+++ title = "Mass Spring Damper Systems" draft = false +++ Tags : ## Actuated Mass Spring Damper System {#actuated-mass-spring-damper-system} Let's consider Figure [1](#figure--fig:mass-spring-damper-system) where: - \\(m\\) is the mass in [kg] - \\(k\\) is the spring stiffness in [N/m] - \\(c\\) is the damping coefficient in [N/(m/s)] - \\(F\\) is the actuator force in [N] - \\(F\_d\\) is external force applied to the mass in [N] - \\(w\\) is ground motion - \\(x\\) is the absolute mass motion {{< figure src="/ox-hugo/mass_spring_damper_system.png" caption="Figure 1: Mass Spring Damper System" >}} Let's write the transfer function from \\(F\\) to \\(x\\): \begin{equation} \frac{x}{F}(s) = \frac{1}{m s^2 + c s + k} \end{equation} This can be re-written as: \begin{equation} \frac{x}{F}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1} \end{equation} with: - \\(\omega\_0\\) the natural frequency in [rad/s] - \\(\xi\\) the damping ratio ## Transfer function {#transfer-function} ### Voice Coil Actuator with flexible guiding {#voice-coil-actuator-with-flexible-guiding} ```matlab %% Mechanical properties m = 1; % Mobile mass [kg] k = 1e6; % stiffness [N/m] xi = 0.01; % Modal Damping c = 2*xi*sqrt(k*m); ``` ```matlab %% Transfer function from F [N] to x [m] G = 1/(m*s^2 + c*s + k); ``` ### Transmissibility {#transmissibility} \begin{equation} \frac{x}{w}(s) = \frac{1}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1} \end{equation} ### Compliance {#compliance} \begin{equation} \frac{x}{F\_d}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1} \end{equation} ## Bibliography {#bibliography}