diff --git a/content/zettels/piezoelectric_actuators.md b/content/zettels/piezoelectric_actuators.md
index 5524416..72e5a7a 100644
--- a/content/zettels/piezoelectric_actuators.md
+++ b/content/zettels/piezoelectric_actuators.md
@@ -30,59 +30,6 @@ Tags
A model of a multi-layer monolithic piezoelectric stack actuator is described in (Fleming, 2010) ([Notes]({{< relref "fleming10_nanop_system_with_force_feedb" >}})).
-### Specifications {#specifications}
-
-Typical specifications of piezoelectric stack actuators are usually in terms of:
-
-- Displacement/ Travel range \\([\mu m]\\)
-- Blocked force \\([N]\\)
-- Stiffness \\([N/\mu m]\\)
-- Resolution \\([nm]\\)
-- Length \\([mm]\\)
-
-
-#### Displacement and Length {#displacement-and-length}
-
-The maximum displacement specified is the displacement of the actuator when the maximum voltage is applied and when no load is added.
-
-Typical strain of Piezoelectric Stack Actuators is \\(0.1\%\\), the free displacement \\(d\\) is then related to the length of piezoelectric stack:
-\\[ d \approx \frac{L}{1000} \\]
-
-
-#### Blocked Force {#blocked-force}
-
-The blocked force is measured by first applying the maximum voltage to the piezoelectric stack without any load.
-Thus, the piezoelectric stack experiences its maximum displacement.
-
-A force is then applied to return the actuator to its original length.
-This force is measured and recorded as the blocking force.
-
-The blocking force is also the maximum force that can produce the piezoelectric stack in contact with an infinitely stiff environment.
-
-
-#### Stiffness {#stiffness}
-
-
-#### Resolution {#resolution}
-
-The resolution is limited by the noise in the voltage amplified.
-
-Typical [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}}) of voltage amplified is \\(100dB = 10^{5}\\).
-Thus, for a piezoelectric stack with a displacement \\(L\\), the resolution will be
-
-\begin{equation}
- r = \frac{L}{10^5}
-\end{equation}
-
-For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolution will be \\(\approx 1\,[nm]\\).
-
-
-### Piezoelectric Stack experiencing a mass load {#piezoelectric-stack-experiencing-a-mass-load}
-
-
-### Piezoelectric Stack in contact with a spring load {#piezoelectric-stack-in-contact-with-a-spring-load}
-
-
## Mechanically Amplified Piezoelectric actuators {#mechanically-amplified-piezoelectric-actuators}
The Amplified Piezo Actuators principle is presented in (Frank Claeyssen {\it et al.}, 2007):
@@ -97,6 +44,10 @@ A model of an amplified piezoelectric actuator is described in (Lucinskis \& Mangeot, 2016).
+
+
+{{< figure src="/ox-hugo/ling16_topology_piezo_mechanism_types.png" caption="Figure 1: Topology of several types of compliant mechanisms (Mingxiang Ling {\it et al.}, 2016)" >}}
+
| Manufacturers | Links |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cedrat | [link](https://www.cedrat-technologies.com/en/products/actuators/amplified-piezo-actuators.html) |
@@ -107,6 +58,120 @@ A model of an amplified piezoelectric actuator is described in }}) of voltage amplifiers is \\(100dB = 10^{5}\\).
+Thus, for a piezoelectric stack with a displacement \\(L\\), the resolution will be
+
+\begin{equation}
+ r \approx \frac{L}{10^5}
+\end{equation}
+
+For a piezoelectric stack with a displacement of \\(100\,[\mu m]\\), the resolution will be \\(\approx 1\,[nm]\\).
+
+
+### Electrical Capacitance {#electrical-capacitance}
+
+The electrical capacitance gives the maximum voltage that can be used to drive the piezoelectric actuator as a function of frequency (Figure [2](#org3da123f)).
+
+
+
+{{< figure src="/ox-hugo/piezoelectric_capacitance_voltage_max.png" caption="Figure 2: Maximum sin-wave amplitude as a function of frequency for several piezoelectric capacitance" >}}
+
+
+## Piezoelectric actuator experiencing a mass load {#piezoelectric-actuator-experiencing-a-mass-load}
+
+When the piezoelectric actuator is supporting a payload, it will experience a static deflection due to its finite stiffness \\(\Delta l\_n = \frac{mg}{k\_p}\\), but its stroke will remain unchanged (Figure [3](#orgab6e282)).
+
+
+
+{{< figure src="/ox-hugo/piezoelectric_mass_load.png" caption="Figure 3: Motion of a piezoelectric stack actuator under external constant force" >}}
+
+
+## Piezoelectric actuator in contact with a spring load {#piezoelectric-actuator-in-contact-with-a-spring-load}
+
+Then the piezoelectric actuator is in contact with a spring load \\(k\_e\\), its maximum stroke \\(\Delta L\\) is less than its free stroke \\(\Delta L\_f\\) (Figure [4](#orgcf60838)):
+
+\begin{equation}
+ \Delta L = \Delta L\_f \frac{k\_p}{k\_p + k\_e}
+\end{equation}
+
+
+
+{{< figure src="/ox-hugo/piezoelectric_spring_load.png" caption="Figure 4: Motion of a piezoelectric stack actuator in contact with a stiff environment" >}}
+
+For piezo actuators, force and displacement are inversely related (Figure [5](#orga8ee6e8)).
+Maximum, or blocked, force (\\(F\_b\\)) occurs when there is no displacement.
+Likewise, at maximum displacement, or free stroke, (\\(\Delta L\_f\\)) no force is generated.
+When an external load is applied, the stiffness of the load (\\(k\_e\\)) determines the displacement (\\(Delta L\_A\\)) and force (\\(\Delta F\_A\\)) that can be produced.
+
+
+
+{{< figure src="/ox-hugo/piezoelectric_force_displ_relation.png" caption="Figure 5: Relation between the maximum force and displacement" >}}
+
# Bibliography
Fleming, A., *Nanopositioning system with force feedback for high-performance tracking and vibration control*, IEEE/ASME Transactions on Mechatronics, *15(3)*, 433–447 (2010). http://dx.doi.org/10.1109/tmech.2009.2028422 [↩](#c823f68dd2a72b9667a61b3c046b4731)
@@ -114,6 +179,8 @@ A model of an amplified piezoelectric actuator is described in Lucinskis, R., & Mangeot, C. (2016). *Dynamic characterization of an amplified piezoelectric actuator*. Retrieved from [](). . [↩](#849750850d9986ed326e74bd3c448d03)
+Ling, M., Cao, J., Zeng, M., Lin, J., & Inman, D. J., *Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms*, Smart Materials and Structures, *25(7)*, 075022 (2016). http://dx.doi.org/10.1088/0964-1726/25/7/075022 [↩](#d9e8b33774f1e65d16bd79114db8ac64)
+
## Backlinks {#backlinks}
diff --git a/static/ox-hugo/ling16_topology_piezo_mechanism_types.png b/static/ox-hugo/ling16_topology_piezo_mechanism_types.png
new file mode 100644
index 0000000..04ef92c
Binary files /dev/null and b/static/ox-hugo/ling16_topology_piezo_mechanism_types.png differ
diff --git a/static/ox-hugo/piezoelectric_capacitance_voltage_max.png b/static/ox-hugo/piezoelectric_capacitance_voltage_max.png
new file mode 100644
index 0000000..eeaa0c2
Binary files /dev/null and b/static/ox-hugo/piezoelectric_capacitance_voltage_max.png differ
diff --git a/static/ox-hugo/piezoelectric_force_displ_relation.png b/static/ox-hugo/piezoelectric_force_displ_relation.png
new file mode 100644
index 0000000..13fa475
Binary files /dev/null and b/static/ox-hugo/piezoelectric_force_displ_relation.png differ
diff --git a/static/ox-hugo/piezoelectric_mass_load.png b/static/ox-hugo/piezoelectric_mass_load.png
new file mode 100644
index 0000000..479a0dd
Binary files /dev/null and b/static/ox-hugo/piezoelectric_mass_load.png differ
diff --git a/static/ox-hugo/piezoelectric_spring_load.png b/static/ox-hugo/piezoelectric_spring_load.png
new file mode 100644
index 0000000..466c5e4
Binary files /dev/null and b/static/ox-hugo/piezoelectric_spring_load.png differ