Update Content - 2020-10-26

This commit is contained in:
Thomas Dehaeze 2020-10-26 16:00:34 +01:00
parent b8ee355ad4
commit 66fa9f0267
12 changed files with 161 additions and 7 deletions

View File

@ -4,13 +4,15 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Backlinks:
- [Advances in internal model control technique: a review and future prospects]({{< relref "saxena12_advan_inter_model_contr_techn" >}})
- [Actuator Fusion]({{< relref "actuator_fusion" >}})
- [Sensor Fusion]({{< relref "sensor_fusion" >}})
Tags
:
<./biblio/references.bib>
## Complementary Filters Synthesis {#complementary-filters-synthesis}
The shaping of complementary filters can be done using the \\(\mathcal{H}\_\infty\\) synthesis ([Dehaeze, Vermat, and Christophe 2019](#orgc79060a)).
## Bibliography {#bibliography}
<a id="orgc79060a"></a>Dehaeze, Thomas, Mohit Vermat, and Collette Christophe. 2019. “Complementary Filters Shaping Using \\(mathcalH\_Infty\\) Synthesis.” In _7th International Conference on Control, Mechatronics and Automation (ICCMA)_, 45964. <https://doi.org/10.1109/ICCMA46720.2019.8988642>.

View File

@ -0,0 +1,50 @@
+++
title = "Electronic Active Filters"
author = ["Thomas Dehaeze"]
draft = false
+++
Tags
: [Operational Amplifiers]({{< relref "operational_amplifiers" >}})
TODOS:
- [X] Electronics circuits containing input voltage, output voltage, Op-amp, RLC components
- [ ] Bode plots of the filters
- [ ] Inputs and output impedance
## Low Pass Filter {#low-pass-filter}
\begin{equation}
\frac{V\_o}{V\_i}(s) = \frac{1}{R^2 C\_1 C\_2 s^2 + 2 R C\_2 s + 1}
\end{equation}
\begin{equation}
\frac{V\_o}{V\_i}(s) = \frac{1}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
\end{equation}
With:
- \\(\omega\_0 = \frac{1}{R\sqrt{C\_1 C\_2}}\\)
- \\(\xi = \frac{C\_2}{C\_1}\\)
<a id="org21a1d35"></a>
{{< figure src="/ox-hugo/elec_active_second_order_low_pass_filter.png" caption="Figure 1: Second Order Low Pass Filter" >}}
## High Pass Filter {#high-pass-filter}
Same as [1](#org21a1d35) but by exchanging R1 with C1 and R2 with C2
\begin{equation}
\frac{V\_o}{V\_i}(s) = \frac{R^2 C\_1 C\_2 s^2}{R^2 C\_1 C\_2 s^2 + 2 R C\_2 s + 1}
\end{equation}
With:
- \\(\omega\_0 = \frac{1}{R\sqrt{C\_1 C\_2}}\\)
- \\(\xi = \frac{C\_2}{C\_1}\\)
<./biblio/references.bib>

View File

@ -0,0 +1,44 @@
+++
title = "Electronic Passive Filters"
author = ["Thomas Dehaeze"]
draft = false
+++
Tags
:
TODOS:
- [X] Electronics circuits containing input voltage, output voltage, R L and C components
- [ ] Bode plot of the filter from input voltage to output voltage
- [ ] Equation of the transfer functions with nice parameters (\\(\omega\_c\\), \\(\xi\\))
## First Order Low Pass Filter {#first-order-low-pass-filter}
<a id="orgf718550"></a>
{{< figure src="/ox-hugo/elec_passive_first_order_low_pass_filter.png" caption="Figure 1: First Order Low Pass Filter using an RC circuit" >}}
## First Order High Pass Filter {#first-order-high-pass-filter}
<a id="orgc9b929d"></a>
{{< figure src="/ox-hugo/elec_passive_first_order_high_pass_filter.png" caption="Figure 2: First Order High Pass Filter using an RC circuit" >}}
## Second Order Low Pass Filter {#second-order-low-pass-filter}
<a id="orgb56edb0"></a>
{{< figure src="/ox-hugo/elec_passive_second_order_low_pass_filter.png" caption="Figure 3: Second Order Low Pass Filter using an RLC circuit" >}}
## Second Order High Pass Filter {#second-order-high-pass-filter}
<a id="org1bcacc5"></a>
{{< figure src="/ox-hugo/elec_passive_second_order_high_pass_filter.png" caption="Figure 4: Second Order High Pass Filter using an RLC circuit" >}}
<./biblio/references.bib>

View File

@ -7,4 +7,52 @@ draft = false
Tags
:
## Actuated Mass Spring Damper System {#actuated-mass-spring-damper-system}
Let's consider Figure [1](#orgeec8f0f) where:
- \\(m\\) is the mass in [kg]
- \\(ḱ\\) is the spring stiffness in [N/m]
- \\(c\\) is the damping coefficient in [N/(m/s)]
- \\(F\\) is the actuator force in [N]
- \\(F\_d\\) is external force applied to the mass in [N]
- \\(w\\) is ground motion
- \\(x\\) is the absolute mass motion
<a id="orgeec8f0f"></a>
{{< figure src="/ox-hugo/mass_spring_damper_system.png" caption="Figure 1: Mass Spring Damper System" >}}
Let's write the transfer function from \\(F\\) to \\(x\\):
\begin{equation}
\frac{x}{F}(s) = \frac{1}{m s^2 + c s + k}
\end{equation}
This can be re-written as:
\begin{equation}
\frac{x}{F}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
\end{equation}
with:
- \\(\omega\_0\\) the natural frequency in [rad/s]
- \\(\xi\\) the damping ratio
## Transmissibility {#transmissibility}
\begin{equation}
\frac{x}{w}(s) = \frac{1}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
\end{equation}
## Compliance {#compliance}
\begin{equation}
\frac{x}{F\_d}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
\end{equation}
<./biblio/references.bib>

View File

@ -0,0 +1,10 @@
+++
title = "Operational Amplifiers"
author = ["Thomas Dehaeze"]
draft = false
+++
Tags
:
<./biblio/references.bib>

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.7 KiB