Add stuff about piezoelectric actuators
This commit is contained in:
parent
a2a8b3103d
commit
408df4315d
@ -30,59 +30,6 @@ Tags
|
||||
A model of a multi-layer monolithic piezoelectric stack actuator is described in <sup id="c823f68dd2a72b9667a61b3c046b4731"><a class="reference-link" href="#fleming10_nanop_system_with_force_feedb" title="Fleming, Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control, {IEEE/ASME Transactions on Mechatronics}, v(3), 433-447 (2010).">(Fleming, 2010)</a></sup> ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
|
||||
|
||||
|
||||
### Specifications {#specifications}
|
||||
|
||||
Typical specifications of piezoelectric stack actuators are usually in terms of:
|
||||
|
||||
- Displacement/ Travel range \\([\mu m]\\)
|
||||
- Blocked force \\([N]\\)
|
||||
- Stiffness \\([N/\mu m]\\)
|
||||
- Resolution \\([nm]\\)
|
||||
- Length \\([mm]\\)
|
||||
|
||||
|
||||
#### Displacement and Length {#displacement-and-length}
|
||||
|
||||
The maximum displacement specified is the displacement of the actuator when the maximum voltage is applied and when no load is added.
|
||||
|
||||
Typical strain of Piezoelectric Stack Actuators is \\(0.1\%\\), the free displacement \\(d\\) is then related to the length of piezoelectric stack:
|
||||
\\[ d \approx \frac{L}{1000} \\]
|
||||
|
||||
|
||||
#### Blocked Force {#blocked-force}
|
||||
|
||||
The blocked force is measured by first applying the maximum voltage to the piezoelectric stack without any load.
|
||||
Thus, the piezoelectric stack experiences its maximum displacement.
|
||||
|
||||
A force is then applied to return the actuator to its original length.
|
||||
This force is measured and recorded as the blocking force.
|
||||
|
||||
The blocking force is also the maximum force that can produce the piezoelectric stack in contact with an infinitely stiff environment.
|
||||
|
||||
|
||||
#### Stiffness {#stiffness}
|
||||
|
||||
|
||||
#### Resolution {#resolution}
|
||||
|
||||
The resolution is limited by the noise in the voltage amplified.
|
||||
|
||||
Typical [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}) of voltage amplified is \\(100dB = 10^{5}\\).
|
||||
Thus, for a piezoelectric stack with a displacement \\(L\\), the resolution will be
|
||||
|
||||
\begin{equation}
|
||||
r = \frac{L}{10^5}
|
||||
\end{equation}
|
||||
|
||||
For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolution will be \\(\approx 1\,[nm]\\).
|
||||
|
||||
|
||||
### Piezoelectric Stack experiencing a mass load {#piezoelectric-stack-experiencing-a-mass-load}
|
||||
|
||||
|
||||
### Piezoelectric Stack in contact with a spring load {#piezoelectric-stack-in-contact-with-a-spring-load}
|
||||
|
||||
|
||||
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
|
||||
|
||||
The Amplified Piezo Actuators principle is presented in <sup id="5decd2b31c4a9842b80c58b56f96590a"><a class="reference-link" href="#claeyssen07_amplif_piezoel_actuat" title="Frank Claeyssen, Le Letty, Barillot, \& Sosnicki, Amplified Piezoelectric Actuators: Static \& Dynamic Applications, {Ferroelectrics}, v(1), 3-14 (2007).">(Frank Claeyssen {\it et al.}, 2007)</a></sup>:
|
||||
@ -97,6 +44,10 @@ A model of an amplified piezoelectric actuator is described in <sup id="84975085
|
||||
year = 2016,
|
||||
}">(Lucinskis \& Mangeot, 2016)</a></sup>.
|
||||
|
||||
<a id="orgd9b1a8d"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms <sup id=\"d9e8b33774f1e65d16bd79114db8ac64\"><a class=\"reference-link\" href=\"#ling16_enhan_mathem_model_displ_amplif\" title=\"Mingxiang Ling, Junyi Cao, Minghua Zeng, Jing Lin, \& Daniel J Inman, Enhanced Mathematical Modeling of the Displacement Amplification Ratio for Piezoelectric Compliant Mechanisms, {Smart Materials and Structures}, v(7), 075022 (2016).\">(Mingxiang Ling {\it et al.}, 2016)</a></sup>" >}}
|
||||
|
||||
| Manufacturers | Links |
|
||||
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| Cedrat | [link](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) |
|
||||
@ -107,6 +58,120 @@ A model of an amplified piezoelectric actuator is described in <sup id="84975085
|
||||
| Mechano Transformer | [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F5.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5F3.html), [link](http://www.mechano-transformer.com/en/products/01a%5Factuator%5Fmtkk.html) |
|
||||
| CoreMorrow | [link](http://www.coremorrow.com/en/pro-13-1.html) |
|
||||
|
||||
|
||||
## Specifications {#specifications}
|
||||
|
||||
|
||||
### Typical Specifications {#typical-specifications}
|
||||
|
||||
Typical specifications of piezoelectric stack actuators are usually in terms of:
|
||||
|
||||
- Displacement/ Travel range \\([\mu m]\\)
|
||||
- Blocked force \\([N]\\)
|
||||
- Stiffness \\([N/\mu m]\\)
|
||||
- Resolution \\([nm]\\)
|
||||
- Length \\([mm]\\)
|
||||
- Electrical Capacitance \\([nF]\\)
|
||||
|
||||
|
||||
### Displacement and Length {#displacement-and-length}
|
||||
|
||||
The maximum displacement specified is the displacement of the actuator when the maximum voltage is applied without any load.
|
||||
|
||||
Typical maximum strain of Piezoelectric Stack Actuators is \\(0.1\%\\).
|
||||
The free displacement \\(\Delta L\_{f}\\) is then related to the length \\(L\\) of piezoelectric stack by:
|
||||
|
||||
\begin{equation}
|
||||
\Delta L\_f \approx \frac{L}{1000}
|
||||
\end{equation}
|
||||
|
||||
> A “free” actuator — one that experiences no resistance to movement — will produce its maximum displacement, often referred to as “free stroke,” and generate zero force.
|
||||
|
||||
Note that this maximum displacement is only attainable at DC.
|
||||
For dynamical applications, the electrical capacitance of the piezoelectric actuator is an important factor (see bellow).
|
||||
|
||||
|
||||
### Blocked Force {#blocked-force}
|
||||
|
||||
The blocked force \\(F\_b\\) is measured by first applying the maximum voltage to the piezoelectric stack without any load.
|
||||
Thus, the piezoelectric stack experiences its maximum displacement.
|
||||
|
||||
A force is then applied to return the actuator to its original length.
|
||||
This force is measured and recorded as the blocking force.
|
||||
|
||||
The blocking force is also the maximum force that can produce the piezoelectric stack in contact with an infinitely stiff environment.
|
||||
|
||||
> When an actuator is blocked from moving, it will produce its maximum force, which is referred to as the blocked, or blocking, force.
|
||||
|
||||
|
||||
### Stiffness {#stiffness}
|
||||
|
||||
The stiffness of the actuator is the ratio of the blocking force to the free stroke:
|
||||
|
||||
\begin{equation}
|
||||
k\_p = \frac{F\_b}{\Delta L\_f}
|
||||
\end{equation}
|
||||
|
||||
with:
|
||||
|
||||
- \\(k\_p\\): stiffness of the piezo actuator
|
||||
- \\(F\_b\\): blocking force
|
||||
- \\(\Delta L\_f\\): free stroke
|
||||
|
||||
|
||||
### Resolution {#resolution}
|
||||
|
||||
The resolution is limited by the noise in the voltage amplified.
|
||||
|
||||
Typical [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}) of voltage amplifiers is \\(100dB = 10^{5}\\).
|
||||
Thus, for a piezoelectric stack with a displacement \\(L\\), the resolution will be
|
||||
|
||||
\begin{equation}
|
||||
r \approx \frac{L}{10^5}
|
||||
\end{equation}
|
||||
|
||||
For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolution will be \\(\approx 1\,[nm]\\).
|
||||
|
||||
|
||||
### Electrical Capacitance {#electrical-capacitance}
|
||||
|
||||
The electrical capacitance gives the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org3da123f)).
|
||||
|
||||
<a id="org3da123f"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
|
||||
|
||||
|
||||
## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
|
||||
|
||||
When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#orgab6e282)).
|
||||
|
||||
<a id="orgab6e282"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}}
|
||||
|
||||
|
||||
## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
|
||||
|
||||
Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgcf60838)):
|
||||
|
||||
\begin{equation}
|
||||
\Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
|
||||
\end{equation}
|
||||
|
||||
<a id="orgcf60838"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
|
||||
|
||||
For piezo actuators, force and displacement are inversely related (Figure [5](#orga8ee6e8)).
|
||||
Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
|
||||
Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
|
||||
When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
|
||||
|
||||
<a id="orga8ee6e8"></a>
|
||||
|
||||
{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}}
|
||||
|
||||
# Bibliography
|
||||
<a class="bibtex-entry" id="fleming10_nanop_system_with_force_feedb">Fleming, A., *Nanopositioning system with force feedback for high-performance tracking and vibration control*, IEEE/ASME Transactions on Mechatronics, *15(3)*, 433–447 (2010). http://dx.doi.org/10.1109/tmech.2009.2028422</a> [↩](#c823f68dd2a72b9667a61b3c046b4731)
|
||||
|
||||
@ -114,6 +179,8 @@ A model of an amplified piezoelectric actuator is described in <sup id="84975085
|
||||
|
||||
<a class="bibtex-entry" id="lucinskis16_dynam_charac">Lucinskis, R., & Mangeot, C. (2016). *Dynamic characterization of an amplified piezoelectric actuator*. Retrieved from [](). .</a> [↩](#849750850d9986ed326e74bd3c448d03)
|
||||
|
||||
<a class="bibtex-entry" id="ling16_enhan_mathem_model_displ_amplif">Ling, M., Cao, J., Zeng, M., Lin, J., & Inman, D. J., *Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms*, Smart Materials and Structures, *25(7)*, 075022 (2016). http://dx.doi.org/10.1088/0964-1726/25/7/075022</a> [↩](#d9e8b33774f1e65d16bd79114db8ac64)
|
||||
|
||||
|
||||
## Backlinks {#backlinks}
|
||||
|
||||
|
BIN
static/ox-hugo/ling16_topology_piezo_mechanism_types.png
Normal file
BIN
static/ox-hugo/ling16_topology_piezo_mechanism_types.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 262 KiB |
BIN
static/ox-hugo/piezoelectric_capacitance_voltage_max.png
Normal file
BIN
static/ox-hugo/piezoelectric_capacitance_voltage_max.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 35 KiB |
BIN
static/ox-hugo/piezoelectric_force_displ_relation.png
Normal file
BIN
static/ox-hugo/piezoelectric_force_displ_relation.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 79 KiB |
BIN
static/ox-hugo/piezoelectric_mass_load.png
Normal file
BIN
static/ox-hugo/piezoelectric_mass_load.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 88 KiB |
BIN
static/ox-hugo/piezoelectric_spring_load.png
Normal file
BIN
static/ox-hugo/piezoelectric_spring_load.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 54 KiB |
Loading…
Reference in New Issue
Block a user