digital-brain/content/zettels/mass_spring_damper_systems.md

82 lines
1.9 KiB
Markdown
Raw Normal View History

2020-10-25 08:50:31 +01:00
+++
title = "Mass Spring Damper Systems"
draft = false
+++
Tags
:
2020-10-26 16:00:34 +01:00
## Actuated Mass Spring Damper System {#actuated-mass-spring-damper-system}
2022-03-15 16:40:48 +01:00
Let's consider Figure [1](#figure--fig:mass-spring-damper-system) where:
2020-10-26 16:00:34 +01:00
- \\(m\\) is the mass in [kg]
2023-01-10 15:23:00 +01:00
- \\(k\\) is the spring stiffness in [N/m]
2020-10-26 16:00:34 +01:00
- \\(c\\) is the damping coefficient in [N/(m/s)]
- \\(F\\) is the actuator force in [N]
- \\(F\_d\\) is external force applied to the mass in [N]
- \\(w\\) is ground motion
- \\(x\\) is the absolute mass motion
2022-03-15 16:40:48 +01:00
<a id="figure--fig:mass-spring-damper-system"></a>
2020-10-26 16:00:34 +01:00
2022-03-15 16:40:48 +01:00
{{< figure src="/ox-hugo/mass_spring_damper_system.png" caption="<span class=\"figure-number\">Figure 1: </span>Mass Spring Damper System" >}}
2020-10-26 16:00:34 +01:00
Let's write the transfer function from \\(F\\) to \\(x\\):
\begin{equation}
\frac{x}{F}(s) = \frac{1}{m s^2 + c s + k}
\end{equation}
This can be re-written as:
\begin{equation}
\frac{x}{F}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
\end{equation}
with:
- \\(\omega\_0\\) the natural frequency in [rad/s]
- \\(\xi\\) the damping ratio
2023-01-10 15:23:00 +01:00
## Transfer function {#transfer-function}
### Voice Coil Actuator with flexible guiding {#voice-coil-actuator-with-flexible-guiding}
```matlab
%% Mechanical properties
m = 1; % Mobile mass [kg]
k = 1e6; % stiffness [N/m]
xi = 0.01; % Modal Damping
c = 2*xi*sqrt(k*m);
```
```matlab
%% Transfer function from F [N] to x [m]
G = 1/(m*s^2 + c*s + k);
```
### Transmissibility {#transmissibility}
2020-10-26 16:00:34 +01:00
\begin{equation}
\frac{x}{w}(s) = \frac{1}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
\end{equation}
2023-01-10 15:23:00 +01:00
### Compliance {#compliance}
2020-10-26 16:00:34 +01:00
\begin{equation}
\frac{x}{F\_d}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
\end{equation}
2022-03-15 16:40:48 +01:00
## Bibliography {#bibliography}
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><div class="csl-bib-body">
</div>