Update Content - 2020-11-25

This commit is contained in:
Thomas Dehaeze 2020-11-25 16:00:40 +01:00
parent eda4d63513
commit 08bc389f21
8 changed files with 66 additions and 81 deletions

View File

@ -8,7 +8,7 @@ Tags
: [Stewart Platforms]({{< relref "stewart_platforms" >}}), [Vibration Isolation]({{< relref "vibration_isolation" >}}), [Active Damping]({{< relref "active_damping" >}})
Reference
: ([Hanieh 2003](#orgcfd0d1f))
: ([Hanieh 2003](#org5da54db))
Author(s)
: Hanieh, A. A.
@ -19,4 +19,4 @@ Year
## Bibliography {#bibliography}
<a id="orgcfd0d1f"></a>Hanieh, Ahmed Abu. 2003. “Active Isolation and Damping of Vibrations via Stewart Platform.” Université Libre de Bruxelles, Brussels, Belgium.
<a id="org5da54db"></a>Hanieh, Ahmed Abu. 2003. “Active Isolation and Damping of Vibrations via Stewart Platform.” Université Libre de Bruxelles, Brussels, Belgium.

View File

@ -4,13 +4,16 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Backlinks:
- [A concept of active mount for space applications]({{< relref "souleille18_concep_activ_mount_space_applic" >}})
- [Active isolation and damping of vibrations via stewart platform]({{< relref "hanieh03_activ_stewar" >}})
- [Active damping based on decoupled collocated control]({{< relref "holterman05_activ_dampin_based_decoup_colloc_contr" >}})
Tags
:
There are two main control architecture to actively damp structures:
- [Integral Force Feedback]({{< relref "integral_force_feedback" >}})
- [Direct Velocity Feedback]({{< relref "direct_velocity_feedback" >}})
The idea is to apply a force proportional to the velocity (either relative or inertial) of the structure.
These are usually applied in a collocated way, meaning that the actuator and sensors are collocated (fixed to the same DoF), in order to have guaranteed stability.
<./biblio/references.bib>

View File

@ -7,4 +7,9 @@ draft = false
Tags
:
## Defaults of Operational Amplifiers {#defaults-of-operational-amplifiers}
{{< youtube nF104EvI0HM >}}
<./biblio/references.bib>

View File

@ -4,10 +4,6 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Backlinks:
- [Slip Rings]({{< relref "slip_rings" >}})
Tags
: [Slip Rings]({{< relref "slip_rings" >}})

View File

@ -0,0 +1,20 @@
+++
title = "Simulink Real Time Target Machines"
author = ["Thomas Dehaeze"]
draft = false
+++
Tags
:
## Manufacturers {#manufacturers}
| Manufacturers | Links | Country |
|----------------------|------------------------------------------------------------------------------------|-------------|
| Speedgoat | [link](https://www.speedgoat.com/) | Switzerland |
| Dspace | [link](https://www.dspace.com/en/inc/home/products/hw/microlabbox.cfm) | Germany |
| National Instruments | [link](https://www.ni.com/fr-fr/shop/pc-based-measurement-and-control-system.html) | USA |
| Opal RT | [link](https://www.opal-rt.com/) | Canada |
<./biblio/references.bib>

View File

@ -4,30 +4,6 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Backlinks:
- [Decentralized vibration control of a voice coil motor-based stewart parallel mechanism: simulation and experiments]({{< relref "tang18_decen_vibrat_contr_voice_coil" >}})
- [Identification and decoupling control of flexure jointed hexapods]({{< relref "chen00_ident_decoup_contr_flexur_joint_hexap" >}})
- [Dynamic modeling and experimental analyses of stewart platform with flexible hinges]({{< relref "jiao18_dynam_model_exper_analy_stewar" >}})
- [A six-axis single-stage active vibration isolator based on stewart platform]({{< relref "preumont07_six_axis_singl_stage_activ" >}})
- [Investigation on active vibration isolation of a stewart platform with piezoelectric actuators]({{< relref "wang16_inves_activ_vibrat_isolat_stewar" >}})
- [Nanometre-cutting machine using a stewart-platform parallel mechanism]({{< relref "furutani04_nanom_cuttin_machin_using_stewar" >}})
- [Active isolation and damping of vibrations via stewart platform]({{< relref "hanieh03_activ_stewar" >}})
- [Studies on stewart platform manipulator: a review]({{< relref "furqan17_studies_stewar_platf_manip" >}})
- [Modeling and control of vibration in mechanical systems]({{< relref "du10_model_contr_vibrat_mechan_system" >}})
- [A new isotropic and decoupled 6-dof parallel manipulator]({{< relref "legnani12_new_isotr_decoup_paral_manip" >}})
- [The stewart platform manipulator: a review]({{< relref "dasgupta00_stewar_platf_manip" >}})
- [Vibration Control of Active Structures - Fourth Edition]({{< relref "preumont18_vibrat_contr_activ_struc_fourt_edition" >}})
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
- [Dynamic modeling of flexure jointed hexapods for control purposes]({{< relref "mcinroy99_dynam" >}})
- [An intelligent control system for multiple degree-of-freedom vibration isolation]({{< relref "geng95_intel_contr_system_multip_degree" >}})
- [A soft 6-axis active vibration isolator]({{< relref "spanos95_soft_activ_vibrat_isolat" >}})
- [Six dof active vibration control using stewart platform with non-cubic configuration]({{< relref "zhang11_six_dof" >}})
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})
- [Parallel robots : mechanics and control]({{< relref "taghirad13_paral" >}})
- [Simultaneous vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_vibrat_isolat_point_contr" >}})
- [Sensors and control of a space-based six-axis vibration isolation system]({{< relref "hauge04_sensor_contr_space_based_six" >}})
Tags
:
@ -43,6 +19,7 @@ Tags
| Aerotech | [link](https://www.aerotech.com/product-catalog/hexapods.aspx) | USA |
| SmarAct | [link](https://www.smaract.com/smarpod) | Germany |
| Gridbots | [link](https://www.gridbots.com/hexamove.html) | India |
| Alio Industries | [link](https://www.alioindustries.com/) | USA |
## Stewart Platforms at ESRF {#stewart-platforms-at-esrf}
@ -59,36 +36,36 @@ Tags
Papers by J.E. McInroy:
- ([OBrien et al. 1998](#org604163d))
- ([McInroy, OBrien, and Neat 1999](#orgeab0f36))
- ([McInroy 1999](#orga8f456c))
- ([McInroy and Hamann 2000](#orga3c9d81))
- ([Chen and McInroy 2000](#orgf8f0bf1))
- ([McInroy 2002](#org5e8fb03))
- ([Li, Hamann, and McInroy 2001](#org2ed87b9))
- ([Lin and McInroy 2003](#orgdd8e380))
- ([Jafari and McInroy 2003](#org777ce71))
- ([Chen and McInroy 2004](#orgcc43b30))
- ([OBrien et al. 1998](#orgb07a9df))
- ([McInroy, OBrien, and Neat 1999](#orgbcce212))
- ([McInroy 1999](#org37afc8d))
- ([McInroy and Hamann 2000](#org888db09))
- ([Chen and McInroy 2000](#org86c277d))
- ([McInroy 2002](#org748da49))
- ([Li, Hamann, and McInroy 2001](#orgcdecf89))
- ([Lin and McInroy 2003](#orgff3d7a7))
- ([Jafari and McInroy 2003](#org701d32b))
- ([Chen and McInroy 2004](#orgd01130a))
## Bibliography {#bibliography}
<a id="orgcc43b30"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):41321. <https://doi.org/10.1109/tcst.2004.824339>.
<a id="orgd01130a"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):41321. <https://doi.org/10.1109/tcst.2004.824339>.
<a id="orgf8f0bf1"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
<a id="org86c277d"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
<a id="org777ce71"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595603. <https://doi.org/10.1109/tra.2003.814506>.
<a id="org701d32b"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595603. <https://doi.org/10.1109/tra.2003.814506>.
<a id="orgdd8e380"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):26772. <https://doi.org/10.1109/tcst.2003.809248>.
<a id="orgff3d7a7"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):26772. <https://doi.org/10.1109/tcst.2003.809248>.
<a id="org2ed87b9"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
<a id="orgcdecf89"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
<a id="orga8f456c"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
<a id="org37afc8d"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
<a id="org5e8fb03"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):9599. <https://doi.org/10.1109/3516.990892>.
<a id="org748da49"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):9599. <https://doi.org/10.1109/3516.990892>.
<a id="orga3c9d81"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):37281. <https://doi.org/10.1109/70.864229>.
<a id="org888db09"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):37281. <https://doi.org/10.1109/70.864229>.
<a id="orgeab0f36"></a>McInroy, J.E., J.F. OBrien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):9195. <https://doi.org/10.1109/3516.752089>.
<a id="orgbcce212"></a>McInroy, J.E., J.F. OBrien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):9195. <https://doi.org/10.1109/3516.752089>.
<a id="org604163d"></a>OBrien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.
<a id="orgb07a9df"></a>OBrien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.

View File

@ -1,19 +0,0 @@
+++
title = "Active Damping"
author = ["Thomas Dehaeze"]
draft = false
+++
Tags
:
There are two main control architecture to actively damp structures:
- [Integral Force Feedback]({{< relref "integral_force_feedback" >}})
- [Direct Velocity Feedback]({{< relref "direct_velocity_feedback" >}})
The idea is to apply a force proportional to the velocity (either relative or inertial) of the structure.
These are usually applied in a collocated way, meaning that the actuator and sensors are collocated (fixed to the same DoF), in order to have guaranteed stability.
<./biblio/references.bib>

View File

@ -10,11 +10,14 @@ Tags
## MEMS Based Tip-Tilt Mirrors {#mems-based-tip-tilt-mirrors}
| Manufacturers | Links | Country |
|---------------|----------------------------------------------------------------------------|-------------|
| Sercalo | [link](https://www.sercalo.com/products/mems-mirrors) | Switzerland |
| KOC | [link](http://www.koreaoptron.co.kr/default/newproduct/mems%5F01%5F02.php) | Korea |
| Mirrorcle | [link](https://www.mirrorcletech.com/wp/products/mems-mirrors/) | USA |
| Preciseley | [link](https://www.preciseley.com/mems-tilting-mirror.html) | Canada |
| Manufacturers | Links | Country |
|---------------|-------------------------------------------------------------------------------------------|-------------|
| Sercalo | [link](https://www.sercalo.com/products/mems-mirrors) | Switzerland |
| KOC | [link](http://www.koreaoptron.co.kr/default/newproduct/mems%5F01%5F02.php) | Korea |
| Mirrorcle | [link](https://www.mirrorcletech.com/wp/products/mems-mirrors/) | USA |
| Preciseley | [link](https://www.preciseley.com/mems-tilting-mirror.html) | Canada |
| Hamamatsu | [link](https://www.hamamatsu.com/eu/en/product/optical-components/mems-mirror/index.html) | Japan |
| Maradin | [link](http://www.maradin.co.il/products/mar1100-mems-2d-laser-scanning-mirror/) | Israel |
| Opus | [link](http://www.opusmicro.com/mems%5Fen.html) | Taiwan |
<./biblio/references.bib>