diff --git a/content/zettels/piezoelectric_actuators.md b/content/zettels/piezoelectric_actuators.md index 5524416..72e5a7a 100644 --- a/content/zettels/piezoelectric_actuators.md +++ b/content/zettels/piezoelectric_actuators.md @@ -30,59 +30,6 @@ Tags A model of a multi-layer monolithic piezoelectric stack actuator is described in (Fleming, 2010) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})). -### Specifications {#specifications} - -Typical specifications of piezoelectric stack actuators are usually in terms of: - -- Displacement/ Travel range \\([\mu m]\\) -- Blocked force \\([N]\\) -- Stiffness \\([N/\mu m]\\) -- Resolution \\([nm]\\) -- Length \\([mm]\\) - - -#### Displacement and Length {#displacement-and-length} - -The maximum displacement specified is the displacement of the actuator when the maximum voltage is applied and when no load is added. - -Typical strain of Piezoelectric Stack Actuators is \\(0.1\%\\), the free displacement \\(d\\) is then related to the length of piezoelectric stack: -\\[ d \approx \frac{L}{1000} \\] - - -#### Blocked Force {#blocked-force} - -The blocked force is measured by first applying the maximum voltage to the piezoelectric stack without any load. -Thus, the piezoelectric stack experiences its maximum displacement. - -A force is then applied to return the actuator to its original length. -This force is measured and recorded as the blocking force. - -The blocking force is also the maximum force that can produce the piezoelectric stack in contact with an infinitely stiff environment. - - -#### Stiffness {#stiffness} - - -#### Resolution {#resolution} - -The resolution is limited by the noise in the voltage amplified. - -Typical [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}) of voltage amplified is \\(100dB = 10^{5}\\). -Thus, for a piezoelectric stack with a displacement \\(L\\), the resolution will be - -\begin{equation} - r = \frac{L}{10^5} -\end{equation} - -For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolution will be \\(\approx 1\,[nm]\\). - - -### Piezoelectric Stack experiencing a mass load {#piezoelectric-stack-experiencing-a-mass-load} - - -### Piezoelectric Stack in contact with a spring load {#piezoelectric-stack-in-contact-with-a-spring-load} - - ## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators} The Amplified Piezo Actuators principle is presented in (Frank Claeyssen {\it et al.}, 2007): @@ -97,6 +44,10 @@ A model of an amplified piezoelectric actuator is described in (Lucinskis \& Mangeot, 2016). + + +{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms (Mingxiang Ling {\it et al.}, 2016)" >}} + | Manufacturers | Links | |---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Cedrat | [link](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) | @@ -107,6 +58,120 @@ A model of an amplified piezoelectric actuator is described in }}) of voltage amplifiers is \\(100dB = 10^{5}\\). +Thus, for a piezoelectric stack with a displacement \\(L\\), the resolution will be + +\begin{equation} + r \approx \frac{L}{10^5} +\end{equation} + +For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolution will be \\(\approx 1\,[nm]\\). + + +### Electrical Capacitance {#electrical-capacitance} + +The electrical capacitance gives the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org3da123f)). + + + +{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}} + + +## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load} + +When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#orgab6e282)). + + + +{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}} + + +## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load} + +Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgcf60838)): + +\begin{equation} + \Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e} +\end{equation} + + + +{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}} + +For piezo actuators, force and displacement are inversely related (Figure [5](#orga8ee6e8)). +Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement. +Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated. +When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced. + + + +{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}} + # Bibliography Fleming, A., *Nanopositioning system with force feedback for high-performance tracking and vibration control*, IEEE/ASME Transactions on Mechatronics, *15(3)*, 433–447 (2010). http://dx.doi.org/10.1109/tmech.2009.2028422 [↩](#c823f68dd2a72b9667a61b3c046b4731) @@ -114,6 +179,8 @@ A model of an amplified piezoelectric actuator is described in Lucinskis, R., & Mangeot, C. (2016). *Dynamic characterization of an amplified piezoelectric actuator*. Retrieved from [](). . [↩](#849750850d9986ed326e74bd3c448d03) +Ling, M., Cao, J., Zeng, M., Lin, J., & Inman, D. J., *Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms*, Smart Materials and Structures, *25(7)*, 075022 (2016). http://dx.doi.org/10.1088/0964-1726/25/7/075022 [↩](#d9e8b33774f1e65d16bd79114db8ac64) + ## Backlinks {#backlinks} diff --git a/static/ox-hugo/ling16_topology_piezo_mechanism_types.png b/static/ox-hugo/ling16_topology_piezo_mechanism_types.png new file mode 100644 index 0000000..04ef92c Binary files /dev/null and b/static/ox-hugo/ling16_topology_piezo_mechanism_types.png differ diff --git a/static/ox-hugo/piezoelectric_capacitance_voltage_max.png b/static/ox-hugo/piezoelectric_capacitance_voltage_max.png new file mode 100644 index 0000000..eeaa0c2 Binary files /dev/null and b/static/ox-hugo/piezoelectric_capacitance_voltage_max.png differ diff --git a/static/ox-hugo/piezoelectric_force_displ_relation.png b/static/ox-hugo/piezoelectric_force_displ_relation.png new file mode 100644 index 0000000..13fa475 Binary files /dev/null and b/static/ox-hugo/piezoelectric_force_displ_relation.png differ diff --git a/static/ox-hugo/piezoelectric_mass_load.png b/static/ox-hugo/piezoelectric_mass_load.png new file mode 100644 index 0000000..479a0dd Binary files /dev/null and b/static/ox-hugo/piezoelectric_mass_load.png differ diff --git a/static/ox-hugo/piezoelectric_spring_load.png b/static/ox-hugo/piezoelectric_spring_load.png new file mode 100644 index 0000000..466c5e4 Binary files /dev/null and b/static/ox-hugo/piezoelectric_spring_load.png differ