digital-brain/content/zettels/position_sensors.md

142 lines
10 KiB
Markdown
Raw Normal View History

2020-04-20 18:58:10 +02:00
+++
title = "Position Sensors"
author = ["Thomas Dehaeze"]
draft = false
+++
2020-09-04 15:42:37 +02:00
Backlinks:
- [A review of nanometer resolution position sensors: operation and performance]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}})
- [Measurement technologies for precision positioning]({{< relref "gao15_measur_techn_precis_posit" >}})
- [Sensors]({{< relref "sensors" >}})
- [Collocated Control]({{< relref "collocated_control" >}})
2020-09-04 15:42:37 +02:00
- [Inertial Sensors]({{< relref "inertial_sensors" >}})
2020-04-20 18:58:10 +02:00
Tags
2020-07-30 10:43:47 +02:00
: [Inertial Sensors]({{< relref "inertial_sensors" >}}), [Force Sensors]({{< relref "force_sensors" >}}), [Sensor Fusion]({{< relref "sensor_fusion" >}}), [Signal Conditioner]({{< relref "signal_conditioner" >}}), [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
2020-04-20 18:58:10 +02:00
2020-06-16 18:33:50 +02:00
## Reviews of Relative Position Sensors {#reviews-of-relative-position-sensors}
2020-04-20 18:58:10 +02:00
2020-09-18 11:43:07 +02:00
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance ([Fleming 2013](#org81e91f9)) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
2020-06-03 22:43:54 +02:00
2020-04-29 14:36:36 +02:00
<a id="table--tab:characteristics-relative-sensor"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:characteristics-relative-sensor">Table 1</a></span>:
Characteristics of relative measurement sensors <a class='org-ref-reference' href="#collette11_review">collette11_review</a>
</div>
2020-04-20 18:58:10 +02:00
2020-04-29 14:55:15 +02:00
| Technology | Frequency | Resolution | Range | T Range |
|----------------|------------|----------------|--------------|-------------|
| LVDT | DC-200 Hz | 10 nm rms | 1-10 mm | -50,100 °C |
| Eddy current | 5 kHz | 0.1-100 nm rms | 0.5-55 mm | -50,100 °C |
| Capacitive | DC-100 kHz | 0.05-50 nm rms | 50 nm - 1 cm | -40,100 °C |
| Interferometer | 300 kHz | 0.1 nm rms | 10 cm | -250,100 °C |
| Encoder | DC-1 MHz | 1 nm rms | 7-27 mm | 0,40 °C |
| Bragg Fibers | DC-150 Hz | 0.3 nm rms | 3.5 cm | -30,80 °C |
2020-04-20 18:58:10 +02:00
2020-04-29 14:36:36 +02:00
<a id="table--tab:summary-position-sensors"></a>
<div class="table-caption">
<span class="table-number"><a href="#table--tab:summary-position-sensors">Table 2</a></span>:
Summary of position sensor characteristics. The dynamic range (DNR) and resolution are approximations based on a full-scale range of 100um and a first order bandwidth of \(1 kHz\) <a class='org-ref-reference' href="#fleming13_review_nanom_resol_posit_sensor">fleming13_review_nanom_resol_posit_sensor</a>
2020-04-29 14:36:36 +02:00
</div>
2020-04-20 18:58:10 +02:00
2020-04-29 14:55:15 +02:00
| Sensor Type | Range | DNR | Resolution | Max. BW | Accuracy |
|----------------|--------------------------------|---------|------------|----------|-----------|
| Metal foil | \\(10-500 \mu m\\) | 230 ppm | 23 nm | 1-10 kHz | 1% FSR |
| Piezoresistive | \\(1-500 \mu m\\) | 5 ppm | 0.5 nm | >100 kHz | 1% FSR |
| Capacitive | \\(10 \mu m\\) to \\(10 mm\\) | 24 ppm | 2.4 nm | 100 kHz | 0.1% FSR |
| Electrothermal | \\(10 \mu m\\) to \\(1 mm\\) | 100 ppm | 10 nm | 10 kHz | 1% FSR |
| Eddy current | \\(100 \mu m\\) to \\(80 mm\\) | 10 ppm | 1 nm | 40 kHz | 0.1% FSR |
| LVDT | \\(0.5-500 mm\\) | 10 ppm | 5 nm | 1 kHz | 0.25% FSR |
| Interferometer | Meters | | 0.5 nm | >100kHz | 1 ppm FSR |
| Encoder | Meters | | 6 nm | >100kHz | 5 ppm FSR |
2020-04-20 18:58:10 +02:00
2020-07-30 10:43:47 +02:00
Capacitive Sensors and Eddy-Current sensors are compare [here](https://www.lionprecision.com/comparing-capacitive-and-eddy-current-sensors/).
2020-04-20 18:58:10 +02:00
2020-06-16 18:33:50 +02:00
## Capacitive Sensor {#capacitive-sensor}
2020-04-20 18:58:10 +02:00
Description:
- <http://www.lionprecision.com/tech-library/technotes/cap-0020-sensor-theory.html>
- <https://www.lionprecision.com/comparing-capacitive-and-eddy-current-sensors>
2020-07-30 10:43:47 +02:00
| Manufacturers | Links | Country |
|----------------|--------------------------------------------------------------------------------------------------|---------|
| Micro Sense | [link](http://www.microsense.net/products-position-sensors.htm) | USA |
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/capacitive-sensor/) | Germany |
| PI | [link](https://www.physikinstrumente.com/en/technology/sensor-technologies/capacitive-sensors/) | Germany |
| Unipulse | [link](https://www.unipulse.com/product/ps-ia/) | Japan |
| Lion-Precision | [link](https://www.lionprecision.com/products/capacitive-sensors) | USA |
| Fogale | [link](http://www.fogale.fr/brochures.html) | USA |
| Queensgate | [link](https://www.nanopositioning.com/product-category/nanopositioning/nanopositioning-sensors) | UK |
| Capacitec | [link](https://www.capacitec.com/Displacement-Sensing-Systems) | USA |
2020-04-20 18:58:10 +02:00
2020-06-16 18:33:50 +02:00
## Inductive Sensor (Eddy Current) {#inductive-sensor--eddy-current}
2020-04-20 18:58:10 +02:00
2020-09-18 11:43:07 +02:00
| Manufacturers | Links | Country |
2020-07-30 10:43:47 +02:00
|----------------|-------------------------------------------------------------------------------------------|---------|
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/eddy-current-sensor/) | Germany |
| Lion Precision | [link](https://www.lionprecision.com/products/eddy-current-sensors) | USA |
| Cedrat | [link](https://www.cedrat-technologies.com/en/products/sensors/eddy-current-sensors.html) | France |
| Kaman | [link](https://www.kamansensors.com/product/smt-9700/) | USA |
| Keyence | [link](https://www.keyence.com/ss/products/measure/measurement%5Flibrary/type/inductive/) | USA |
2020-04-20 18:58:10 +02:00
2020-06-16 18:33:50 +02:00
## Inductive Sensor (LVDT) {#inductive-sensor--lvdt}
2020-04-20 18:58:10 +02:00
2020-07-30 10:43:47 +02:00
| Manufacturers | Links | Country |
|---------------|--------------------------------------------------------------------------------------------|---------|
| Micro-Epsilon | [link](https://www.micro-epsilon.com/displacement-position-sensors/inductive-sensor-lvdt/) | Germany |
| Keyence | [link](https://www.keyence.eu/products/measure/contact-distance-lvdt/gt2/index.jsp) | USA |
2020-04-20 18:58:10 +02:00
2020-06-16 18:33:50 +02:00
## Interferometers {#interferometers}
2020-04-20 18:58:10 +02:00
2020-09-17 16:00:43 +02:00
| Manufacturers | Links | Country |
|---------------|----------------------------------------------------------------------------------------------------------|-------------|
| Attocube | [link](http://www.attocube.com/) | Germany |
| Zygo | [link](https://www.zygo.com/?/met/markets/stageposition/zmi/) | USA |
| Smaract | [link](https://www.smaract.com/interferometry) | Germany |
| Qutools | [link](https://www.qutools.com/qudis/) | Germany |
| Renishaw | [link](https://www.renishaw.com/en/fibre-optic-laser-encoder-products--6594) | UK |
| Sios | [link](https://sios-de.com/products/length-measurement/laser-interferometer/) | Germany |
| Keysight | [link](https://www.keysight.com/en/pc-1000000393%3Aepsg%3Apgr/laser-heads?nid=-536900395.0&cc=FR&lc=fre) | USA |
| Optics11 | [link](https://optics11.com/) | Netherlands |
2020-04-20 18:58:10 +02:00
<div class="table-caption">
2020-04-29 14:36:36 +02:00
<span class="table-number">Table 3</span>:
2020-04-20 18:58:10 +02:00
Characteristics of Environmental Units
</div>
2020-04-29 14:55:15 +02:00
| | Temperature (\\(\pm\ ^oC\\)) | Pressure (\\(\pm\ hPa\\)) | Humidity \\(\pm\\% RH\\) | Wavelength Accuracy (\\(\pm\ \text{ppm}\\)) |
|-----------|------------------------------|---------------------------|--------------------------|---------------------------------------------|
| Attocube | 0.1 | 1 | 2 | 0.5 |
| Renishaw | 0.2 | 1 | 6 | 1 |
| Picoscale | 0.2 | 2 | 2 | 1 |
2020-04-20 18:58:10 +02:00
2020-09-18 11:43:07 +02:00
([Jang and Kim 2017](#org64791e2))
2020-04-20 18:58:10 +02:00
2020-09-18 11:43:07 +02:00
<a id="org75192f1"></a>
2020-04-20 18:58:10 +02:00
2020-06-16 18:33:50 +02:00
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
2020-04-20 18:58:10 +02:00
2020-07-30 10:43:47 +02:00
## Linear Encoders {#linear-encoders}
| Manufacturers | Links | Country |
|----------------|-----------------------------------------------------------------------|---------|
| Heidenhain | [link](https://www.heidenhain.com/en%5FUS/products/linear-encoders/) | Germany |
| MicroE Systems | [link](https://www.celeramotion.com/microe/products/linear-encoders/) | USA |
| Renishaw | [link](https://www.renishaw.com/en/browse-encoder-range--6440) | UK |
2020-09-04 15:42:37 +02:00
| Celera Motion | [link](https://www.celeramotion.com/microe/) | USA |
2020-04-20 18:58:10 +02:00
2020-07-30 10:43:47 +02:00
## Bibliography {#bibliography}
2020-04-20 18:58:10 +02:00
2020-09-18 11:43:07 +02:00
<a id="org81e91f9"></a>Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” _Sensors and Actuators a: Physical_ 190 (nil):10626. <https://doi.org/10.1016/j.sna.2012.10.016>.
2020-04-20 18:58:10 +02:00
2020-09-18 11:43:07 +02:00
<a id="org64791e2"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):188190. <https://doi.org/10.1007/s12541-017-0217-y>.