2020-09-23 15:33:27 +02:00
% Created 2020-09-23 mer. 14:15
2019-08-14 12:08:30 +02:00
% Intended LaTeX compiler: pdflatex
2020-08-17 17:56:40 +02:00
\documentclass [conference] { IEEEtran}
2019-08-14 12:08:30 +02:00
\usepackage [utf8] { inputenc}
\usepackage [T1] { fontenc}
\usepackage { graphicx}
\usepackage { grffile}
\usepackage { longtable}
\usepackage { wrapfig}
\usepackage { rotating}
\usepackage [normalem] { ulem}
\usepackage { amsmath}
\usepackage { textcomp}
\usepackage { amssymb}
\usepackage { capt-of}
\usepackage { hyperref}
\usepackage [most] { tcolorbox}
2020-08-17 17:56:40 +02:00
\usepackage { bm}
\usepackage { booktabs}
\usepackage { tabularx}
\usepackage { array}
2019-08-14 12:08:30 +02:00
\usepackage { siunitx}
2020-08-17 17:56:40 +02:00
\IEEEoverridecommandlockouts
\usepackage { cite}
\usepackage { amsmath,amssymb,amsfonts}
\usepackage { algorithmic}
\usepackage { graphicx}
\usepackage { textcomp}
\usepackage { xcolor}
\usepackage { cases}
\usepackage { tabularx,siunitx,booktabs}
\usepackage { algorithmic}
\usepackage { import, hyperref}
\renewcommand { \citedash } { --}
\def \BibTeX { { \rm B\kern -.05em{ \sc i\kern -.025em b} \kern -.08em T\kern -.1667em\lower .7ex\hbox { E} \kern -.125emX} }
2020-09-22 09:51:26 +02:00
\usepackage { showframe}
2020-08-17 17:56:40 +02:00
\author { \IEEEauthorblockN { Dehaeze Thomas} \IEEEauthorblockA { \textit { European Synchrotron Radiation Facility} \\ Grenoble, France\\ \textit { Precision Mechatronics Laboratory} \\ \textit { University of Liege} , Belgium \\ thomas.dehaeze@esrf.fr } \and \IEEEauthorblockN { Collette Christophe} \IEEEauthorblockA { \textit { BEAMS Department} \\ \textit { Free University of Brussels} , Belgium\\ \textit { Precision Mechatronics Laboratory} \\ \textit { University of Liege} , Belgium \\ ccollett@ulb.ac.be } }
2020-09-23 15:33:27 +02:00
\date { 2020-09-23}
2020-09-22 11:29:13 +02:00
\title { Optimal and Robust Sensor Fusion}
2019-08-14 12:08:30 +02:00
\begin { document}
\maketitle
\begin { abstract}
Abstract text to be done
\end { abstract}
\begin { IEEEkeywords}
2020-08-17 17:56:40 +02:00
Complementary Filters, Sensor Fusion, H-Infinity Synthesis
2019-08-14 12:08:30 +02:00
\end { IEEEkeywords}
\section { Introduction}
2020-09-23 15:33:27 +02:00
\label { sec:org88afd51}
2020-08-17 17:56:40 +02:00
\label { sec:introduction}
2019-08-14 12:08:30 +02:00
2020-09-22 21:58:37 +02:00
\begin { itemize}
\item Section \ref { sec:optimal_ fusion}
\item Section \ref { sec:robust_ fusion}
\item Section \ref { sec:optimal_ robust_ fusion}
\item Section \ref { sec:experimental_ validation}
\end { itemize}
2020-09-22 11:29:13 +02:00
2020-08-17 17:56:40 +02:00
\section { Optimal Super Sensor Noise: \( \mathcal { H } _ 2 \) Synthesis}
2020-09-23 15:33:27 +02:00
\label { sec:org5853545}
2020-08-17 17:56:40 +02:00
\label { sec:optimal_ fusion}
2019-08-14 12:08:30 +02:00
2020-09-22 09:51:26 +02:00
\subsection { Sensor Model}
2020-09-23 15:33:27 +02:00
\label { sec:org565ea86}
2020-09-22 11:29:13 +02:00
2020-09-22 21:58:37 +02:00
Let's consider a sensor measuring a physical quantity \( x \) (Figure \ref { fig:sensor_ model_ noise} ).
2020-09-22 11:29:13 +02:00
The sensor has an internal dynamics which is here modelled with a Linear Time Invariant (LTI) system transfer function \( G _ i ( s ) \) .
The noise of sensor can be described by the Power Spectral Density (PSD) \( \Phi _ { n _ i } ( \omega ) \) .
This is approximated by shaping a white noise with unitary PSD \( \tilde { n } _ i \) \eqref { eq:unitary_ sensor_ noise_ psd} with a LTI transfer function \( N _ i ( s ) \) :
\begin { equation}
2020-09-22 21:58:37 +02:00
\begin { aligned}
\Phi _ { n_ i} (\omega ) & = \left | N_ i(j\omega ) \right |^ 2 \Phi _ { \tilde { n} _ i} (\omega ) \\
& = \left | N_ i(j\omega ) \right |^ 2
\end { aligned}
2020-09-22 11:29:13 +02:00
\end { equation}
\begin { equation}
\label { eq:unitary_ sensor_ noise_ psd}
\Phi _ { \tilde { n} _ i} (\omega ) = 1
\end { equation}
The output of the sensor \( v _ i \) :
\begin { equation}
v_ i = \left ( G_ i \right ) x + \left ( G_ i N_ i \right ) \tilde { n} _ i
\end { equation}
2020-09-22 21:58:37 +02:00
In order to obtain an estimate \( \hat { x } _ i \) of \( x \) , a model \( \hat { G } _ i \) of the (true) sensor dynamics \( G _ i \) is inverted and applied at the output (Figure \ref { fig:sensor_ model_ noise} ):
2020-09-22 11:29:13 +02:00
\begin { equation}
\hat { x} _ i = \left ( \hat { G} _ i^ { -1} G_ i \right ) x + \left ( \hat { G} _ i^ { -1} G_ i N_ i \right ) \tilde { n} _ i
\end { equation}
\begin { figure} [htbp]
\centering
2020-09-22 21:58:37 +02:00
\includegraphics [scale=1] { figs/sensor_ model_ noise.pdf}
\caption { \label { fig:sensor_ model_ noise} Sensor Model}
2020-09-22 11:29:13 +02:00
\end { figure}
2020-09-22 09:51:26 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Sensor Fusion Architecture}
2020-09-23 15:33:27 +02:00
\label { sec:org1ae73e8}
2020-09-22 11:29:13 +02:00
Let's now consider two sensors measuring the same physical quantity \( x \) but with different dynamics \( ( G _ 1 , G _ 2 ) \) and noise characteristics \( ( N _ 1 , N _ 2 ) \) (Figure \ref { fig:sensor_ fusion_ noise_ arch} ).
The noise sources \( \tilde { n } _ 1 \) and \( \tilde { n } _ 2 \) are considered to be uncorrelated.
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\begin { figure} [htbp]
\centering
\includegraphics [scale=1] { figs/sensor_ fusion_ noise_ arch.pdf}
2020-09-22 10:15:26 +02:00
\caption { \label { fig:sensor_ fusion_ noise_ arch} Sensor Fusion Architecture with sensor noise}
2020-08-17 17:56:40 +02:00
\end { figure}
2019-08-14 12:08:30 +02:00
2020-09-22 11:29:13 +02:00
The output of both sensors \( ( v 1 ,v 2 ) \) are then passed through the inverse of the sensor model to obtained two estimates \( ( \hat { x } _ 1 , \hat { x } _ 2 ) \) of \( x \) .
These two estimates are then filtered out by two filters \( H _ 1 \) and \( H _ 2 \) and summed to gives the super sensor estimate \( \hat { x } \) .
2020-09-22 10:15:26 +02:00
2020-09-22 09:51:26 +02:00
\begin { equation}
2020-09-22 11:29:13 +02:00
\begin { split}
\hat { x} = { } & \left ( H_ 1 \hat { G} _ 1^ { -1} G_ 1 + H_ 2 \hat { G} _ 2^ { -1} G_ 2 \right ) x \\
& + \left ( H_ 1 \hat { G} _ 1^ { -1} G_ 1 N_ 1 \right ) \tilde { n} _ 1 + \left ( H_ 2 \hat { G} _ 2^ { -1} G_ 2 N_ 2 \right ) \tilde { n} _ 2
\end { split}
2020-09-22 09:51:26 +02:00
\end { equation}
Suppose the sensor dynamical model \( \hat { G } _ i \) is perfect:
\begin { equation}
\hat { G} _ i = G_ i
\end { equation}
2020-09-22 11:29:13 +02:00
We considered here complementary filters:
2020-09-22 09:51:26 +02:00
\begin { equation}
H_ 1(s) + H_ 2(s) = 1
\end { equation}
2020-09-22 11:29:13 +02:00
In such case, the super sensor estimate \( \hat { x } \) is equal to \( x \) plus the noise of the individual sensors filtered out by the complementary filters:
2020-09-22 09:51:26 +02:00
\begin { equation}
2020-09-22 11:29:13 +02:00
\hat { x} = x + \left ( H_ 1 N_ 1 \right ) \tilde { n} _ 1 + \left ( H_ 2 N_ 2 \right ) \tilde { n} _ 2
2020-09-22 09:51:26 +02:00
\end { equation}
2020-08-17 17:56:40 +02:00
\subsection { Super Sensor Noise}
2020-09-23 15:33:27 +02:00
\label { sec:orgb2e8dd6}
2020-09-22 09:51:26 +02:00
Let's note \( n \) the super sensor noise.
2020-09-22 11:29:13 +02:00
\begin { equation}
n = \left ( H_ 1 N_ 1 \right ) \tilde { n} _ 1 + \left ( H_ 2 N_ 2 \right ) \tilde { n} _ 2
\end { equation}
2020-09-22 09:51:26 +02:00
2020-09-22 11:29:13 +02:00
As the noise of both sensors are considered to be uncorrelated, the PSD of the super sensor noise is computed as follow:
2020-09-22 09:51:26 +02:00
\begin { equation}
2020-09-22 11:29:13 +02:00
\Phi _ n(\omega ) = \left | H_ 1 N_ 1 \right |^ 2 + \left | H_ 2 N_ 2 \right |^ 2
2020-09-22 09:51:26 +02:00
\end { equation}
2019-08-14 12:08:30 +02:00
2020-09-22 11:29:13 +02:00
It is clear that the PSD of the super sensor depends on the norm of the complementary filters.
2020-08-17 17:56:40 +02:00
\subsection { \( \mathcal { H } _ 2 \) Synthesis of Complementary Filters}
2020-09-23 15:33:27 +02:00
\label { sec:orga4cf5f1}
2020-09-22 21:58:37 +02:00
The goal is to design \( H _ 1 ( s ) \) and \( H _ 2 ( s ) \) such that the effect of the noise sources \( \tilde { n } _ 1 \) and \( \tilde { n } _ 2 \) has the smallest possible effect on the noise \( n \) of the estimation \( \hat { x } \) .
2020-09-22 09:51:26 +02:00
And the goal is the minimize the Root Mean Square (RMS) value of \( n \) :
\begin { equation}
\label { eq:rms_ value_ estimation}
2020-09-22 21:58:37 +02:00
\sigma _ { n} = \sqrt { \int _ 0^ \infty \Phi _ { n} (\omega ) d\omega } = \left \| \begin { matrix} H_ 1 N_ 1 \\ H_ 2 N_ 2 \end { matrix} \right \| _ 2
2020-09-22 09:51:26 +02:00
\end { equation}
2020-09-22 21:58:37 +02:00
Thus, the goal is to design \( H _ 1 ( s ) \) and \( H _ 2 ( s ) \) such that \( H _ 1 ( s ) + H _ 2 ( s ) = 1 \) and such that \( \sigma _ n \) is minimized.
2020-09-22 09:51:26 +02:00
2020-09-22 21:58:37 +02:00
This can be cast into an \( \mathcal { H } _ 2 \) synthesis problem by considering the following generalized plant (also represented in Figure \ref { fig:h_ two_ optimal_ fusion} ):
2020-09-22 09:51:26 +02:00
\begin { equation}
\begin { pmatrix}
z_ 1 \\ z_ 2 \\ v
2020-09-22 21:58:37 +02:00
\end { pmatrix} = \underbrace { \begin { bmatrix}
2020-09-22 11:29:13 +02:00
N_ 1 & N_ 1 \\
0 & N_ 2 \\
1 & 0
2020-09-22 21:58:37 +02:00
\end { bmatrix} } _ { P_ { \mathcal { H} _ 2} } \begin { pmatrix}
2020-09-22 09:51:26 +02:00
w \\ u
\end { pmatrix}
\end { equation}
2020-09-22 21:58:37 +02:00
Applying the \( \mathcal { H } _ 2 \) synthesis on \( P _ { \mathcal { H } _ 2 } \) will generate a filter \( H _ 2 ( s ) \) such that the \( \mathcal { H } _ 2 \) norm from \( w \) to \( ( z _ 1 ,z _ 2 ) \) is minimized:
\begin { equation}
\label { eq:H2_ norm}
\left \| \begin { matrix} z_ 1/w \\ z_ 2/w \end { matrix} \right \| _ 2 = \left \| \begin { matrix} N_ 1 (1 - H_ 2) \\ N_ 2 H_ 2 \end { matrix} \right \| _ 2
\end { equation}
The \( \mathcal { H } _ 2 \) norm of Eq. \eqref { eq:H2_ norm} is equals to \( \sigma _ n \) by defining \( H _ 1 ( s ) \) to be the complementary filter of \( H _ 2 ( s ) \) :
\begin { equation}
H_ 1(s) = 1 - H_ 2(s)
\end { equation}
We then have that the \( \mathcal { H } _ 2 \) synthesis applied on \( P _ { \mathcal { H } _ 2 } \) generates two complementary filters \( H _ 1 ( s ) \) and \( H _ 2 ( s ) \) such that the RMS value of super sensor noise is minimized.
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\begin { figure} [htbp]
\centering
\includegraphics [scale=1] { figs/h_ two_ optimal_ fusion.pdf}
2020-09-22 10:15:26 +02:00
\caption { \label { fig:h_ two_ optimal_ fusion} Generalized plant \( P _ { \mathcal { H } _ 2 } \) used for the \( \mathcal { H } _ 2 \) synthesis of complementary filters}
2020-08-17 17:56:40 +02:00
\end { figure}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Example}
2020-09-23 15:33:27 +02:00
\label { sec:org74634c9}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Robustness Problem}
2020-09-23 15:33:27 +02:00
\label { sec:org5fda5c1}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\section { Robust Sensor Fusion: \( \mathcal { H } _ \infty \) Synthesis}
2020-09-23 15:33:27 +02:00
\label { sec:orgc88050f}
2020-08-17 17:56:40 +02:00
\label { sec:robust_ fusion}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Representation of Sensor Dynamical Uncertainty}
2020-09-23 15:33:27 +02:00
\label { sec:orgb09aa5a}
2020-09-22 10:15:26 +02:00
2020-09-22 21:58:37 +02:00
In Section \ref { sec:optimal_ fusion} , the model \( \hat { G } _ i ( s ) \) of the sensor was considered to be perfect.
In reality, there are always uncertainty (neglected dynamics) associated with the estimation of the sensor dynamics.
The Uncertainty on the sensor dynamics \( G _ i ( s ) \) is here modelled by (input) multiplicative uncertainty:
2020-09-22 10:15:26 +02:00
\begin { equation}
2020-09-22 21:58:37 +02:00
G_ i(s) = \hat { G} _ i(s) \left ( 1 + W_ i(s) \Delta _ i(s) \right ); \quad |\Delta _ i(j\omega )| < 1 \forall \omega
2020-09-22 10:15:26 +02:00
\end { equation}
2020-09-22 21:58:37 +02:00
where \( \hat { G } _ i ( s ) \) is the nominal model, \( W _ i \) a weight representing the size of the uncertainty at each frequency, and \( \Delta _ i \) is any complex perturbation such that \( \left \| \Delta _ i \right \| _ \infty < 1 \) .
2020-09-22 10:15:26 +02:00
2020-09-22 21:58:37 +02:00
The sensor can then be represented as shown in Figure \ref { fig:sensor_ model_ uncertainty} .
\begin { figure} [htbp]
\centering
\includegraphics [scale=1] { figs/sensor_ model_ uncertainty.pdf}
\caption { \label { fig:sensor_ model_ uncertainty} Sensor Model including Dynamical Uncertainty}
\end { figure}
2020-09-22 09:51:26 +02:00
\subsection { Sensor Fusion Architecture}
2020-09-23 15:33:27 +02:00
\label { sec:org1d92a74}
2020-09-22 21:58:37 +02:00
Let's consider the sensor fusion architecture shown in Figure \ref { fig:sensor_ fusion_ arch_ uncertainty} where the dynamical uncertainties of both sensors are included.
2020-09-22 09:51:26 +02:00
2020-09-22 21:58:37 +02:00
The super sensor estimate is then:
2020-09-22 09:51:26 +02:00
\begin { equation}
2020-09-22 21:58:37 +02:00
\begin { aligned}
\hat { x} & = \Big ( H_ 1 \hat { G} _ 1^ { -1} \hat { G} _ 1 (1 + W_ 1 \Delta _ 1) \\
& \quad + H_ 2 \hat { G} _ 2^ { -1} \hat { G} _ 2 (1 + W_ 2 \Delta _ 2) \Big ) x \\
& = \Big ( H_ 1 (1 + W_ 1 \Delta _ 1) + H_ 2 (1 + W_ 2 \Delta _ 2) \Big ) x
\end { aligned}
2020-09-22 09:51:26 +02:00
\end { equation}
2020-09-22 21:58:37 +02:00
with \( \Delta _ i \) is any transfer function satisfying \( \| \Delta _ i \| _ \infty < 1 \) .
2020-09-22 09:51:26 +02:00
2020-09-22 21:58:37 +02:00
As \( H _ 1 \) and \( H _ 2 \) are complementary filters, we finally have:
2020-09-22 09:51:26 +02:00
\begin { equation}
2020-09-22 21:58:37 +02:00
\hat { x} = \left ( 1 + H_ 1 W_ 1 \Delta _ 1 + H_ 2 W_ 2 \Delta _ 2 \right ) x, \quad \| \Delta _ i\| _ \infty <1
2020-09-22 09:51:26 +02:00
\end { equation}
2019-08-14 12:08:30 +02:00
\begin { figure} [htbp]
\centering
2020-08-17 17:56:40 +02:00
\includegraphics [scale=1] { figs/sensor_ fusion_ arch_ uncertainty.pdf}
2020-09-22 10:15:26 +02:00
\caption { \label { fig:sensor_ fusion_ arch_ uncertainty} Sensor Fusion Architecture with sensor model uncertainty}
2019-08-14 12:08:30 +02:00
\end { figure}
2020-08-17 17:56:40 +02:00
\subsection { Super Sensor Dynamical Uncertainty}
2020-09-23 15:33:27 +02:00
\label { sec:org81db1d8}
2020-09-22 21:58:37 +02:00
The uncertainty set of the transfer function from \( \hat { x } \) to \( x \) at frequency \( \omega \) is bounded in the complex plane by a circle centered on 1 and with a radius equal to \( |W _ 1 ( j \omega ) H _ 1 ( j \omega ) | + |W _ 2 ( j \omega ) H _ 2 ( j \omega ) | \) as shown in Figure \ref { fig:uncertainty_ set_ super_ sensor} .
2020-09-22 09:51:26 +02:00
2020-09-22 21:58:37 +02:00
And we can see that the dynamical uncertainty of the super sensor is equal to the sum of the individual sensor uncertainties filtered out by the complementary filters.
2019-08-14 12:08:30 +02:00
\begin { figure} [htbp]
\centering
2020-08-17 17:56:40 +02:00
\includegraphics [scale=1] { figs/uncertainty_ set_ super_ sensor.pdf}
2020-09-22 10:15:26 +02:00
\caption { \label { fig:uncertainty_ set_ super_ sensor} Super Sensor model uncertainty displayed in the complex plane}
2019-08-14 12:08:30 +02:00
\end { figure}
2020-09-22 21:58:37 +02:00
At frequencies where \( \left |W _ i ( j \omega ) \right | > 1 \) the uncertainty exceeds \( 100 \% \) and sensor fusion is impossible.
2020-08-17 17:56:40 +02:00
\subsection { \( \mathcal { H _ \infty } \) Synthesis of Complementary Filters}
2020-09-23 15:33:27 +02:00
\label { sec:org0e2a7a8}
2020-09-22 21:58:37 +02:00
In order for the fusion to be ``robust'', meaning no phase drop will be induced in the super sensor dynamics,
The goal is to design two complementary filters \( H _ 1 ( s ) \) and \( H _ 2 ( s ) \) such that the super sensor noise uncertainty is kept reasonably small.
2020-09-23 15:33:27 +02:00
To define what by ``small'' we mean, we use a weighting filter \( W _ u ( s ) \) such that the synthesis objective is:
\begin { equation}
\left | W_ 1(j\omega )H_ 1(j\omega ) \right | + \left | W_ 2(j\omega )H_ 2(j\omega ) \right | < \frac { 1} { \left | W_ u(j\omega ) \right |} , \quad \forall \omega
\end { equation}
This is actually almost equivalent (to within a factor \( \sqrt { 2 } \) ) equivalent as to have:
\begin { equation}
\left \| \begin { matrix} W_ u W_ 1 H_ 1 \\ W_ u W_ 2 H_ 2 \end { matrix} \right \| _ \infty < 1
\end { equation}
This problem can thus be dealt with an \( \mathcal { H } _ \infty \) synthesis problem by considering the following generalized plant (Figure \ref { fig:h_ infinity_ robust_ fusion} ):
2020-09-22 21:58:37 +02:00
\begin { equation}
\begin { pmatrix}
z_ 1 \\ z_ 2 \\ v
\end { pmatrix} = \underbrace { \begin { bmatrix}
2020-09-23 15:33:27 +02:00
W_ u W_ 1 & W_ u W_ 1 \\
0 & W_ u W_ 2 \\
1 & 0
2020-09-22 21:58:37 +02:00
\end { bmatrix} } _ { P_ { \mathcal { H} _ \infty } } \begin { pmatrix}
w \\ u
\end { pmatrix}
\end { equation}
Applying the \( \mathcal { H } _ \infty \) synthesis on \( P _ { \mathcal { H } _ \infty } \) will generate a filter \( H _ 2 ( s ) \) such that the \( \mathcal { H } _ \infty \) norm from \( w \) to \( ( z _ 1 ,z _ 2 ) \) is minimized:
\begin { equation}
\label { eq:Hinf_ norm}
2020-09-23 15:33:27 +02:00
\left \| \begin { matrix} z_ 1/w \\ z_ 2/w \end { matrix} \right \| _ \infty = \left \| \begin { matrix} W_ u W_ 1 (1 - H_ 2) \\ W_ u W_ 2 H_ 2 \end { matrix} \right \| _ \infty
2020-09-22 21:58:37 +02:00
\end { equation}
The \( \mathcal { H } _ \infty \) norm of Eq. \eqref { eq:Hinf_ norm} is equals to \( \sigma _ n \) by defining \( H _ 1 ( s ) \) to be the complementary filter of \( H _ 2 ( s ) \) :
\begin { equation}
H_ 1(s) = 1 - H_ 2(s)
\end { equation}
2020-09-22 09:51:26 +02:00
2020-08-17 17:56:40 +02:00
\begin { figure} [htbp]
\centering
\includegraphics [scale=1] { figs/h_ infinity_ robust_ fusion.pdf}
2020-09-22 10:15:26 +02:00
\caption { \label { fig:h_ infinity_ robust_ fusion} Generalized plant \( P _ { \mathcal { H } _ \infty } \) used for the \( \mathcal { H } _ \infty \) synthesis of complementary filters}
2020-08-17 17:56:40 +02:00
\end { figure}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Example}
2020-09-23 15:33:27 +02:00
\label { sec:org0122000}
2020-09-22 21:58:37 +02:00
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\section { Optimal and Robust Sensor Fusion: Mixed \( \mathcal { H } _ 2 / \mathcal { H } _ \infty \) Synthesis}
2020-09-23 15:33:27 +02:00
\label { sec:orgdf5a196}
2020-08-17 17:56:40 +02:00
\label { sec:optimal_ robust_ fusion}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Sensor Fusion Architecture}
2020-09-23 15:33:27 +02:00
\label { sec:orge16b510}
2020-09-22 21:58:37 +02:00
\begin { figure} [htbp]
\centering
\includegraphics [scale=1] { figs/sensor_ model_ noise_ uncertainty.pdf}
\caption { \label { fig:sensor_ model_ noise_ uncertainty} Sensor Model including Noise and Dynamical Uncertainty}
\end { figure}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\begin { figure} [htbp]
\centering
\includegraphics [scale=1] { figs/sensor_ fusion_ arch_ full.pdf}
2020-09-22 10:15:26 +02:00
\caption { \label { fig:sensor_ fusion_ arch_ full} Super Sensor Fusion with both sensor noise and sensor model uncertainty}
2020-08-17 17:56:40 +02:00
\end { figure}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Synthesis Objective}
2020-09-23 15:33:27 +02:00
\label { sec:orgb4b43b3}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Mixed \( \mathcal { H } _ 2 / \mathcal { H } _ \infty \) Synthesis}
2020-09-23 15:33:27 +02:00
\label { sec:orgb9b52ad}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\begin { figure} [htbp]
\centering
\includegraphics [scale=1] { figs/mixed_ h2_ hinf_ synthesis.pdf}
2020-09-22 10:15:26 +02:00
\caption { \label { fig:mixed_ h2_ hinf_ synthesis} Generalized plant \( P _ { \mathcal { H } _ 2 / \matlcal { H } _ \infty } \) used for the mixed \( \mathcal { H } _ 2 / \mathcal { H } _ \infty \) synthesis of complementary filters}
2020-08-17 17:56:40 +02:00
\end { figure}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Example}
2020-09-23 15:33:27 +02:00
\label { sec:orgc881f20}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\section { Experimental Validation}
2020-09-23 15:33:27 +02:00
\label { sec:org05b79a0}
2020-08-17 17:56:40 +02:00
\label { sec:experimental_ validation}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Experimental Setup}
2020-09-23 15:33:27 +02:00
\label { sec:orgc3daf35}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Sensor Noise and Dynamical Uncertainty}
2020-09-23 15:33:27 +02:00
\label { sec:org26fedf6}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Mixed \( \mathcal { H } _ 2 / \mathcal { H } _ \infty \) Synthesis}
2020-09-23 15:33:27 +02:00
\label { sec:org72f2969}
2019-08-14 12:08:30 +02:00
2020-08-17 17:56:40 +02:00
\subsection { Super Sensor Noise and Dynamical Uncertainty}
2020-09-23 15:33:27 +02:00
\label { sec:orgf66f78b}
2019-08-14 12:08:30 +02:00
\section { Conclusion}
2020-09-23 15:33:27 +02:00
\label { sec:orge0f0a43}
2019-08-14 12:08:30 +02:00
\label { sec:conclusion}
\section { Acknowledgment}
2020-09-23 15:33:27 +02:00
\label { sec:orgb16559e}
2019-08-14 12:08:30 +02:00
\bibliography { ref}
2020-08-17 17:56:40 +02:00
\end { document}