"></span>
#### Decentralized PD Control {#decentralized-pd-control} #### Decentralized PD Control {#decentralized-pd-control}
@ -2547,7 +2547,7 @@ Hence, it is recommended to design and implement controllers in the task space,
## Force Control {#force-control} ## Force Control {#force-control}
<span class="org-target" id="org-target--sec:force:control"></span> <span class="org-target" id="org-target--sec-force-control"></span>
### Introduction {#introduction} ### Introduction {#introduction}